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Hemichannels are ion channels composed of six connexins (Cxs), and they have the

peculiarity to be permeable not only to ions, but also to molecules such as ATP

and glutamate. Under physiological conditions they present a low open probability,

which is sufficient to enable them to participate in several physiological functions.

However, massive and/or prolonged hemichannel opening induces or accelerates cell

death. Therefore, the study of the molecular mechanisms that control hemichannel

activity appears to be essential for understanding several physiological and pathological

processes. Carbon monoxide (CO) is a gaseous transmitter that modulates many cellular

processes, some of them through modulation of ion channel activity. CO exerts its

biological actions through the activation of guanylate cyclase and/or inducing direct

carbonylation of proline, threonine, lysine, and arginine. It is well accepted that guanylate

cyclase dependent pathway and direct carbonylation, are not sensitive to reducing

agents. However, it is important to point out that CO—through a lipid peroxide dependent

process—can also induce a secondary carbonylation in cysteine groups, which is

sensitive to reducing agents. Recently, in our laboratory we demonstrated that the

application of CO donors to the bath solution inhibited Cx46 hemichannel currents in

Xenopus laevis oocytes, a phenomenon that was fully reverted by reducing agents.

Therefore, a plausible mechanism of CO-induced Cx46 hemichannel inhibition is through

Cx46-lipid oxidation. In this work, I will present current evidence and some preliminary

results that support the following hypothesis: Carbon monoxide inhibits Cx46 HCs

through a lipid peroxidation-dependent process. Themain goal of this paper is to broaden

the scientific community interest in studying the relationship between CO-Fatty acids and

hemichannels, which will pave the way to more research directed to the understanding

of the molecular mechanism(s) that control the opening and closing of hemichannels in

both physiological and pathological conditions.
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INTRODUCTION

The hypothesis of the present work is: Carbon monoxide modulates connexin function through
a lipid peroxidation-dependent process (Figure 1). This hypothesis is supported by the following
knowledge and preliminary data.
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GENERAL CHARACTERISTICS OF
CONNEXINS

Connexins (Cxs) are transmembrane proteins that share
a common topology: four transmembrane domains, two
extracellular loops, one intracellular loop and the C, and N-
termini located both on the cytoplasmic side. Twenty isoforms
have been described in mammals (Reviewed in Eiberger et al.,
2001), which are named following their expected molecular
weight (e.g., Cx26 is expected to have an MW of ∼26 kDa).
Even when Cx isoforms exhibit considerable homology, the C-
terminus is the most variable region which differs in length
and number of regulatory sites, which include consensus
phosphorylation (Reviewed in Lampe and Lau, 2000), protein-
protein interaction (Flores et al., 2008; Reviewed in Hervé et al.,
2012) and cleavage sites (Lin et al., 1997). Almost all Cxs (except
for Cx23; Lovine et al., 2008) have six conserved extracellular-
loop cysteines (Cys), which have been proposed are essential
for gap-junction channel (GJC) formation (Dahl et al., 1991).
Finally, it is important to note that in mammals, virtually all
cell types express at least one Cx type, but there are major
differences in expression at the tissue level. Thus, for example,
Cx43 is the most ubiquitously expressed (Beyer et al., 1987),
whereas Cx46 has been described mostly in the lens (Paul
et al., 1991). The widespread expression of Cxs suggests that
they are essential for several physiological processes and that,
due to their unique properties, they support cellular processes
that cannot be replaced by any other Cx type (Wölfle et al.,
2007).

FIGURE 1 | The above diagram presents what is proposed as a possible molecular mechanism to explain the CO-induced Cx46 inhibition. CO increases

free radicals concentration (1) which in turn induces lipid peroxide production (2). Then, lipid peroxides can induce the carbonylation of extracellular cysteine (-SH) (3),

increasing Cx46-Ca2+ sensitivity (4) and thus stabilizing the closed state of the loop gating (5).

CONNEXIN HEMICHANNELS

Hemichannels are composed of six Cxs monomers and are
permeable to molecules up to ∼1.2 kDa. These ion channels
participate in several physiological functions, such as spreading
of calcium waves (Cotrina et al., 1998), Ca2+ permeation across
plasma membrane (Sánchez et al., 2010; Schalper et al., 2010),
cellular viability (Bellido and Plotkin, 2010), proliferation (Song
et al., 2010), migration (Cotrina et al., 2008), light processing
by the retina (Kamermans et al., 2001), mechanotransduction
(Romanello et al., 2003), glucose uptake (Retamal et al., 2007),
and synaptic plasticity (Stehberg et al., 2012), among others.
Most of the hemichannel actions are exerted in part by the
release of signaling molecules such as ATP (Stout et al.,
2002), cyclic ADP-ribose (cADPR) (Bruzzone et al., 2001),
prostaglandin E2 (PGE2) (Cherian et al., 2005), glutamate,
and aspartate (Ye et al., 2003) to the extracellular media,
where they participate in paracrine/autocrine communication.
On the other hand, under pathological conditions, massive
and/or prolonged hemichannel opening induce and/or accelerate
cell death. Nowadays, hemichannels with a gain of activity
are known as “leaky hemichannels,” and these have been
observed in neurological disorders such as Charcot-Marie-Tooth
disease, metabolic alterations such as ischemia, oculodentodigital
dysplasia, skin diseases, inflammatory processes, and deafness
(Reviewed in Retamal et al., 2015a). Although the mechanism
by which hemichannels induce cell death is not well understood,
it is highly probable that loss of metabolites (Stridh et al.,
2008), ion gradients and membrane potential, as well as
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the massive entry of Ca2+ (Sánchez et al., 2010; Schalper
et al., 2010) are some of the processes involved. Because
hemichannels are important in cellular communication and cell
survival, cells have several mechanisms to control hemichannel
opening/closing, including phosphorylation (Bao et al., 2004),
changes in membrane potential (Trexler et al., 1996; Retamal
et al., 2010), alterations in extracellular Ca2+ concentration
(Gómez-Hernández et al., 2003; Lopez et al., 2014), changes
in redox potential (Retamal et al., 2006, 2009; Reviewed in
Retamal, 2014) and presence of unsaturated fatty acids (Retamal
et al., 2011). In summary, controlled hemichannel opening
enables physiological autocrine/paracrine cell communication,
but massive and/or uncontrolled hemichannel opening induces
or accelerates cell death. Therefore, the study of the molecular
mechanisms that control hemichannel activity is essential in
order to understand several physiological and pathological
processes.

HEMICHANNEL VOLTAGE GATING

Currently, it is well accepted that Cx channels are voltage
dependent (Trexler et al., 1996; Retamal et al., 2010), although
the molecular mechanisms that regulates the hemichannel
voltage gating are not yet well understood. But, recently it was
established by means of exchange different domains between
Cx46 and Cx50 that the N-terminus contains the principal
components of the hemichannel voltage sensor and unitary
conductance (Kronengold et al., 2012). Additionally, there are
two gating mechanisms that enable hemichannels to open and
close, which are known as fast and slow/loop-gating (Reviewed
in Oh and Bargiello, 2015). The first seems to depend on C-
terminus docking to the intracellular loop and results in fast
transitions from the open state to various substates (Reviewed
in Oh and Bargiello, 2015). In contrast, slow or loop-gating
is formed by the interface between the first transmembrane
domain (TM1) and the first extracellular loop (EL1; Tang
et al., 2009). Their distinctive feature is the slow time constant
from fully open to fully closed states (tens to hundreds of
milliseconds; Reviewed in Oh and Bargiello, 2015). Large
conformational changes reduce the pore diameter from ∼20 Å
to less than 4 Å (Verselis et al., 2009). It is widely accepted
that extracellular divalent cations reduce the open probability
of hemichannels in the plasma membrane (Gómez-Hernández
et al., 2003; Lopez et al., 2014). Physiological concentrations of
Ca2+ have been shown to stabilize the loop-gate closed state
of Cx46 hemichannels (Verselis et al., 2009; Reviewed in Oh
and Bargiello, 2015). Furthermore, atomic force microscopy
studies of Cx26 hemichannels have indicated a narrowing of the
extracellular channel entrance with 2 mM Ca2+ (Müller et al.,
2002).

CARBON MONOXIDE

There are at least four gaseous transmitters, carbon monoxide
(CO), nitric oxide (NO), hydrogen sulfide (H2S; Reviewed in
Farrugia and Szurszewski, 2014), and sulfur dioxide (SO2; Chen

et al., 2015), which are important modulators of the redox
status and redox signaling. Under physiological conditions, CO
is produced by two heme oxygenases (HO-1 and HO-2), which
catalyze the catabolism of heme groups (Poss and Tonegawa,
1997). Both HO-1 and HO-2 are expressed in several cell
types, and while HO-2 is constitutively expressed, HO-1 is
inducible by several factors such as hypoxia and inflammation
(Reviewed in Wu and Wang, 2005). Under physiological
conditions, the human body produces 16.4 µmoles/h (Coburn,
1970), mainly by the action of HO-2 (Reviewed in Wu and
Wang, 2005). Once CO is produced, it can be trapped by
the hemoglobin, released by expiration (Reviewed in Wu and
Wang, 2005) or act as a signaling molecule. In spite of the
low concentration (nanomolar) of CO under physiological
conditions, it has important roles in normal cardiac function,
vascular contractility, platelet aggregation, monocyte activation,
hypothalamic-pituitary-adrenal axis, odor response adaptation,
nociception and chemoreception, among many other functions
(for more details see, Wu and Wang, 2005). Additionally, CO
production under physiological conditions can be increased by
the induction of HO-1 controlled by physiological signaling
molecules, such as transforming growth factor-β (Kutty et al.,
1994), platelet-derived growth factor (Durante et al., 1999), and
nitric oxide (Durante et al., 1997). Or, it can be decreased
by angiotensin II (Ishizaka and Griendling, 1997). On the
other hand, under pathological conditions HO-1 can be highly
expressed and thus drastically increasing the CO levels (Reviewed
in Wu and Wang, 2005). The expression of HO-1 has been
implicated in diseases such as atherosclerosis, hypertension,
transplant rejection, acute renal injury hyperoxia and hypoxia-
induced lung injury, cancer, and neurodegeneration, among
others diseases (Deshane et al., 2005; Reviewed in Wu and
Wang, 2005). Although CO does not have free electrons as nitric
oxide does, it can indirectly increase the oxidative stage of a
cell. Thus, at high levels (>1000 ppm), CO increases protein
and lipid oxidation (Reviewed in Wu and Wang, 2005), most
likely as a result nitric oxide derived molecule production and
dysregulation of GSH/GSSG relationship (Reviewed in Wu and
Wang, 2005).

CO can act as a signaling molecule through two possible
cellular pathways. First, the direct activation of guanylate cyclase,
increases cGMP levels, which in turn activate PKG; and secondly,
CO acts by direct carbonylation of amino acids, such as
proline, threonine, lysine, and arginine (Reviewed in Cattaruzza
and Hecker, 2008). However, CO can also induce an indirect
carbonylation of cysteine residues through a lipid peroxidation
dependent process (Reviewed in Wong et al., 2013). Thom
(1990) showed that CO-dependent lipid peroxidation is reduced
by the inhibition of xanthine oxidase or superoxide dismutase
and iron chelators. Additionally, high concentration of CO was
associated with increases in hydroxyl radical production and
decreases in the reduced -oxidized glutathione ratio (GSH/GSSG;
Lautier et al., 1992; Piantadosi et al., 1995; Reviewed in Wu and
Wang, 2005). Therefore, CO can induce an oxidative intracellular
environment, which in turn can favor the lipid peroxidation
production rate. The process of lipid peroxidation is mediated
through both enzymatic and non-enzymatic oxidation of poly
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unsaturated fatty acids (PUFAs; Reviewed in Higdon et al.,
2012). Enzymatic sources of lipid peroxides comprise both COXs
(cyclo-oxygenases) that produce PG (prostaglandins) and LOXs
(lipoxygenases) that produce leukotrienes (Reviewed in Higdon
et al., 2012). On the other hand, non-enzymatic production
is mediated by direct oxidation of PUFAs and comprises the
production of 4-HNE (4-hydroxynonenal), malondialdehyde
(MDA), and acrolein (Reviewed in Higdon et al., 2012).
Interestingly, the secondary carbonylation of the Toll-like
receptor by 4-HNE can be prevented by reducing agents
(Kim et al., 2009), demonstrating that lipid peroxide-induced
carbonylation is a dynamic process that can be modulated by the
cellular redox status.

CARBON MONOXIDE MODULATES ION
CHANNELS

In the early nineteens was described that mice exposure to
high levels of CO-gas present degeneration of hippocampal CA1
pyramidal cells by a NMDA-dependent process, measured with
hematoxylin-eosin staining (Ishimaru et al., 1992). This suggests
that CO may induce neuronal cell death through changes of
ion-channel activity. From this work, several reports strongly
supported the notion that CO acts as an ion-channel modulator.
Thus, it has been shown that CO increases the open probability of
calcium-activated K+ (KCa) channels in vascular smooth muscle
cells (Wang et al., 1997) and human umbilical vein endothelial
cells (Dong et al., 2007). The molecular mechanism of this
phenomenon is not well understood, but it has been proposed
that depends on the increase of the number of Ca2+ binding
sites (Wang et al., 1997), expression of the alpha subunit (Wu
et al., 2002), modulation by NO (Wang and Wu, 2003), and a
metal-dependent like coordination of CO by Cys at position 911
(C911) (Williams et al., 2008; Telezhkin et al., 2011). Other ion
channels are also affected by CO, such as a 70-pS K+ channel in
the thick ascending limb of Henle’s loop (Liu et al., 1999), Kv2.1
(Dallas et al., 2011), hTREK-1 (Dallas et al., 2008), the amiloride-
sensitive Na+ channel (Althaus et al., 2009), Nav1.5 channels
(Elies et al., 2014), Cav3.2 (Boycott et al., 2013), and P2X2
receptors (Wilkinson et al., 2009). In the case of Cav3.2 channels,
CO induced-inhibition was dependent on the activation of an
extracellular thioredoxin-dependent mechanism (Scragg et al.,
2008). Together, these data suggest that CO exerts many of its
effects through ion-channel modulation.

CARBON MONOXIDE MODULATES
CX-HEMICHANNELS

Recently, was demonstrated that CO is a new hemichannel
modulator (León-Paravic et al., 2014; Reviewed in Retamal et al.,
2015b). The application of CO donors (CORM-A1, CORM-2,
and CORM-3) to the bath solution inhibited the currents of Cx46
hemichannels expressed in Xenopus laevis oocytes (X. oocytes).
The inhibition has an IC50 of approximated 3.4 µM, making
Cx46 hemichannels an excellent CO sensor under pathological

(>10 µM) condition (Kajimura et al., 2010). Moreover, CORM-
2 effect was fully prevented by the addition of hemoglobin (a
CO scavenger) to the bath solution and was correlated with
Cx46 carbonylation, which in turn, produced important protein
structural rearrangements in vitro (León-Paravic et al., 2014).
Interestingly, the effect of CO did not involve changes in voltage
dependency or modifications of the C-terminus. Additionally,
hemichannels formed by Cx46 lacking extracellular-loop Cys
were much less sensitive to CORM-2 compared to wild type
Cx46 hemichannels. Moreover, hemichannel inhibition was fully
recovered by addition of reducing agents to the bath solution
(e.g., GSH and DTT; León-Paravic et al., 2014). The extracellular
cysteine redox status potentially could affect the conformational
disposition of the loop-gating, which in turn, is known to affect
the loop- gating (Reviewed in Retamal et al., 2016). From these
data it can be proposed that CO could inhibit Cx46 hemichannels
through changes of the loop-gating properties, likely enhancing
the effect of Ca2+ (Figure 1).

For many years, protein carbonylation was considered
synonymous with protein degradation (Reviewed in Wong et al.,
2013). However, recent evidence suggests that there is a naturally
occurring process of protein decarbonylation (Wong et al.,
2008; Reviewed in Wong et al., 2013). This mechanism involves
an unknown thiol-dependent enzymatic process, in which the
enzymes thioredoxin (Trx) and glutaredoxin (Grx1) seem to play
important roles (Wong et al., 2008; Reviewed in Wong et al.,
2013). Therefore, based on the current knowledge, the effect of
CO (most likely secondary carbonylation) upon protein activity
can be reversed and controlled by the redox status of a cell.
Nevertheless, the exact molecular mechanism of decarbonylation
is poorly understood. In our study (León-Paravic et al., 2014) we
blocked TRx with aurarofin and a small recovery of hemichannel
current was observed, which suggests that TRx does not play
an important role in the recovery of hemichannel current
induced by reducing agents. The question still remains as to
whether GRx could participate. As indicated, CO can also act
indirectly through lipid peroxidation of Cys groups (Reviewed
in Wong et al., 2013; Milic et al., 2015). Lipid-induced protein
oxidation can be reverted by glutathione peroxidase (GPx4)
and glutathione S-transferase (GST; Reviewed in Ribas et al.,
2014), which are activated by reducing agents (Reviewed in
Ribas et al., 2014). Therefore, a plausible mechanism of CO-
induced Cx46 hemichannel inhibition is through Cx46-lipid
oxidation.

In support of the role of oxidized lipids on Cx46 hemichannel
inhibition, polyunsaturated fatty acids (PUFAs), such as linoleic
acid and arachidonic acids, which can be easily oxidized
(Reviewed in Ribas et al., 2014), inhibits Cx46 hemichannels
in vitro (Retamal et al., 2011). Therefore, it cannot be
ruled out that PUFAs may exert their inhibitory effects
upon hemichannels through their oxidized-derived molecules.
Moreover, preliminary results have shown that 4-Hydroxy-2-
nonenal (4-HNE), a reactive aldehyde derived from oxidized
lipids (100 µM), inhibits by 60 ± 12% Cx46 hemichannels
in X. oocytes (Figure 2) and Vitamin C—a lipid peroxide
inhibitor—reduced by ∼50% the effect of CO upon Cx46
hemichannels (Figure 2). Moreover, the presence of Ca2+ in the
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FIGURE 2 | CO effect appears to be mediated by lipid peroxides. (A) Representative control of Cx46 hemichannel currents in Xenopus laevis oocytes recorded

in ND96 solution (containing 1.8 mM Ca2+ and 1.0 mM Mg2+) by means of dual whole cell voltage clamp technique. The presence of 100 µM CORM-2 induces a

dramatic drop in the current amplitude. Most of the inhibition induced by CORM-2 was prevented by the co-addition of 100 µM ascorbic acid to the bath solution.

This suggests that the effect of CO needs free radical production into the Xenopus oocytes. In parallel experiments, oocytes expressing Cx46 were exposed to the

lipid peroxide 4-HNE (100 µM), and an evident hemichannel current inhibition was observed. n = 3 for each condition. (B) Representative recordings of oocytes

expressing Cx46 placed in a DCFS, without (control) or with 100 µM CORM-2 (n = 3).

extracellular media is fundamental for observing CO-induced
inhibition of Cx46 hemichannels, suggesting that the CO-
induced inhibition/extracellular Cys-lipid peroxidation involve
certain conformational changes that alter loop gating properties
(Figure 2).

FUTURE DIRECTIONS

Hemichannels are relevant players in the development and
progression of several diseases, and they are now used as targets
for developing new molecules for disease treatments (Reviewed
in Retamal et al., 2015a). However, in spite of years of research,
the molecular mechanisms that control the opening and closing
of these channels are still not well understood. Thus, it is
highly relevant to understand these mechanisms and project
this knowledge to produce new agonist(s)/antagonist(s) against
Cx- hemichannels, as well as to understand why hemichannels
become lethal under certain pathological conditions. Although
the effect of CO upon GJC has not been studied, it is possible
to propose that CO may not have a relevant impact in GJC
properties. It because, CO/lipid peroxides seem to act through

modifications of extracellular Cys, which in GJC are not
accessible for modifications by reducing nor oxidant molecules.

CO has been used for the treatment of several diseases, but
many of its effects are far from being well understood. Therefore,
the current knowledge is insufficient for understanding how CO
exerts its action at the cellular level and, thus, to find possible
side effects of this treatment. Also, this knowledge may help to
develop new strategies in the therapeutic use of CO, e.g., under
metabolic stress, where hemichannels become massively open,
which accelerates cell death. Therefore, a possible application of
this research would be to pursue the use of CO as a hemichannel
inhibitor in preventing or limiting stroke-induced cell death.
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