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Abstract

The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an

unsustainable need for diagnostic tests. Currently, molecular tests are the accepted stan-

dard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine

learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-

cost alternative to molecular methods. Automated ML is a novel approach that could move

mass spectrometry techniques beyond the confines of traditional laboratory settings. How-

ever, it remains unknown how different automated ML platforms perform for COVID-19 MS

analysis. To this end, the goal of our study is to compare algorithms produced by two com-

mercial automated ML platforms (Platforms A and B). Our study consisted of MS data

derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-

CoV-2 variants. The top optimized ML model with respect to positive percent agreement

(PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative per-

cent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%,

respectively. These results illustrate the MS method’s robustness against SARS-CoV-2 var-

iants and highlight similarities and differences in automated ML platforms in producing opti-

mal predictive algorithms for a given dataset.

Introduction

The 2019 novel coronavirus infectious disease (COVID-19) pandemic caused by severe acute

respiratory syndrome (SARS) coronavirus (CoV)– 2 has severely disrupted infectious disease

testing worldwide [1]. With the increasing spread of highly infectious SARS-CoV-2 variants

(e.g., Delta, Lambda, Omicron) and challenges in achieving herd immunity in both developed

and undeveloped countries, the demand for COVID-19 testing remains exceptionally high for
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containment as well as to re-open schools and businesses [2]. Matrix assisted laser desorption

ionization (MALDI)–time-of-flight (TOF)–mass spectrometry (MS) serves as a unique alter-

native COVID-19 screening method that overcomes trade-offs found with commercial molec-

ular and antigen tests (Fig 1) [3–5]. MALDI-TOF-MS detects a spectrum of ionizable host and

perhaps viral proteins from nasal swab samples. The simple pre-analytic requirements of

MALDI-TOF-MS enable it to be rapid, cost-effective, and not reliant on supply chains

impacted by the pandemic.

Interestingly, the sensitivity and specificity for MALDI-TOF-MS when detecting COVID-

19 in nasal swab samples is impacted by the shear complexity of the specimen matrix [3]. Stud-

ies suggest that over 1,000 protein groups may be represented in nasopharyngeal (NP) swab

specimens when measured by MS techniques [6]. As such, the differentiation of mass spectra

between disease states is not feasible by the human eye—creating a unique opportunity for

artificial intelligence (AI) / machine learning (ML) to process and to identify patterns within

such complex spectra to enhance their distinguishing performance capabilities.

Traditional ML development tools can be laborious and require significant data science

expertise [7]. Data scientists may also unintentionally prefer one ML technique versus another

by nature of their experience, preference, and other confounding factors [8, 9]. Due to these

barriers, development of ML models via traditional programming limits the number of models

that could be evaluated. The employment of automated ML platforms overcomes many of

these challenges and provides means to quickly develop, train, validate, and implement a range

of candidate algorithms that span the spectrum of ML techniques.

Recent studies have shown MALDI-TOF-MS enhanced by ML performs with adequate sen-

sitivity and specificity for detecting COVID-19 positive cases [3, 4]. The study by Tran et al.
highlights the use of ML enhanced MALDI-TOF-MS detection of COVID-19 [3]. Uniquely,

this study was the first to use automated ML (AutoML) software to rapidly produce algorithms

to facilitate MALDI-TOF-MS COVID-19 detection in both symptomatic and asymptomatic

patients. Such software automates feature selection, composition, and parametrization of ML

models to rapidly train/test thousands of models. However, like with any AI approach, best

practices dictate thorough validation across a diverse dataset, and ideally, comparative studies

against other ML platforms [10]. To this end, the goal of this study is to compare the predictive

performance of two known AutoML platforms when analyzing MALDI-TOF-MS for COVID-

19 positive versus negative individuals.

Materials and methods

We conducted a retrospective study analyzing data from a COVID-19 clinical trial comparing

a MALDI-TOF-MS based approach against reverse transcription (RT)–polymerase chain reac-

tion (PCR) (Fig 2). The MALDI-TOF-MS dataset served as the basis for comparing the accu-

racy along with the positive percent agreement (PPA) and negative percent agreement (NPA)

within the two automated ML platforms for detecting COVID-19. Positive percent agreement

and NPA terminology is used instead of clinical sensitivity and specificity in these studies to

align with United States Food and Drug Administration (FDA) guidelines when evaluating

tests that lack a “gold standard” or when an imperfect comparative method exists, such as in

the case of COVID-19 detection [11].

Study population / samples

This study was approved by the local Institutional Review Board (IRB#1644962) with informed

consent obtained verbally for acquiring the anterior nares nasal swab samples. The study data-

set consisted of MALDI-TOF-MS spectra from 361 subjects from December 2020 to August
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Fig 1. Comparison of molecular, antigen, and ML-enhanced MALDI-TOF-MS workflows. The figure illustrates the

tradeoffs of (A) high throughput molecular platforms, (B) point-of-care molecular platforms, and (C) our proposed

MALDI-TOF-MS method.

https://doi.org/10.1371/journal.pone.0263954.g001
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2021. Among the 361 subjects, 199 were from the first phase of our study (Dataset A) which

was conducted prior to emergency use authorization (EUA) of the first COVID-19 vaccines

[3]. An additional 162 patients (Dataset B) were added in the second phase to study additional

symptomatic populations meeting COVID-19 testing criteria (i.e., patients who presented

with or without symptoms at the time of collection) as well as asymptomatic volunteers

obtained from workplace screening and the emergency medicine population. COVID-19 vac-

cine status was also included for this new asymptomatic population. Anterior nares nasal swab

specimens were collected from each patient and preserved in commercial saline-based viral

transport media (Thermo Fisher, Waltham, MA). All samples were tested by MALDI-TOF-MS

and RT-PCR.

COVID-19 sample testing

Mass spectrometry testing was performed on a Shimadzu 8020 (Shimadzu Scientific Instru-

ments, Columbia, MD) MALDI-TOF-MS analyzer as described previously [3]. Briefly, our

study tested nasal swabs directly plated onto the MALDI-TOF-MS target plate.

Fig 2. Study datasets. Datasets A and B were obtained from two different time points (before and after COVID-19 vaccine emergency use authorization.

Combined, Datasets A and B totaled 361 asymptomatic and symptomatic patients. These data were randomly divided into Datasets C and D, with Dataset

C serving as the training/ initial validation dataset. Optimized models produced from Dataset C were then secondarily tested with Dataset D for

generalization to assess their true performance. Notably, Dataset C and D both contained random samples of the various negative subgroups (negative

vaccinated individuals, emergency department [ED] patients, etc.).

https://doi.org/10.1371/journal.pone.0263954.g002
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MALDI-TOF-MS mass range was set to 2,000–20,000 Daltons. Residual saline transport

media was then tested by RT-PCR using FDA EUA assays. For Dataset B, all samples were

tested by an EUA SARS-CoV-2 digital droplet RT-PCR (ddPCR) test (Bio-Rad, Hercules, CA).

The use of ddPCR was to leverage the absolute quantitation capability of the platform and

determine SARS-CoV-2 viral RNA load. All ddPCR SARS-CoV-2 RNA positive, or discordant

(e.g., MALDI-TOF-MS negative/ddPCR positive) results were also sequenced. Sequencing was

performed using a Respiratory Pathogen Identification Panel (RPIP) (Explify, IDbyDNA, Salt

Lake City, Utah) via a MiSeq analyzer (Illumina, San Diego, CA). The RPIP can simulta-

neously detect the RNA and DNA of over 180 bacteria, 50 fungi, and viruses including SARS--

CoV-2 variant identification.

Automated machine learning approaches

Two AutoML platforms analyzed MALDI-TOF-MS spectra: Platform A (Machine Intelligence

Learning Optimizer [MILO], MILO ML, LLC, Sacramento, CA), and Platform B (Microsoft

ML.NET, Microsoft, Redmond, WA) (Table 1).

Platform A (Machine Intelligence Learning Optimizer). Briefly, Platform A was also

used in the original study, as the AutoML software combines various unsupervised and super-

vised methods to ultimately acquire the optimized ML model. These include a data processor,

data feature selector (ANOVA F select percentile feature selector and RF Feature Importances

Selector) and feature set transformer (e.g., principal component analysis) along with various

custom hyperparameter search tools (i.e., its custom grid search along with its random search

tools) within multiple supervised embedded algorithms (i.e., multi-layer perceptron neural

network [NN], logistic regression [LR], naïve Bayes [NB], k-nearest neighbor [k-NN], support

vector machine [SVM], random forest [RF], and XGBoost gradient boosting machine GBM]).

This platform ultimately identifies the optimal hyperparameter combinations within these

embedded supervised algorithms/methods to build and analyze thousands of unique opti-

mized models that are then statistically assessed to identify the best performing model for

one’s given task. Confidence intervals for accuracy, PPA and NPA were calculated using the

exact Clopper-Pearson method.

Within this study, the trial data was imported into Platform A with the outcome goal of

acquiring and evaluating the MS peak patterns observed that can then assess COVID-19 status

as its final outcome measure. Once the datasets are uploaded into the MILO platform and the

Table 1. Comparison of AutoML specifications.

Platform A Platform B

Manufacturer

(Location)

MILO-ML, LLC (Sacramento, CA) Microsoft Corporation (Redmond,

WA)

Interface GUI ML.NET

Machine Learning

Methods

k-NN, GBM, LR, MLP-NN, NB, RF, SVM AP-NN, BDT, LBFGS, LGBM, linear

SVM, LR, SDCA, SGD

Automated Data

Feature Selector

ANOVA F select percentile feature selector and

RF Feature Importances Selector

None

Abbreviations: ANOVA, analysis of variance; AP, averaged perceptron; BDT, boosted decision tree; GBM, gradient

boosting machine; GUI, graphical user interface; k-NN, k-nearest neighbors; LBFGS, limited memory Broyden-

Fletcher-Goldfarb-Sanno; LGBM, lightGBM; LR, logistic regression; MLP, multilayer-perceptron; NB, naïve Bayes;

NN, neural network; RF, random forest; SDCA, stochastic dual coordinate ascent; SGD, stochastic gradient descent;

SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0263954.t001
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target of interest is selected (COVID-19 status in this case), MILO then automatically performs

the unsupervised and supervised methods mentioned above. It starts with using a relatively

balanced dataset (Dataset C) to train and initially validate the models on an 80%-20% split

(80% used to train and 20% used to perform the initial validation of the trained model) with

an embedded 10 k-fold cross validation. However, the final performance measure of each of

the previously described models is not based on the 20% data subsets in Dataset C but rather

on a separate secondary/generalization dataset (Dataset D) that has not been part of any of the

training or initial validation measures mentioned. This study design approach will minimize

the possibility of overfitted ML models and increase the likelihood of acquiring more general-

izable ML models, especially in studies that are based on smaller datasets. In addition, the plat-

form also makes no assumptions about any of the unsupervised and more importantly the

supervised ML methods employed. Its ultimate function is to create a large set of combinations

from these essential ML elements. Hence, ultimately creating a large number of ML pipelines

(i.e., combination of various scalers, scorers, various unsupervised feature selectors/transform-

ers, hyperparameter searcher tools, and supervised algorithms) to generate thousands of opti-

mized ML models each with potentially different unique characteristics and performance

capabilities (e.g., some optimizing sensitivity while others optimizing specificity or other per-

formance measures such as but not limited to PPV, NPV, F1 score, and Brier score) which ulti-

mately translates to broader ML model selection options for the investigator in their given

task.

Platform B (Microsoft ML.NET). Platform B is an open source, cross platform, ML

framework with an automated hyperparameter search functionality in the form of AutoML

[12]. The platform is designed to facilitate the embedding of machine learning in.NET applica-

tions. Platform B utilizes a similar set of available supervised algorithms and functionality but

without any unsupervised embedded steps. Platform B functionality is available through the

ML.NET package with a.NET language, through Python with NimbusML, with a graphical

user interface as part of Visual Studio 2019 using Model Builder, or through a command line

interface. In order to duplicate the precise generalization dataset strategy employed by Plat-

form A, the authors used the.NET package and a customization of the binary classification

AutoML example available on the Platform B samples via GitHub (San Francisco, CA). As

noted, unlike Platform A, Platform B does not perform automated feature selection or trans-

formation but only hyperparameter search using SMAC. Platform B begins by running all

available trainers in with defaults and selecting the top three. Then each of the three is run for

20 iterations followed by Bayesian optimization. The algorithms supported by Platform B

include averaged perceptron NN, LR optimized with stochastic dual coordinate ascent

(SDCA), stochastic gradient descent (SGD), symbolic SGD, or limited memory Broyden-

Fletcher-Goldfarb-Sanno (LBFGS), linear SVM, FastTree Multiple Additive Regression Trees

(MART) GBM, FastForest RF implementation, and light gradient boosting machines (LGBM).

Platform B also includes other models including a non-linear SVM and a generalized additive

model, but these were currently unavailable for hyperparameter optimization as the AutoML

component is focused on an efficient search space. However, Platform B does allow the user to

limit search to only a specific subset of the algorithms which was used in this project to deter-

mine the best hyperparameters for those models outside the top three.

Statistical analysis

JMP software (SAS, Cary, NC) was used for traditional statistical analyses. Descriptive statistics

were used to compare viral RNA load between study populations. Continuous parametric

independent data was compared by the 2-sample t-test.
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Results

Study population

A total of 361 subjects were enrolled and tested by both MALDI-TOF-MS and RT-PCR (Fig

2). From the 361 samples tested, 125 samples were COVID-19 positive with 236 determined to

be negative (Table 2). For positive individuals, SARS-CoV-2 variants included 49.6% Alpha

(B.1.1.7), 0.8% Gamma (P.1), 16.8% Delta (B.1.617), 8% Iota (B.1.526), 16.8% B.1.1, and 8%

B.1.168. Within the 236 negative cases mentioned, 45 were symptomatic including 3 patients

who were positive by sequencing (1 patient with human coronavirus NL63, and 2 patients

with Staphylococcus aureus respectively). One-hundred ninety-one COVID-19 negative

patients were asymptomatic with 74 being recently vaccinated with EUA mRNA-based

vaccines.

Data analysis & machine learning

Using the two AutoML platforms, ML analysis was conducted to build and determine the best

performing model for the given task of distinguishing the COVID positive cases from the neg-

ative cases within the dataset mentioned above with the goal of selecting and optimizing the

model’s PPA (i.e., sensitivity). As noted in Fig 1, two randomly generated datasets were

acquired for the ML studies from the total 361 cases, designated as the training/initial valida-

tion dataset (Dataset C) and the secondary/generalization dataset (Dataset D). Dataset C (used

for the ML training and its initial validation) is a relatively balanced dataset of 167 cases con-

taining a randomly selected 75 COVID positive cases and 92 negative cases. The 92 negative

cases within Dataset C contained 30 of the vaccinated samples, 20 of the ED cases, the 1 non-

COVID-19 viral case, 1 of the 2 bacterial cases and 40 of other asymptomatic negative samples.

The remaining cases comprised Dataset D (secondary / generalization dataset) which con-

tained 50 COVID positive cases and 144 negative cases. The 144 negative cases within dataset

D contained 44 of the vaccinated samples, 25 of the ED cases, the 1 of the 2 bacterial cases and

74 of the other asymptomatic negative samples.

Platform A’s AutoML software was trained and initially validated on Dataset C with an 80–

20 split and 10 k-fold cross validation which generated 400,869 models which were then sec-

ondarily tested on Dataset D to assess the model’s true performance measures (Table 3). The

process was completed in approximately 5.5 hours using a high-performance platform with a

multi-core personal computer. With the goal of maximizing the PPA, the following 2 models

were identified: the first is a NN model using all features that exhibited an accuracy of 94.9%

(95% CI, 90.7–97.5), PPA of 100% (95% CI, 92.9–100), NPA of 93% (95% CI, 87.6–96.6), fol-

lowed by a support vector machine model using 75% of the features showing an accuracy of

93.3% (95% CI, 88.8–96.4), PPA of 100% (95% CI, 92.9–100), and NPA of 91% (95% CI, 85.1–

Table 2. Study population.

COVID-19 Positive (n = 125) COVID-19 Negative (n = 236) P-Value

Mean (SD) Age (Years) 42.7 (15.3) 40.9 (16.1) NS

Percent Symptomatic 88.9% (111/125) N/A <0.001

Percent Vaccinated 0% (0/125) 31.4% (74/236) <0.001

Mean (SD) Viral RNA Load (copies/mL)

N1 Target: 37,549.7 (19,236.2) N/A N/A

N2 Target: 779.0 (237.3) N/A N/A

Abbreviations: COVID-19, novel coronavirus infectious disease 2019; N/A, not applicable; NS, not significant; RNA, ribonucleic acid; SD, standard deviation

https://doi.org/10.1371/journal.pone.0263954.t002
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95.1). The best two models from Platform B were found to be an SDCA-LR model with an

accuracy of 91.8% (95% CI, 86.9–95.2), PPA of 100% (95% CI, 92.9–100), and NPA of 89%

(95% CI, 82.6–93.5) and a SVM model with an accuracy of 95.4% (95% CI, 91.4–97.9), PPA of

98% (95% CI, 89.4–99.9), and NPA of 94% (95% CI, 89.4–97.6), both using all the features (i.e.

all MALDI-TOF-MS peaks; Table 3).

Discussion

As the COVID-19 pandemic continues across the globe with highly populous but less

equipped (e.g., healthcare access, vaccine availability, testing capacity) countries (e.g., India

Table 3. Machine learning algorithm generalization performance for top models produced by Platforms A and B.

A. MILO AutoML generated

Models

Method Accuracy %

(95% CI)

AUROC (95%

CI)

Positive Percent Agreement

(PPA) % (95% CI)

Negative Percent Agreement

(NPA) % (95% CI)

F1

Score

% features

Selected

LBFGS-Logistic Regression 92.8 (88.2–96.0) 98.9 (81.9–

100)

100 (92.9–100) 90.3 (84.2–94.6) 91.3 All�

k-Nearest Neighbor 92.3 (87.6–95.6) 96.9 (60.1–

100)

100 (92.9–100) 89.6 (83.4–94.1) 90.7 25%#

Naïve Bayes 91.7 (86.9–95.2) 99.2 (84.8–

100)

100 (92.9–100) 88.9 (82.6–93.5) 90.2 All�

Random Forest 95.4 (91.4–97.9) 98.1 (83.3–

100)

92.0 (80.8–97.7) 96.5 (92.1–98.9) 93.9 All�

Support Vector Machine 93.3 (88.8–96.4) 98.6 (86.8–

100)

100 (92.9–100) 91.0 (85.1–95.1) 91.9 75%##

Neural Network-Multi Layer

Perceptron

94.9 (90.7–97.5) 99.6 (84.9–

100)

100 (92.9–100) 93.1 (87.6–96.6) 92.5 All�

Gradient Boosting Machine

(XGBoost)

93.8 (89.4–96.8) 98.3 (82.0–

100)

94.0 (83.5–98.7) 93.8 (88.5–97.1) 92.2 All�

B. Microsoft AutoML

generated Models

Method Accuracy %

(95% CI)

AUROC �� Positive Percent Agreement

(PPA) % (95% CI)

Negative Percent Agreement

(NPA) % (95% CI)

F1

Score

% features

Selected

Fast Tree 87.1 (81.6–91.5) 98.0 98.0 (89.4–99.9) 83.3 (76.2–89.0) 79.7 All

Fast Forest 86.6 (80.9–91.1) 96.9 92.0 (80.8–97.8) 84.7 (77.8–90.2) 78.0 All

Gradient Boosting Machine

(light)

86.1 (80.4–90.6) 98.3 98.0 (89.4–99.9) 81.9 (74.7–87.9) 78.4 All

Support Vector Machine 95.4 (91.4–97.9) 99.5 98.0 (89.4–99.9) 94.4 (89.4–97.6) 91.6 All

SDCA-Logistic Regression 91.8 (86.9–95.2) 99.4 100 (92.9–100) 88.9 (82.6–93.5) 86.2 All

LBFGS-Logistic Regression 90.7 (85.7–94.4) 99.3 100 (92.9–100) 87.5 (80.9–92.4) 84.8 All

SGD-Calibrated 91.2 (86.3–94.8) 99.1 98.0 (89.4–99.9) 88.9 (82.6–93.5) 85.2 All

Symbolic SGD-Logistic

Regression

85.6 (79.8–90.2) 97.1 92.0 (80.8–97.8) 83.3 (76.2–89.0) 76.7 All

Averaged Perceptron 89.2 (83.9–93.2) 98.7 98.0 (89.4–99.9) 86.1 (79.4–91.3) 82.4 All

��95% CI is not reported by the Microsoft AutoML platform for the calculated AUROC

�All features were used on a PCA transformed data
# 25% of the features selected were from an ANOVA-based Select percentile unsupervised feature selection approach
## 75% of the features selected were from an Random Forest-based Importances unsupervised feature selection approach

SGD (Stochastic Gradient Descent)

SDCA (Stochastic Dual Coordinate Ascent)

LBFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno)

https://doi.org/10.1371/journal.pone.0263954.t003
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and Latin America) [13, 14] being devastated by the new surges, and simultaneously, as

COVID-19 reservoirs continue to persist and new variants arise due to vaccine hesitancy

observed in more well-resourced nations [15–17], alternatives to costly and resource con-

strained molecular tests remain critically needed. To this end, due to the continued threat of

COVID-19, the global community requires a rapid, cost-effective, and high throughput testing

approach to limit transmission of COVID-19 [18]. Molecular methods such as RT-PCR are

known to be very sensitive and specific, however, high throughput platforms perform testing

in batches—requiring hours or days to produce results [3, 19]. Ultra-fast RT-PCR methods are

now available including at the point of care; however, these platforms are limited to testing

one sample at a time [19]. Antigen approaches provide a low-cost alternative to molecular

methods; however, sensitivity and specificity suffers, especially for asymptomatic populations

[20]. The use of AutoML with MALDI-TOF-MS for COVID-19 screening is an innovative

rapid and high-throughput approach at overcoming limitations inherent with molecular- or

antigen-based approaches (Tran 2021).

However, ML algorithms are only as good as the quality of the data and programmers [3, 8,

10, 21, 22]. Quality of data can be controlled by study design; however, the validity of ML algo-

rithms must be rigorously scrutinized especially for health care applications [8, 9]. Traditional

approaches developing ML models relies on expert data scientists to program, and lengthy

experimentation cycles to select optimal features for training-testing. Due to the laborious

nature of programming, data scientists may select features and limit model development to

ML techniques based on their “expertise” and “familiarity”–creating a potential source of bias.

Automated ML platforms such as MILO and Microsoft ML.NET provide means to acceler-

ate development of ML algorithms. These AutoML platforms can go through a much higher

number of combination of features across a range of ML techniques in a matter of hours or

days. However, different AutoML platforms employ different functions which can influence

model development. To this end, the comparison AutoML platforms are necessary to verify

performance especially for medical applications.

To our knowledge, this is the first study comparing AutoML platforms performance for

COVID-19 screening. The study observed differences in models produced by Platforms A ver-

sus B. Although the two Auto-ML platforms showed many similarities in performance mea-

sures, the Platform A was able to identify models with greater accuracy, PPA and NPA

compared to Platform B. Objectively, Platform A also incorporated unsupervised feature selec-

tion methods which were not available on Platform B, which could explain part of the perfor-

mance enhancements noted on Platform A. Furthermore, this study also reports performance

of the ML-enhanced MALDI-TOF-MS method with a larger and more diverse sample size

including vaccinated versus unvaccinated, symptomatic versus asymptomatic individuals, and

a range of SARS-CoV-2 viral loads as well as COVID-19 variants.

Study limitations include evaluating only two AutoML platforms and a limited sample size.

Selection of Platform A was purely by natural extension of our previous study. Comparison in

Platform B was based on selecting an AutoML software that was commonly available. We were

not able to fully evaluate the performance of this test in non-COVID-19 respiratory infections

due to incredibly low prevalence except for one case involving human coronavirus NL63. Like-

wise, we were not able to evaluate testing performance against the omicron variant due to the

enrollment period ending prior to Fall 2021.

Conclusions

Validation and reproducibility of the machine learning platforms used to assess and deploy the

machine learning component of ML-based testing platforms such as our novel ML-based
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MALDI-TOF-MS screening tool is an essential step in their overall authenticity confirmation.

These comparative studies should be recommended for all testing platforms that employ and

incorporate such predictive analytics tools within their testing platform. The concordance of

our two AutoML platforms and the robustness of our ML algorithm in the presence of several

SARS-CoV-2 variants further supports the future use of such ML-based MALDI-TOF-MS

screening tool COVID-19 detection, especially within large gatherings or workplace settings.

Further studies looking at non-COVID-19 infectious etiologies are required to further enhance

the distinguishing capabilities of our current ML models which would in turn strengthen their

true potential and screening capabilities for a variety of infectious agents, including future

pandemics.
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