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We build an agent-based model of incarceration based on the susceptible–

infected–suspectible (SIS) model of infectious disease propagation. Our

central hypothesis is that the observed racial disparities in incarceration rates

between Black and White Americans can be explained as the result of differen-

tial sentencing between the two demographic groups. We demonstrate that if

incarceration can be spread through a social influence network, then even

relatively small differences in sentencing can result in large disparities in incar-

ceration rates. Controlling for effects of transmissibility, susceptibility and

influence network structure, our model reproduces the observed large dispar-

ities in incarceration rates given the differences in sentence lengths for White

and Black drug offenders in the USA without extensive parameter tuning.

We further establish the suitability of the SIS model as applied to incarceration

by demonstrating that the observed structural patterns of recidivism are an

emergent property of the model. In fact, our model shows a remarkably

close correspondence with California incarceration data. This work advances

efforts to combine the theories and methods of epidemiology and criminology.
1. Introduction
The rapid increase in the US incarceration rate over the last few decades has

been described as an epidemic. According to the Bureau of Justice Statistics,

the per capita rate of incarceration nearly quadrupled between 1978 and 2011,

from 137 to 511 persons per 100 000 [1]. This prison boom has primarily affected

Black Americans, especially Black males. By 2011, Black incarceration rates were

over six times higher than White rates (3023 per 100 000 for Blacks, and 478 per

100 000 for Whites).

Racial disparities in incarceration rates have been studied extensively [2–6],

and while these disparities are partially due to differences in criminal involve-

ment [7], the increase in imprisonment for Black males since 1980 was not

matched by a similar increase in Black-male criminality [8–10]. What then

accounts for the racial disparities in incarceration? Scholars offer several expla-

nations, including differential exposure to police surveillance [9], prosecutorial

discrimination [11], the use of incarceration to deal with a ‘racial threat’ [12,13]

or sentencing disparities between Blacks and Whites. Although studies reveal

that racial sentencing disparities are reduced when legal factors [14–16] or

social contexts [17,18] are considered, a recent meta-analysis reports that senten-

cing disparities remain even after controlling for these factors [4]. While the

magnitude of the difference is small and variable, it is largest in cases involving

discretionary powers and for drug offences. In fact, it has been shown that

Blacks receive longer sentences than Whites for drug offences [3,9].

Careful study of patterns of incarceration reveals that incarceration behaves

like a contagious disease in that the close associates of an incarcerated person

have higher-than-average probabilities of being incarcerated. An individual’s

incarceration can be ‘transmitted’ to others via several mechanisms. First, an

individual’s incarceration can increase the family members’ emotional and
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economic stress, and cumulative strains are related to crim-

inal behaviour [19]. Specifically, it has been shown that the

children of incarcerated parents tend to display increased

levels of behaviour issues [20], including aggressive behav-

iour [21], a predictor of criminality in later life. Close family

members, such as the inmates’ domestic partners, experience

the acute effects of their family member’s incarceration.

Decreased household income due to the inmate’s inability

to work while incarcerated and the inability of the inmate

to contribute to child care responsibilities put the remaining

family members at increased risk of work–family conflicts,

stress and depression [22,23]. Economic losses within the

household further percolate to the next generation [24]. Econ-

omic and social mobility data show that children born into

low income households to parents with low education are

themselves more likely to have low levels of educational

attainment and to earn a relatively low income in adulthood

[25]. These are, of course, risk factors for incarceration,

thus reinitiating the incarceration–poverty cycle in a new

generation [10,24].

In addition, an individual’s incarceration can expose his

or her family and friends to a network of criminals, thereby

exposing them to criminal norms [26]. These factors may

increase the criminality of the incarcerated person’s family

and friends, thereby increasing the probability that these

family members and friends would themselves be incarcer-

ated. Thus, an individual’s incarceration can be ‘transmitted’

to others. Alternatively, there is evidence that an individual’s

incarceration can create an ‘official bias’ against his or her

family and friends [27–29]. That is, once a person is incarcer-

ated, the police and the courts pay more attention to the

incarcerated person’s family and friends, thereby increasing

the probability they will be caught, prosecuted and processed

by the criminal justice system. Thus, even if criminal behaviour

is not transmitted from person to person, a similar pattern

emerges because a convicted person’s associates will be

caught and convicted more frequently than will a non-

incarcerated person’s associates, even if their criminal

behaviours are the same. Regardless of the mechanisms

involved, the incarceration of one family member undoubtedly

increases the likelihood of other family members being incar-

cerated [20,21,30,31]. This suggests that models of contagion

may aptly characterize incarceration.

It is well known that some models of contagion exhibit

nonlinearities. Nonlinear processes such as infectious disease

outbreaks are capable of amplifying small differences in par-

ameters through feedback in certain circumstances. One such

example is the susceptible–infected–suspectible (SIS) model

in which individuals transition between susceptible and

infectious states—near a critical value of transmission prob-

ability, positive feedbacks amplify small differences in

transmission rate to create large differences in prevalence,

the number of infected people.

It has become popular to use the metaphor of ‘contagion’

for many kinds of social dynamics. The central theme of

twentieth century studies of diffusive processes—including

contagion—in many disciplines (including theoretical and

applied epidemiology, graph theory, physics and computer

science) was elucidation of requirements for the existence of

a critical point and its properties. This critical point is

known as ‘herd immunity’ in epidemiology. Here, we illus-

trate the implications of this critical behaviour in those

social dynamics for which the metaphor of contagion is
applicable. In particular, we examine the consequences of

critical behaviour that magnifies small differences in transmis-

sibility to large differences in prevalence. We use simulations

to carry out a carefully controlled experiment that would be

impossible to arrange in the real world. Specifically, we use

an extremely parsimonious model to demonstrate that small

but significant differences in prison sentences can induce

large differences in incarceration rates. Moreover, when we

calibrate this model to data on sentencing, we find that the

difference in sentence lengths between Blacks and Whites

for drug offences in the USA is large enough by itself to

explain the observed difference in incarceration rates. We do

not claim that incarceration is contagious, nor that this is the

only factor determining differences in incarceration rates.

Nonetheless, these results are suggestive and important

enough to warrant further research in these areas. Further-

more, we expect that similar nonlinear effects will be found

in many other contagion-like social systems.
2. The susceptible – incarcerated – susceptible
model

The hypothesized ‘transmissibility’ of incarceration suggests

that an SIS model in which incarceration is modelled as

though it were an infectious disease is appropriate. An

agent-based simulation of the SIS model requires three

main components: a contact network through which individ-

uals stochastically transmit the disease, transmission

probabilities that dictate the rate at which agents transmit

to each other and a period of infectivity [32]. Network ties

represent opportunities for transmission, and the structure

of the network through which the disease spreads affects

the dynamics of the outbreak. In a disease model, network

ties between agents typically denote physical contact or

close proximity; in the case of incarceration, they denote the

existence of a familial relationship or close friendship, i.e.

the existence of a strong influence between the agents.

In the disease modelling paradigm, transmission probabil-

ities may be a function of characteristics of the individual

agents (e.g. elderly individuals have a higher probability of

contracting a disease) or the relationship between the agents

(e.g. transmission rates are higher between parents and small

children). In our model, incarcerated people are considered

‘infectious’ to those who are most profoundly affected by

their absence. Incarcerated people ‘transmit’ the incarceration

‘disease’ to their network members with a probability that is

a function of the relationship type (e.g. an individual’s

incarceration has greater effect on his or her child than on a

friend) and personal characteristics (e.g. males are more

susceptible than females). We denote the probability that

infected agent i transmits to susceptible agent j by p(i! j).
In modelling the spread of disease using the SIS model,

the period of infectivity, s, is the duration of time during

which the infected individual is contagious. In our model, s
is the length of the individual’s prison sentence, as that is

the time during which the inmate’s family and close friends

are acutely affected. Here, we do not explicitly model

increased risk of incarceration due to an inmate’s difficulty

re-integrating into society. In our model, individuals released

from prison cease to be ‘infectious’ and return to a ‘suscep-

tible’ state from which they may become re-infected. The

source of the new infection will be incarcerated friends and
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Figure 1. Cumulative transmission probability by sentence length. As an
example, we assume that at each iteration (month), an agent transmits
with probability p ¼ 0.01. This shows the probability that a transmission
would have been made throughout the duration of the sentence as a function
of sentence length in months.
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relations, introducing positive feedback into the system.

Given the infectious period, the probability that agent i trans-

mits the disease to agent j over the whole course of the

infectious period is given by ps(i! j) ¼ 1� (1� p(i! j))s,

i.e. the complement of the probability that agent i does not
transmit to agent j in any of the s iterations during which it

is infectious. Thus, for fixed p(i! j), a longer infectious

period results in a higher transmission probability (figure 1)

and a greater chance that the outbreak becomes widespread.
3. Simulation model
3.1. Overview
Simulating the described contagious process requires three

main components: a synthetic population through which the

‘disease’ will be passed, transmission probabilities and dur-

ations of infectivity. In our simulation, we synthesize a

realistic multi-generational population of agents for which all

family and friendship ties are known. All parameters involved

in creating this population are based on recent, high-quality

data. For example, distributions for the sex, lifespan and the

number of children of each agent are taken from the US

Census, the Centers for Disease Control and Prevention and

the Social Security Administration, respectively. Transmission

probabilities are derived directly from the survey of prison

inmates presented in [33]. This survey provides the probability

that an inmate’s mother, father, sister, brother or adult child

are also incarcerated by inmate gender. That is, p(i! j) is

taken directly from the literature. In our simulation, we treat

close friends as siblings in terms of transmission probabilities.

We focus on the crime of drug possession and use data from

the Bureau of Justice Statistics to derive sentence lengths by

race. In the following sections, we provide a more detailed

discussion of each component of the simulation.

Using this hypothetical synthetic population, we run

‘Black’ simulations in which incarcerated agents are assigned

sentences that are consistent with those received by Black

Americans for drug possession and ‘White’ simulations

using a distribution of sentence lengths corresponding to

those received by White Americans for the same crime, as
described.1 In order to test whether differential sentencing alone
can explain racial disparities in incarceration rates, we use the
same transmission probabilities and the same network to represent
both Black and White populations. We acknowledge that there

may be differences between the two communities in terms

of demographics that affect the structure of the networks

(number of children, for example); however, in order to iso-

late the effect of differential sentencing, we hold all else

constant—the network included. Indeed, the ability to isolate

one mechanism and disentangle its effect from all others is

one of the main advantages of taking a simulation approach.

3.2. Synthetic population
3.2.1. Agent attributes
We begin with a seed population of n ¼ 1500 individuals, fa1,

a2, . . . , ang, from which all members of the population will be

descended. To initialize each agent, it is assigned several attri-

butes. The ith agent, ai, is assigned a gender from the

distribution gi � Bernoulli(0.5), a birth year (bi � Uniform(L,

U )) and a spatial location in the unit square (xi, yi �
iid

Uniform(0, 1)). The location may be thought of geographi-

cally, as a physical location in a city or as a preference

space. Regardless of how one prefers to conceptualize the

spatial location, it serves the function of creating communities

in the network, as friends and spouses are selected with

respect to these locations. To simulate a realistic distribution

of life durations, the age at death is sampled according to

the 2009 life tables released by the Social Security Adminis-

tration.2 In these tables, the probability of death in the next

year at each age (from 0 to 119) is given by sex. We treat

these as the probabilities of death at each age throughout

the simulation. If individual i is female and born in year bi,

we select a life duration, li, at random from the distribution

given in the female life tables (i.e. li � Multinomial( pfemale)).

The iteration of death is then given by di ¼ bi þ li.
Female agents are assigned an age at first birth attribute.

Age at first birth is based upon a figure released by the

Centers for Disease Control, which lists the mean age at first

childbirth for women in 2011 as 25.6 years.3 We specify

hi, the age at first birth, to be drawn from the distribution

hi ¼ 15 þ ri, where ri � Poisson(10:6), which has mean 25.6.

Each female agent is also assigned the number of children

she will have throughout her lifetime. The US Census pro-

vides the distribution of the number of children that

women in the age bracket 40–44 have had and lists the

total fertility rate for several years between 1980 and 2008,

which ranges from about 1.84 to 2.1. To prevent our simu-

lated population from dying out (fertility rate , 2), we

adjust the raw distribution given for 40- to 44-year-old

women to be consistent with historical fertility rates. Under

this adjusted distribution, the expected fertility rate is 2.07

children per woman.

3.2.2. Network ties
In addition to personal characteristics, each agent is endowed

with relationships with other agents. These are represented as

edges in a network. In our simulation, all parent–child, sib-

ling, spouse and close friend relationships are represented.

When an agent reaches its 10th ‘birthday’, the agent forms

friendship ties. In order to select the number of close friends

assigned to each agent, we use data from the 2004 General

Social Survey,4 in which respondents indicate the number
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of individuals with whom they discuss important matters

and their relationship to up to five of these people. Because

many familial relations are already accounted for in our

simulation, we count only those people listed who are

not parents, children, spouses or siblings to calculate the

probability of selecting each possible number of friends, fi.
Conditional on fi, we select the specific agents that will be

designated as friends. We consider potential friends to be

non-siblings between the ages of 9 and 11. This age range

is based on information obtained from the National Longi-

tudinal Study of Adolescent Health,5 in which children

were asked to list several of their friends. Of the friends

listed, nearly 95% were within one grade of the student

(75% shared the same grade). Because friends within 1 year

of the students made up the majority of close childhood

friendships, we also restrict to this range. From this set of

potential friends, we select the fi agents that are closest in

Euclidean space to the given agent.

In the iteration in which a female actor’s first child is born,

she is assigned a partner. In this hypothetical population, we

only model opposite-sex spousal ties. The algorithm first

finds all potential partners—unrelated and non-friend male

agents whose current age is between the female agent’s age

and 9 years older. We selected this scheme based upon data

from the 1999 US Census that shows that for about 80% of

marriages, the husband’s age minus the wife’s age falls into

the range [21, 9]. We restrict male agents to be strictly older

than female agents, as our partner selection algorithm tends

to force the age of the male partners to fall to the lower end

of the allowable range. From this collection of potential part-

ners, the agent is assigned the potential partner that is

located the closest to it, again using Euclidean distance.

At this point, the children of the couple (or single mother)

are initialized. The first child is assigned to be born in the cur-

rent iteration. Subsequent children are assigned birth years as

the current iteration plus independent and identically distrib-

uted draws from a Poisson distribution with mean parameter

l ¼ 4.5. The mean parameter, l, is again based on the Centers

for Disease Control’s data used to calibrate the age at first

birth. Child locations are set to be half-way between the

mother’s and father’s location plus random noise

(Uniform(m1 2 0.05, m2 þ 0.05)), where m1 and m2 are the

midpoints between the mother’s and father’s location along

the x- and y-axis, respectively.
We run our algorithm for 200 iterations, resulting in a

total population of 13 826 individuals. We discard the first

150 iterations as a burn-in period, reducing dependence on

our initial conditions. Those agents that are part of our simu-

lation (i.e. those that are alive at any point beyond the 150th

iteration) are retained. The total population consists of 8856

agents, with 61 376 family and friendship ties. This total

population size is not pre-specified, as it is the result of the

random birth and death process initialized with 1500

agents. Figure 2a shows an example family tree generated

by our algorithm. This individual family, of course, does

not exist in isolation of the rest of the population. The

population-wide network is shown in figure 2b.

3.3. Generating sentences
Data released by the Bureau of Justice Statistics6 indicate that

the duration of sentence served for the same crime varies by

race. In particular, the Bureau of Justice Statistics states that

for drug possession, the mean sentence for Whites is

14 months with a median of 10 months. For Blacks, the

mean sentence served is 17 months with a median of

12 months. We use a negative binomial distribution to gener-

ate sentence lengths that are consistent with the specified

summary statistics. A comparison of the sentence distributions

is shown in figure 3.

3.4. Transmission probabilities
Dallaire [33] presents the results of a survey of incarcerated

individuals. In this survey, each inmate is asked which of



Table 1. Derived monthly transmission probabilities, p(i! j ).

women men

mother 0.001 0.003

father 0.011 0.011

sister 0.008 0.004

brother 0.033 0.030

spouse 0.004 0.001

adult child 0.017 0.006
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their relations are also incarcerated. The proportion of

inmates whose relations are incarcerated are reported in

these data by sex. We use these probabilities to derive our

transmission probabilities, p(i! j). We have noted that if

agent i has probability p(i! j) of infecting agent j each

month it is incarcerated and its sentence is s months, then

the probability of transmission over the course of its

incarceration, psentence(i! j), is given by psentence(i! j) ¼
1 2 (1 2 p(i! j))s. One can easily solve for p(i! j) ¼ 1 2

(1 2 psentence(i! j))1/s. We set s ¼ 14 to approximately

calibrate to a value between the Blacks and Whites. The

derived monthly transmission probabilities used in this

simulation are given in table 1.

The derived monthly transmission probabilities are most

usefully understood in the context of the probability of trans-

mission averaging over sentence length, i.e. the marginal

transmission probabilities,

prace(i! j) ¼
X1

s¼0

psentence(i! j)prace(s), (3:1)

where psentence is defined above and prace(s) is the distribution

of sentence lengths for each race. Marginal probabilities by

race, sex of inmate and relation are given in table 2, along

with the original probabilities listed in [33]. These were calcu-

lated using the Monte Carlo method. We note that our

marginal probabilities for the White sentences tend to be

just slightly lower than those given. For Black sentences,

the marginal probability of transmission tends to be slightly

higher than that given. This is, of course, unsurprising as

the sentences tend to be shorter for Whites and they thus

have fewer opportunities for transmission. Recall that the

monthly transmission rates under the two scenarios are pre-

cisely the same, so one should not interpret the differences

in marginal probabilities to mean that this model implies

that Blacks are more susceptible than Whites under the

same conditions. The only differences that exist here are

due to the discrepancies in sentencing. We find that the prob-

ability of transmission for Blacks under these parameters tends

to be about 20% greater than the probability of transmission

for Whites.

The assumption that one’s infectivity is constant over the

duration of the sentence and non-existent upon release is

likely flawed. In reality, the degree of infectivity likely varies

over the course of the sentence and slowly decays after

releases. Ex-inmates may even have heightened infectivity

immediately after release, particularly as they try to reintegrate

into their families and communities and find work. However,

we find it plausible that the duration of infectivity is at the very

least positively correlated with sentence length. If we were to
assume that the infectious period were proportional to the sen-

tence length and calibrate the transmission probabilities to this

increased period of infectivity, the eventual results of our

simulation would be quite similar, as the marginal probability

of transmission over the course of the infectious period would

be similar. Parsimony is an important quality in an agent-

based model, and we have endeavoured to adhere to this

principle whenever possible, particularly in cases where

there are no data to inform more detailed parameters. In this

case, we have no information about the duration and rate of

post-release reacclimatization. Thus, we assume that infections

only take place during the sentence, a period about which we

have concrete data.
4. Results
We run our simulation 250 times using each sentence-length

distribution, resulting in 250 ‘Black’ epidemics and 250

‘White’ epidemics. The populations are initialized to have

approximately 1% of individuals incarcerated at the beginning

of the simulation. Although White and Black incarceration

rates, in reality, have been disparate throughout history, we

initialize the simulations equivalently under the two scenarios

to rule out the possibility that the resultant disparities are due

to initial conditions alone. Our first analysis looks at the

effects of differential sentencing after 50 years, a duration

slightly longer than the time since the term ‘War on Drugs’

was coined in the USA. Figure 4a shows the mean epidemic

curves and corresponding confidence intervals by race;

figure 4b shows several example trajectories. While the

prison epidemic takes off under Black sentence lengths, reach-

ing just under 3% incarcerated on average after the 50 years in

our simulation, under the model using White sentence

lengths, the prison population first declines and then increases

at a much slower rate, reaching about 0.725% over the same

time period. Eventually, the Black and White simulations

level off (or increase at a negligibly slow rate) at around 7%

and 1%, respectively.

We have shown that under a largely arbitrary simulation

period and initial values, large racial disparities in incarcera-

tion rates are an emergent property of this model. We now

test whether this conclusion holds under realistic time periods

and initial values. As a comparison with real data, we initialize

the Black and White simulations to be near the real incarcera-

tion rates in California in the mid-1980s when mandatory drug

sentencing became law there (1% and 0.15% for Blacks and

Whites, respectively). The results of this are shown in

figure 5. From 1986 to 2010, the incarceration rate for Blacks

in California climbed from about 1 to 2.18%, whereas the

rate for Whites rose much more modestly from 0.15 to

0.277%. In our simulations, the Black and White simulations

increase to 2.13% and 0.33%, respectively, over the same

time period. For the Black trajectory, our mean trajectory devi-

ates slightly though the ultimate results after 25 years are

remarkably similar to reality; however, we note that the real

trajectory in California is within the range of values that are

typical under our simulation, as it falls well within the cloud

of trajectories shown. The White trajectory in California is

quite similar to the mean trajectory in our simulation.

Agent-based models are often evaluated with respect to

the model’s ability to reproduce a set of ‘stylized facts’ as

opposed to specific values [34,35]. These facts are often



Table 2. Probabilities given in [33] and marginal transmission probabilities for Whites and Blacks.

survey White Black

women men women men women men

mother 0.012 0.048 0.012 0.046 0.014 0.056

father 0.147 0.148 0.138 0.138 0.163 0.163

sister 0.107 0.059 0.101 0.058 0.121 0.069

brother 0.377 0.349 0.324 0.303 0.370 0.347

spouse 0.059 0.011 0.057 0.011 0.069 0.013

adult child 0.213 0.085 0.194 0.082 0.227 0.098
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Figure 4. (a) The mean incarceration prevalence over time by race. Log p-values shown below indicate that at all but the first time point, the mean prevalence is
significantly different between the two populations. (b) Several example epidemic curves.
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structural or qualitative in nature; examples include patterns

of persistence or high autocorrelation in financial time-series

[34], spatial clustering of crime [36] or habitation sites [37]

and racial segregation in housing [38]. Thus, it is not strictly

necessary that a generative model be able to perfectly match

observed statistics to establish the plausibility of the genera-

tive mechanism; rather, it is necessary that the agent-based

model be able to reproduce observed structural properties

at a qualitative level. For example, in Schelling’s foundational

work in describing a generative mechanism for racial segre-

gation in housing, it is enough to show that simple decision

rules produce clusters of like agents [38]; one need not estab-

lish an exact correspondence between clustering coefficients

in these simulations and those seen in reality.

In that spirit, here we establish the ability of our model to

reproduce structural properties of the incarceration epidemic

with respect to the patterns found in recidivism data. In

figure 6, we compare the recidivism rates derived from the

simulation model to those released by the state of California.

The plots to the right show the same statistics from a variety

of other states. The chosen states vary because not all states

release the same statistics; we chose California as our

primary point of comparison because its report shows
recidivism rates disaggregated by the most factors and at

the highest level of discretization. Remarkably, our model

reproduces the structural properties of recidivism very accu-

rately. For example, in both our model and the data from

California, recidivism rates increase with the number of

times an inmate has been incarcerated, with the largest

increase occurring between the first and second incarcera-

tion. This effect emerges as a structural property of the SIS

model without including an increased probability of incarceration
for those who have previously been incarcerated. An agent’s

incarceration affects its local network enough that, upon

release, it has a higher probability of return. In all cases,

including our simulation results, the recidivism rate is

lower for those who are released at an advanced age. In

fact, our simulation even reproduces a subtle demographic

bulge in rates that is apparent in the California report. This

is again an emergent property of the model—as an agent

ages, it tends to have fewer (and different types of) contacts

who generate positive feedback for incarceration. The rate by

months since release (for those who recidivated within 3

years) closely matches the structure of the data from all

states. These results suggest that our model is reflecting the

underlying regularities in the system.
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In addition to reproducing the structural properties of

incarceration at a qualitative level, the contagious model of

incarceration also shows a very close correspondence to the

actual recidivism rates, adding additional weight to the plausi-

bility of the contagious theory of incarceration. Figure 7 shows

the recidivism statistics with 95% simulation intervals for the

‘Black’ simulations; the results of the ‘White’ simulations are

very similar, and for the sake of clarity, are omitted. The

dashed lines show the 97.5th percentile and 2.5th percentile

of the statistics over the 250 simulations. The mean across

simulations is shown by the solid black line; the values

reported in the California data are shown in red. For the

most part, in addition to reflecting the underlying structure in

the patterns of recidivism, our model also matches quite clo-

sely with the recidivism rates themselves. In most cases, the

actual values fall within the range of our simulation. We cau-

tion that the width of the simulation intervals are almost

entirely a function of the number of agents in the simulation

model and for a larger simulated ‘town’, these intervals may

be much smaller. More standard confidence intervals (not

shown) as opposed to simulation intervals should similarly

be interpreted with caution, as they can be made to be arbitra-

rily small simply by increasing the number of simulations run.

These plots do reveal some notable differences between the

results of our simulation and the real data. First, the trend in

recidivism by age appears to be a ‘stretched out’ version of

the real trend. This discrepancy is likely a function of the

fact that the agents in our simulation tend to live quite

long—probably much longer than the real population of

individuals that tend to get incarcerated. Incorporating depen-

dence between an agent’s incarceration and its lifespan would

likely reduce this discrepancy. Second, our simulation tends

to miss the increased risk of recidivism for young people.

Age-specific transmission probabilities could be tuned to

close this gap. Finally, we note that the length of sentence

error bars become quite wide past about 8 years. This is

because few sentences in each simulation fall in this range,

and thus the values in some simulations may be based upon

very few data. Simulations with more agents would undoub-

tedly reduce the width of these bars, as there would be more

samples from the tails with which to calculate the proportions

in each simulation. Regardless, the mean across all of the simu-

lations (black line) is still an unbiased estimate of the overall

rate of recidivism for long sentences under our model and

reflects the trend as a function of sentence length.
The discrepancies between the real data and the simulated

data offer suggestions for refinements to the model that could

improve its accuracy. Such refinements, however, come at the

expense of parsimony. Given how well our extremely par-

simonious model is able to reproduce many facets of the

incarceration epidemic, we anticipate that the marginal returns

for incorporating the described refinements will be negligible.

That is, although we may be able to more precisely match exact
figures from the real data with a more complicated and highly para-
metrized model, realizing small improvements to the accuracy of the
incarceration and recidivism rates in our simulation will do little to
further establish the plausibility of our hypotheses. In its current
form, our model clearly demonstrates the plausibility of our hypoth-
esis that incarceration may be spread in a manner similar to a
contagious disease and that sentencing disparities may be a major
cause of racial differences in incarceration rates.
4.1. A non-contagious model
It is important to test whether the causal mechanism of inter-

est (in this case, contagion) is a necessary component of the

model [36,37]. If it is possible to reproduce an equivalent fit

to the structural properties of the observed process without

the mechanism, then, under an appeal to parsimony, it is

not sensible to put forth the mechanism as a plausible candi-

date for the true causal mechanism. We address this issue by

running a simulation in which incarceration is not conta-

gious. In these simulations, the mechanism of interest is

‘turned off’. Here, there is only spontaneous infection—at

each iteration, each agent has equal probability, p, of becom-

ing infected independent of any relationship with an

incarcerated agent. In order to make a fair comparison, in

this simulation we tune the probability of spontaneous infec-

tion such that, at the end of the simulation, the Black

population’s prevalence is roughly 3% as in the SIS simu-

lations. We again initialize both populations to have a 1%

incarceration rate at the outset and use the appropriate sen-

tence-length distributions for Black and White simulations.

Figure 8 shows the results of this experiment. Under this

model, we are not able to reproduce the large difference in

incarceration rates between the Black and White simulations.

Here, the curves are only about 20% different, whereas in the

simulations that incorporate the contagious mechanism, as

well as in reality, the incarceration rate of Black agents is

many times that of the White agents. The trajectory of the
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epidemic under this scenario also fails to resemble that of the

real incarceration epidemic—it takes off very quickly and

within approximately 5 years reaches equilibrium (figure 8).

Recidivism statistics that pertain to the non-contagious

simulation appear in figure 9. Under the non-contagious

model, we find a very poor correspondence to reality. Under

this model, the rate of recidivism with respect to the number

of times previously incarcerated is decreasing, whereas in the

contagious simulation and the real data it is increasing.

Here, the cumulative rate of recidivism by months since

release shows a convex pattern where both data generated

by the contagious model as well as the real data exhibit a
concave shape. The probability of recidivism is essentially

flat with respect to the length of the sentence under a non-

contagious model; real data and the contagious model both

show that longer sentences result in a decreased probability

of recidivism. Recidivism by age is the only metric by which

the non-contagious model roughly reproduces the same results

as seen in the real data, though even here the shape of the

curve appears markedly rounder than in the California data

and lacks the characteristic demographic bulge.

Based on the lack of correspondence between reality and

recidivism data generated under a non-contagious model

coupled with the close correspondence between reality and
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data generated by the contagious model, we conclude that

sentence-length disparities in the absence of network effects

do not account for the observed difference in incarceration

rates. It is feedback through the local network coupled with

sentencing disparities that causes such large differences in

incarceration rates.
4.2. An ordinary differential equations approach
Under assumptions of random mixing and homogeneity of

transmission rate, the SIS model can be written as a set
of ordinary differential equations (ODEs). In this case, the

number of people infected—the prevalence—when an out-

break reaches a steady state, I, is determined by the

expected number of transmissions per infected person,

which in turn is given by the product ps of transmission

rate and the duration of infectivity. The presence of a positive

feedback loop makes the relation between prevalence and

number of transmissions highly nonlinear. In particular,

ignoring births and deaths, I ¼ 0 if s , p21 and 1 2 1/ps
otherwise. Thus, given the transmission rate p, we can

define a critical duration of infectivity sc ; p�1 such that

for s , sc the outbreak dies out, while for s . sc it achieves

a non-zero steady-state prevalence. Near sc, small differences

in sentencing (i.e. duration of infectivity) can cause large

differences in incarceration (i.e. disease) prevalence.

We take an agent-based simulation approach to modelling

the incarceration epidemic because neither the assumption of

uniform mixing nor the assumption of homogeneity is met.

Indeed, the network of family and friends plays a crucial
role in our hypothesis. Furthermore, the data show that

transmission rates depend on the nature of the relationship

between the infectious and susceptible people, and any par-

ticular susceptible may simultaneously have several types of

relationships with different infectious people (e.g. mother and
sister and daughter). It is easier to capture this heterogeneity

in transmission rates in an agent-based simulation than in a

set of ODEs.

Moreover, using the output of our simulation, we can gen-
erate a population-wide mean transmission rate p to calibrate

an ODE model. The result is p � 0.0612 transmissions per

infected person per month, or sc � 16.3 months. Thus, the

mean sentence lengths (17 and 14) are on opposite sides of

the critical point, illustrated in figure 10. Under this model,
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the incarceration epidemic in the White population would

eventually die out. However, the Black population’s

incarceration rate would reach a steady state of about 3.9%.

As this model does not account for spontaneous infections,

this result is consistent with those of the agent-based

model. This approach, however, does not allow us to assess

the validity of the model or comment on its ability to repro-

duce structural properties of the epidemic using other

withheld sources of information, such as the recidivism

data we have shown.
5. Future directions
Incarceration as a contagion is a complex process that co-

evolves with many other complex social processes, e.g.

poverty. Our model by no means accounts for all of the com-

plexities in the process; however, we view the simplicity of

our model as one of its major strengths. Even without

accounting for the details, our model is able to capture
many of the facets (or ‘stylized facts’) observed in real

incarceration data.

Extensions to this model could nonetheless prove fruitful.

For example, one could investigate the extent to which differ-

ences in network structure between Black and White

communities might encourage or discourage the spread of

incarceration. In particular, increasing the fertility rate in cer-

tain communities would raise the average degree in the

network, giving more opportunities for transmission. One

might investigate whether the differences between Black and

White communities in fertility rate plausibly play a significant

role in the spread of incarceration. Black and White commu-

nities do not exist completely separately; real networks

include both Black and White individuals. One might simulate

a more realistic mixed-race influence network to investigate

the extent to which the rate with which the two communities

are commingled might affect the epidemic, even under inequi-

table sentencing for Blacks. In this work, we have ignored the

residual effects of incarceration once the agent is released.

Future work might seek to model an extended infectious

period during which the ex-inmate is trying to reintegrate

into their home life and find work. Last, one very interesting

extension would be to simulate the mechanisms by which

incarceration is spread. People with low income are more

likely to become incarcerated, and incarceration decreases

one’s expected lifetime earnings. These effects are passed on

through the generations, as social mobility data indicate the

children of low income parents are themselves likely to have

low income, and thus are at increased risk of incarceration. It

has also been documented that incarceration increases the like-

lihood of relationship dissolution and prevents young men

from forming stable long-term relationships. A lack of stable

family life is a risk factor for incarceration, increasing the like-

lihood of re-incarceration for the ex-inmates as well as for their

children. Understanding and quantifying the relationship

between poverty and incarceration could have a potentially

large impact, as the insights gained could be used to help

drive policy decisions.
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6. Discussion
The model presented here demonstrates that the dramatic

disparities in incarceration rates of Black and White Ameri-

cans can be generated by the ‘transmission’ of incarceration

from an incarcerated person to his or her family and close

friends combined with modest differences in sentencing. A

relatively small difference in sentencing of, on average,

three months over a period of approximately 25 years created

incarceration discrepancies similar to those observed today.

The plausibility of our model is further supported by its

agreement with observed patterns of recidivism, especially

in California. However, the model reveals that, contrary to

the arguments of some advocates, sentencing differences

alone are unlikely to account for the disparities. To generate

the large incarceration disparities observed today in the

USA, the model must include both sentencing disparities

and a mechanism for transmitting incarceration through

social networks. Our model does not seek to address why

disparities in sentencing exist. Rather, it demonstrates that

disparities in incarceration rates between White and Black

Americans may have as much to do with social influence as

the criminal behaviour of individuals.

More broadly, we have demonstrated that a model of con-

tagion produces an incarceration epidemic similar to that

observed in the USA regardless of the demographic charac-

teristics of the individuals. If incarceration risk is indeed

propagated through social networks, our results predict

that incarceration is self-perpetuating and changes to senten-

cing policy may have long-term unanticipated consequences.

Indeed, harsher sentencing may hinder progress towards the

intended goal of decreasing crime, creating safer commu-

nities and maximizing justice to the state, victim and

offender. Our model suggests that increased sentencing for

an individual has negative effects that spread through

social networks to affect families and whole communities.

As a consequence, increased sentence lengths may create

criminals from individuals who otherwise would have

avoided criminal behaviour.
The plausibility of social transmission suggests that the

incarceration epidemic might be ameliorated by reducing

the spread of incarceration through contact networks. In a

model of contagion, reducing the overall probability of trans-

mission reduces the steady-state prevalence of the epidemic.

Transmission probabilities can be reduced by decreasing

the time-rate of transmission or shortening the infectious

period. Our model provides a framework for assessing the

possible long-term effects of policies targeted at reducing

transmission probabilities, but it is critical to first determine

empirically the effectiveness of various policies. To this

end, studies of the effect of different sentence lengths,

alternative punishments, targeted interventions and retrain-

ing/re-integration programmes on ‘transmissibility’ are

urgently needed. These data, in conjunction with models of

contagion, would provide a substantially improved frame-

work for analysis of incarceration-related policies and their

cascading effects.
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Endnotes
1Simulation code is available at http://ndssl.vbi.vt.edu/synthetic-
data/.
2http://www.ssa.gov/oact/STATS/table4c6.html.
3http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_01.pdf.
4http://www3.norc.org/gss+website/.
5http://www.cpc.unc.edu/projects/addhealth; data not publicly
available.
6http://www.bjs.gov/index.cfm?ty=pbdetail&iid=2056.
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