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Abstract: Chronic wounds represent a major public health issue, with an extremely high cost world-
wide. In healthy individuals, the wound healing process takes place in different stages: inflammation,
cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracel-
lular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the
chronic inflammation favors exudate persistence and bacterial film has a special importance in the
dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based
materials for wound healing highlight the performance of specific alginate forms. An ideal wound
dressing should be adherent to the wound surface and not to the wound bed, it should also be
non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective.
It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate
the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores
the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels,
nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be
released on the wound-bed. The latest research reports are presented and supported with in vitro
and in vivo studies from the current literature.

Keywords: alginate; biomaterial; dressing; fibers; hydrogel; nanofibers; commercially available;
wound care; wound healing

1. Introduction

Chronic wounds represent a major public health issue, with an extremely high cost
worldwide. In the USA, chronic wounds affect 1% of the total population, in Europe the
incidence is 4 million cases per year which implies a rate of about 0.8%, in Australia 0.86%,
in China 0.8–1%, and in India 0.6–1% [1,2]. In healthy individuals, the wound healing
process takes place in different stages: inflammation, cell proliferation (fibroblasts and
keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilib-
rium between metalloproteinases and their inhibitors). In the case of chronic wounds, a
chronic inflammatory status is noted, so it takes a longer time to reach the cell proliferation
and remodeling (healing) phases. Chronic inflammation favors exudate persistence. The
bacterial film has a special importance in the dynamics of chronic inflammation in wounds
that do not heal. Clinical studies showed that over 60% of chronic wounds presented a
biofilm. Current research envisages advanced wound-dressings to address these disadvan-
tages. These wound-dressings should act by removing the biofilm pathogenic bacteria and
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modulating the inflammation. Many in vitro and in vivo studies centered upon creating
new or better biopolymer-based materials for wound healing in recent years. An ideal
wound dressing should adhere to the wound surface and not to the wound bed, it should
also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant,
and cost-effective. It has to give protection against bacterial, infectious, mechanical, and
thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs
or other molecules [3–5]. Alginate, chitosan, collagen, and cellulose are the most used
biomaterials for wound-dressing products [3,6–10]. Of these, alginate is by far the most
commonly biomaterial among other bioproducts with wound healing properties [3,6,7].

Because of its hydrophilic nature, alginate is capable to take multiple forms [11–14]
(beads, blends, dressings, electrospun scaffolds, flexible fibers, films, foams, gels, hydrogels,
injections, microparticles, microspheres, nanoparticles, polyelectrolyte complex, powders,
ropes, sheets, sponges) that could be applied on post-traumatic wounds or exuding wounds
(ulcers) while decreasing contamination [15–18], either as a stand-alone biomaterial, or in
various combinations.

This review focuses on the roles of alginates in advanced wound-dressing forms
with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges
entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest
research reports are presented and supported with in vitro and in vivo studies from the
current literature.

2. Chronic Wounds Mechanisms and Alginates Roles

Wound healing mechanisms involve multiple cellular events, while also being related
to the biodynamic of the bacterial film on the wound surface. Inflammation occurs as
a result of the inflammatory response of keratinocytes (at the edge of the wound), cy-
tokines, and growth factors during thermal and cellular processes. The cells involved
are leukocytes and fibroblasts [19–21]. Leukocytes (polymorphonuclear leukocytes-PMN,
macrophages, lymphocytes) secrete biomarkers such as IL-1, IL-6, TNF-α, with role for the
maintenance of inflammation. Platelets, epithelial cells, endothelial cells, and macrophages
secrete growth factors, PDGF (platelets derived growth factors), TGF-β(tumoral growth
factor-β), β-FGF(fibroblast growth factor-beta), VEGF-(vascular endothelial growth factor,
hypoxia-induced), KGF (keratinocytes growth factors), metalloproteinases-MMPs, and
their inhibitors—TIMPs. More than 20 types of matrix metalloproteins have been described
to be involved in extracellular matrix (ECM) proliferation [22–24].

A fibroblast’s function is to remodel the extracellular matrix and to secrete growth
factors. Proliferation is the most critical stage, since the ECM is formed, and the collagen
synthesis, reepithelization, and angiogenesis processes begin [25]. Remodeling is repre-
sented by the moment when collagen reshapes, the vessels mature and regress from the
injured area. Eventually, the reepithelization process takes place [26].

A mechanism implicated in unhealing of wounds seems to point out the fact that
fibroblasts are unresponsive to growth factors and cytokines. In patients with chronic
wounds, increased levels of IL-1 β, IL-6, TNF-α, and an abnormally high ratio MMPs/TIMPs
have been found, as demonstrated by computational models, as well. The liquid in chronic
wound with its cytokinic composition seems to inhibit the proliferation of dermal fi-
broblasts by their arrest in the G0/G1 cell cycle by activating an intracellular molecular
pathway mediated by Ras protein [27]: (1) High Mobility Group Box Protein 1 (HMGB1)
and the analogues involved in wound repair; (2) cell growth mechanisms regulating
given by Ras protein. The study of cell matrix and of the ration between metallopro-
teinases/their inhibitors seems to have a crucial importance in understanding the chronic
wounds physiopathology.

Alginates were proved to exhibit: (1) anti-microbial (Gram-positive—Staphylococcus,
Bacillus cereus; Gram-negative—E. coli, Pseudomonas aeruginosa, and Acinetobacter
spp. [9,28,29]); (2) antifungal—Candida albicans [9,30,31]; (3) antiviral—Herpeviridae, Rhab-
doviridae, Flaviviridae, and Togaviridae, due to sulfated polymeric chain [9,32]; (4) anti-
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anaphylactic; (5) anti-inflammatory, immuno-modulatory by induction of nitric-oxide
(NO), reactive oxygen species (ROS), TNF-α, NF-KB release from macrophages, the MAPK
signaling pathway; (6) antioxidant; (7) hemostatic by platelets activation and thrombin clot
generation; (8) regenerative/angiogenetic properties [28,29,32–36]. Infection is one of the
leading causes for a wound to become chronic [34,37] thus making alginate a good candi-
date when discussing its possible use as a wound dressing especially in hydrogel forms
or more advanced solutions such as electrospun nanofibers networks, 3D-scaffolds and
sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed.

3. Alginate Physical Properties

Alginates (ALG), are linear water soluble high swelling natural anionic polysac-
charides obtained from brown algae cell walls and from some bacteria strains such as
Pseudomonas or Azotobacter [6,38–40]. They are biopolymers consisting of 1,4-linked β-
D-mannuronic acid (M) and 1,4 α-L-guluronic acid (G) monomers [9,30,39,41]. These
monomers are grouped in block-like patterns which can be heterogenous (MG) or homoge-
nous (poly-M, poly-G) (Figure 1). When it comes to terminology, alginate usually refer to
alginic acid, and its derivatives [6,9,32,42]. To become water soluble for viscous solutions
alginic acid should be converted into ALG esters and monovalent salts like sodium algi-
nate or calcium alginate. The viscosity of sodium alginate aqueous solution (1% w/v) for
example, is highly dynamic ranging between 20 and 400 mPa·s at 20 ◦C. By tuning the
ALG concentration viscosity and other physicochemical properties are influenced [9,43].
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Figure 1. Alginates’ blocks in the polymeric chain.

The parameters to modulate ALG’s solubility are represented by structure, the car-
boxylic groups states (protonated/deprotonated), ionic strength, concentration, temper-
ature, the amount of the ‘gelling ions’ such as Ca2+ and Na+, the solvents, and pH. At a
pKa under 3.28–3.65 the solubility is highly affected and the polymer precipitates [9,32].
ALG’s solubility also changes when long alkyl or aromatic groups are attached to their
backbone. Then, the presence of protonated carboxylic groups in ALG’s structure comes
with the loss of water or any other solvent solubility. Environmental pH also influences
ALG mucoadhesive capacity where the polymers carboxyl groups bind with mucin, and if
it is higher, the carboxylic groups become deprotonated [9,15,32,42,44].

The gelling ions trigger a cross-link process of the ALG chains and eventually the
gelation process [9,32]. Modulating the G-blocks, M-Blocks, or MG-block concentration
in the technological process, different gel patterns can be obtained: stiffer, elastic, or
flexible [9,32]. When the alginate is fully crosslinked, the gel will be more rigid, with a
higher Young’s modulus and lower elongation which affects its tensile strength. The higher
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the Ca2+ concentration the better water resistance and swelling behavior is observed, while
in thin films more translucent and clear behavior was noticed [9].

With an impressive swelling capacity (20 times their own weight) ALG weakly jellify in
the wound environment, providing moisture and stimulating epidermis
regeneration [6,9,40]. ALG are acknowledged to have an excellent biocompatibility and
it seems that the adverse events were related to the alginate’s (unobserved) impurities
that were added unintentionally in the wound-dressings [9,15,42]. The most used alginate
types in wound healing studies are the calcium and the sodium alginate, depending on
the wound type or the desired dressing form. The physicochemical properties are cor-
related with the amount of ALG, more ALG will lead to the viscosity and the bead size
to increase [43,45,46]. The used concentration of ALG varies from 0.001% w/v to 95%
depending on the dressing type [47–49].

The ALG wound dressings have the ability of exchanging the ‘gelling ions’ with
the wound fluids with a direct application in infected wounds. For example, calcium
alginate makes a reliable non-woven wound dressing with the ability to exchange Na+ in
exuding or infected wounds. Consequently, this wound dressing type does not adhere to
the wound-bed and the removal is painless. The new formed tissue will not be affected
by washing away the alginate fibers. Moreover, there is a self-adherence process in the
peri-wound area with a good cover of the affected area [9,15].

In the case of sodium alginate salts, only the water solubility is maintained. It dissolves
completely in water but not in organic solvents. Nevertheless, sodium alginate has better
gel-forming characteristics [9]. To date, at pH of 1.2 spray-dried particles of sodium alginate
consisting of hydrophilic matrix controlled-release form, have a longer release time for the
entrapped drugs, forming gels in aqueous media. The speed and the drugs’ absorption rate
depend of the wound pH and drug type, but also on the solubility of the alginate salt [9,50].
Some authors state that an alginate-based dressing should be changed every week or when
the gel loses its viscos properties [51].

4. Alginate-Based Hydrogels for Wound Healing

One of the most promising alginate forms being used in helping wound healing is
the hydrogel because it keeps the moisture and absorbs the excessive exudate, it reduces
local pain because it has a cooling effect, it does not adhere to the wound bed and it can
hold active compounds such as various drugs, signaling molecules, or stem cells. Their
disadvantages are their price and their mechanical instability [52,53]. Their structure
influences the obtained gel. Repeating M-blocks have a better water retaining ability that
transforms into a softer and more elastic gel, whereas repeating G-blocks will give gels a
good mechanical resistance, but they will be stiff, and more MG-blocks will lead to a more
flexible gel (Figure 2). ALG rich in M-blocks makes soft flexible gels, while ALG in rich
G-blocks make firm gels after they absorb wound secretions [11,23,32,42,49,54]. ALG with
high G content reveals interesting in situ gel formation properties with superior results
after using a gel instead of a solution for ocular drug delivery, being conditioned by pH
and temperature [32,55,56]. An oxidized alginate and borax hydrogel dressing obtained
directly in situ with a WVTR (water vapor transmission rate) of 2686 ± 124 g/m2/day, was
applied on rats, proving that the antiseptic properties of borax helped completely heal the
wound within two weeks [57].

If the gelation rate is slow, the gel will be uniform and will have a good mechanical
resistance [32,49,54]. To make that happen, one might add phosphate buffer or lower the
temperature. Alginate’s gelation rate might be slowed by adding cryoprotectants such as
tetrasodium pyrophosphate and di- or trisodium phosphate. ALG also turns into hydrogels
after rehydration [32,49,54].
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Porous 3D hydrogel calcium alginate (Ca ALG) has great swelling capacity in wounds,
providing slow drug release, and it is used to entrap cells for tissue regeneration and
engineering, as a physical support for cells or tissue or as a hurdle between two media,
because it protects the cells from the host’s immune system until it reaches the targeted area.
A great example is represented by the encapsulated fibroblasts into a dual-layered structure
made from alginate hydrogel with apical keratinocytes [32,58,59]. Also, a hydrogel film
based on poly (N-vinyl caprolactam)-calcium alginate (PVCL/PV-Ca ALG) loaded with
thrombin receptor agonist peptide (TRAP) has shown a beneficial effect on wound healing
and tissue regeneration [11].

A relatively recent study compared a sodium alginate-acacia gum-based hydrogel
loaded with zinc oxide nanoparticles (ZnO-NPs) to only ZnO-NPs by their healing effects
and activity against B. cereus and P. aeruginosa. The authors have started from the premise
that zinc helps wound healing by having antipathogenic properties, helping reepitheliza-
tion and reducing the inflammation and bacterial growth in leg ulcers. This study used
sheep fibroblasts and concluded that the hydrogel had less cytotoxicity than the use of only
zinc oxide nanoparticles, if the concentration is carefully monitored. The hydrogel also
demonstrated better results against both aforementioned rod-shaped bacteria. A complete
new monolayer was observed if the plate was treated with the hydrogel, whereas the
same concentration of only the nanoparticles led to cell death [29]. Also, Neacsu et al. [60]
mention a study by Mohandas et al. [61] that concluded that the use of ZnO-NPs in an
alginate hydrogel did have antibacterial effects against E. coli and S. aureus, but their used
concentration had potentially cytotoxic effects.

When a Na ALG, chitin/chitosan, and fucoidan (60:20:2:4 w/w) hydrogel sheet (ACF-
HS) was applied on rats with full thickness wounds in an in vivo cytotoxicity assay study,
it provided a moist wound environment, showing easy application and removal, and
enhanced cell migration [42,62–66]. The study involved Sprague Dawley rats treated
with mitomycin C (wound-healing inhibitor) or Kaltostat® (alginate-based fiber, for the
positive control) and ACF hydrogel sheets were applied before being sealed with a plastic
sheet [63]. Because the wounds exuded heavily the alginate-chitosan/chitin-fucoidan
hydrogel sheets were replaced on day 3. The dressings were removed on day 7 and the
established observation period was 18 days. The ACF-HS treated wounds displayed
better healing, based on histological examinations. The wound closure and contraction,
granulation, capillary formation and re-epithelization started with day 7, whether or not
the wound was previously treated with mitomycin C, and the latter process was enhanced
after the dressing was removed from the inhibited-healing wound, making ACF-HS a good
candidate for wounds with impaired healing [63,64]. The recently developed alginate-based
hydrogels are summarized in Table 1.



J. Pers. Med. 2021, 11, 890 6 of 20

Table 1. Alginate-based hydrogels used for wound healing.

Composition Study Type/Target Ref.

1% w/v Na ALG—0.1% w/v acacia gum—1 mg/mL
ZnO-NPs

Characterization, healing effects and cytotoxicity on sheep
fibroblasts, antibacterial activity [29]

0.5–2.5% w/v LF 200S ALG hydrogel emulsion + 0.9, 1.4,
2.8% Tween 80/Span 20/isopropyl myristate

oil/Ketoprofen ratio 26:1.25:4:1
Ca2+/D (+) gluconic acid δ-lactone molar ratio: 1:2

Ketoprofen microemulsion: 0.9, 1.4, 2.8%

Characterization, drug release, scattering patterns [56]

alginate dialdehyde (ADA)—gelatin—0.1 M borax Characterization and in vivo study on rat model [57]

60:20:2:4 w/w Na ALG—chitin/chitosan—fucoidan
hydrogel sheet

Sprague-Dawley rats with full thickness wounds, gives a
moist wound environment, easy application and removal,

migration, cytotoxicity assay
[62–66]

encapsulated TRAP—0.5% w/w chitosan—PV-Ca ALG
hydrogel film C57 black 6/CBA mice wound healing [67]

10 g ALG—4 mg trypan blue, 10 g ALG—10 µg VEGF Drug release: in vitro and in vivo on NOD and SCID mice,
angiogenesis [68]

1% heparin—1% Na ALG—bFGF Characterization, angiogenesis and bFGF release profile in
Wistar rats [69]

10 & 15% Polyvinyl pyrrolidone—0.5 and 1% ALG—0, 30,
50, 70, and 100 ppm Ag-NPs.

Characterization, crosslinking degree, antimicrobial
activity. Best results: 0.5% ALG, 15% PVP, 70 ppm Ag-NPs [48]

Polyurethane foam—pH-sensitive Na ALG-bentonite
hydrogels 1:0, 0.7:0.3, 0.5:0.5, 0.3:0.7 Characterization, drug release from foam, cytotoxicity [70]

Micro-emulsion 20% Tea tree oil—1% w/v ALG hydrogel Characterization, oil dispersion, antimicrobial effect [71]

10% Na ALG sulfate—CM11 peptide Mouse wound healing [72]

ALG—k-CG ratio: 5:5, 7:3, 8:2
ALG—i-CG ratio: 5:5, 7:3, 8:2

Formation and characterization; cytotoxicity, cell
encapsulation [73]

VEGF—2 wt % Na ALG,
VEGF—0.05% chitosan—2 wt % Na ALG

VEGF—heparin-coated chitosan—2 wt % Na ALG
In vitro drug release [74]

2 wt % ALG—trypan blue, 2 wt % ALG—methylene blue,
2 wt % ALG—VEGF In vitro drug release [75,76]

PEG diacrylate—thiolated ALG bilayered hydrogel with
small extracellular vesicles (sEVs)

Characterization, rats and rabbit full thickness wound size
reduction, sEVs release, angiogenesis, collagen

arrangement
[77]

Sr2+ loaded Na ALG aldehyde—polyetherimide (PEI)
Characterization, hydrogel self-healing behavior, in vitro

cell response, cytotoxicity, rat wound healing [78]

5. Alginate-Based Beads and Microcapsules for Wound Healing

The microcapsules (around 200 µm) and beads are obtained either by using CaCl2
as a cross-linking agent, or they can be obtained by dripping a liquid polysaccharide
solution in an acidic (pH < 4) gelling solvent [15]. The bead size is also influenced by the
gravity force and the resisting interfacial tension force when the droplet is falling in the
liquid [45]. Furthermore, alginate beads [79], obtained through emulsion or extrusion, have
the ability to entrap drugs, proteins, growth factors such as the platelet-derived growth
factor (PDGF) and/or other wound healing promotors. One example is the alginate-
chitosan polyelectrolyte membranes, with or without silver sulfadiazine (AgSD), and the
chitosan–fibrin–sodium alginate hydrogel that displayed wound healing properties [11], as
seen in Table 2.
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Table 2. Alginate-based beads and microcapsules used for wound healing.

Composition Study Type/Target Ref.

3.5% Na ALG—3% KCl—3.5% k-CG—3% CaCl2
Na ALG/k-CG weight ratio: 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6,

3:7, 2:8, 1:9, 0:10
Characterization and thermostability [80]

ALG—k-CG ratio: 5:5, 7:3, 8:2
ALG—i-CG ratio: 5:5, 7:3, 8:2

Formation and characterization; cytotoxicity, cell
encapsulation [73]

3% w/v diclofenac—1–3% w/v Na CMC—0.5% w/v AlCl3
6H2O

3% w/v diclofenac—1–3% w/v Na ALG—5% w/v AlCl3

Drug content and particle size, disintegration, friability
and in vitro dissolution test, in vivo test on beagles [50,81]

Na ALG/k-CG %: 100, 75:25, 50:50, 25:75 + 0.125 g Fe3O4
Hydrogel magnetic beads characterization, drug release,

swelling [82]

2% w/v high M Na ALG—VEGF In vitro drug analysis [83]

Beads of 1% Ca ALG—0.25% platelet lysate—0.03%
vancomycin hydrochloride

Particle characterization, drug and PDGF AB release, PBS
absorption, cell proliferation [84]

6. Alginate-Based Nanofibers and Fibers for Wound Healing

When discussing the average diameter of alginate-based nanofibers obtained after
electro-spinning authors mention a myriad of dimensions, ranging from 70 to almost
200 nm, as follows: 93 ± 22 nm after lavender oil was added to a Na ALG-Polyvinyl alcohol
(PVA) blend; 100.35 ± 12.79 nm for a Na ALG-PVA; 105 nm for Na ALG—polyethylene
oxide/glycol (PEO) blend, 175 ± 75 nm Na ALG-PVA-moxifloxacin hydrochloride [85];
151 ± 19 nm for Na ALG-PEO [86]; 190–240 nm Na Alg-PVA [87]; 196.4 nm for a collagen-
alginate [88]. The alginate-based fibers can be obtained either by spinning in an aqueous
media or by extrusion. The average diameter of these fibers depends on the gauge of the
used extrusion device, ranging from 70 µm up to 0.1 mm for the extruded ones, whereas
fibers obtained in a coagulation bath had a diameter of 6 mm [89]. Liao et al. [90] mentions
fibers with an average diameter of 10–20 µm.

A bio-polymeric system, effective in chronic wound therapy, remains a challenge.
Bioactive functionalized bio-polymeric supports based on nanofibers, with integrated
antibacterial components, is an area of extremely high interest, both in chemical and
biopharmaceutical terms. This is because the changes in nanofibers diameters affect the
rate of controlled release of the active agent within the nanofibers network [91].

When the alginate fiber dressings make contact with a wound, the space in-between
its fibers will close and the bacteria will be trapped in this wound dressing because of the
water intake and thus the fiber swelling [34].

Alginate-based nanofibers are obtained through electrospinning. This process takes
place after high voltage electrical current passes through a liquid drop that becomes
charged, and because of the antagonistic tension surface and electrostatic forces, the drop
will elongate until it reaches the nanofiber state [92] (Figure 3).

The molecular weight and viscosity of the ingredients influence the resulting
nanofibers [23]. Sodium alginate (Na ALG) cannot form electrospun nanofibers on its
own [86,87] but the possibilities regarding the blends are numerous (Table 3). If Na ALG is
blended with PEO or PVA, then the resulting nanofibers are smooth [86,93,94] and ZnO
nanoparticles can be cross-linked to the mat for an antibacterial effect. When a 1:1 ratio of
PVA and Na ALG was used, under a 17 kV treatment at a 0.1 mL/h rate with the collector
being 5 cm away from the needle, the resulting average diameter of the nanofibers was
190–240 nm [87]. Alginate fibers can also be treated with silver nanoparticles (AgNPs)
either from a silver nitrate solution or Ag+/Ag0 ions and have antimicrobial and antifungal
properties [34].
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PVA-Na ALG nanofibers were also generated through electrospinning at 15 kV, a flow
rate of 0.5 mL/h and 15 cm away from the syringe tip and ciprofloxacin was incorporated
in the created patch through active loading. The diameter of the resulting PVA-Na ALG
nanofibers was 200–300 nm and it increased after the drug was loaded. These drug-loaded
nanofibers showed encouraging results in an in vivo wound healing study when applied as
a composite nanofiber patch following the Higuchi and Korsmeyer–Peppas drug-releasing
models [95].

During an in vitro study PEO and Na ALG were used to create nanofibers at a 1:1 ratio.
By adding DMSO and Triton X-100 the surface tension and the viscosity of the solution
lowered. The conditions for obtaining nanofibers with an average diameter of 151 ± 19 nm
were 20 kV through an 18G needle, the collector being 20 cm away from the source in a
30% humidity area. If cross-linkers like 1M calcium nitrate tetrahydrate (Ca(NO3)2) and
glutaraldehyde (C5H8O2) treat the fibers they become thinner (Ca(NO3)2 average diameter
of 149 ± 69 nm versus C5H8O2 average diameter 130 ± 51 nm), have better tensile strength
and degradation rate, while losing their flexibility. The addition of 0.1 vol % poly-L-lysine
increased the fibroblast cell attachment and their proliferation, showing the feasibility of
using this type of nanofibers in other wound healing studies [86,94].

In another study, performed by Kataria et al. [95], 0.5 cm deep and 4 cm2 incisions
were inflicted on male rabbits in a study that compared the wound healing ability of
ciprofloxacin loaded- and non-loaded PVA with or without Na ALG electrospun composite
nanofiber transdermal patches. The changes of the wound site were observed every 5 days
for a total of 20 days and the best results were recorded the used transdermal patch was
the drug-loaded PVA-Na ALG dressing. This result was proven after both histological
and biochemical assays, when the complete healing of the wounded area was seen after 17
days, and the maximum amounts of collagen and hydroxyproline in the wound bed were
measured after 20 days. Another advantage of the alginate-based dressing was its ability
to be removed by dissolution because of its gel-forming property.
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Table 3. Alginate-based nanofibers and fibers used for wound healing.

Composition Study Type/Target Ref.

2% Na ALG solution—16% PVA solution—0.5, 1, 2, 5%
ZnO-NPs; Na ALG/PVA ratio 1:1

Composite nanofiber characterization, antibacterial
effect, cell adhesion potential, cytotoxicity [11,87]

Na ALG from unmodified methacrylated ALG—1%
w/v RGD-modified methacrylated

ALG—methacrylated heparin—4% w/v PEO;
Na ALG/PEO ratio 1:1

Nanofiber characterization, cell interaction, adhesion
and proliferation, binding and releasing heparin tests [28,96]

4 wt % Na ALG—5 wt % PEO—0.5 wt % Triton
X-100—5 wt % DMSO; Na ALG/PEO ratios: 65:35,

50:50, 35:65
Nanofiber characterization, fibroblast proliferation [86,94]

8 wt % PVA—2% w/w Na ALG—3.2% w/v
ciprofloxacin; PVA/Na ALG ratio: 5.5:1

Nanofiber characterization, swelling, drug
incorporation and release; in vivo tests on rabbits:

drug release, wound healing
[94,95]

1, 2, 3% wt of Na ALG—PEO—0.3 wt % Lecithin—5%
w/w CaCl2; 1, 2, 3% wt of Na ALG/PEO weight %

ratios: 1:1, 2:1, 3:1, 1:2, 2:2, 3:2

Solution characterization: viscosity, conductivity;
Nanofiber characterization: structure, water

absorption, fibroblast attachment
[93,94]

6% w/v Na ALG—0.1, 0.15, 2% chitin whisker
Chitin whisker/ALG weight ratio: 0.05–2% Whiskers and fibers characterization [62,65,97]

ZnCl2—Ca ALG fibers
Antimicrobial and immuno-modulatory effects for

wound healing keratinocyte migration, ppm
Zn release

[11,42,89,98,99]

AgNO3—6% Ca ALG fibers Antimicrobial effect [11,89,98,100]

0.5–0.75% w/v Chitosan—0.5–1% w/v
ALG—Dexamethasone/BSA/PDGF-bb/Avidin fibers Drug incorporation and release, PDGF-bb bioactivity [49,90]

0, 0.014, 0.041% w/v Chitosan—0.001% w/v Na
ALG—Ninhydrin—CaCl2 in fibers Filament characterization [49,101]

1.5 w % Na ALG—Ag-NPs in crosslinked fibers Wound healing effect on SKH-1 mice [102]

An uniform morphology of the nanofibers can also be obtained by adding lecithin as
a natural surfactant [93], or arginine–glycine–aspartic acid (RGD) [103].

Nanofibers can also be obtained by mixing methacrylated alginate, RGD-modified
methacrylated alginate and PEO at 10.4 kV, with a flow rate of 0.6 mL/h and the collector
being placed at 15 cm away from the syringe tip. The interesting part about this blend was
the UV treatment with 365 nm UV light at <1 mW/cm2 that can or cannot be followed by the
PEO extraction. The resulting photo-cross-linked nanofibers can also be coated with gold.
Before the cross-linking the fiber diameters were between 185.5 ± 37 and 195.4 ± 23 nm,
after cross-linking the fiber diameters were between 182.2 ± 36 and 190.4 ± 30 nm, but the
PEO extraction lead to a diameter increase due to nanofiber swelling, ranging between
256.3 ± 43 and 297.9 ± 42 nm [96]. When this study used PEO/methacrylated heparin-,
RGD-modified-, or unmodified methacrylated alginate-based nanofibers, it concluded
that—by adding methacrylated heparin—the stress–strain curves are influenced, therefore
making the elongation at break significantly lower and the tensile strength and Young’s
modulus significantly greater than those observed for the unmodified or RGD-modified
methacrylated alginate-based nanofibers [96].

7. Other Alginate-Based Dressings

Among the alginate-based wound healing blends (Table 4) are gelatin-alginate sponges,
alginate-scaffolds based on antisense oligo-deoxynucleotides (asODN) linking to Connexin
43 (Cx43) [11,104], viscose/Ag NPs/ALG/nicotinamide/CaCl2 fabrics [105]. The 3D
bi-layered scaffold made of polyethylene glycol (PEG)-chitosan hydrogel and chitosan-
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alginate can also help tissue regeneration after injury by holding fibroblasts on the upper
surface and keratinocytes on the lower one [106,107].

The wound pH is a reliable factor when discussion the healing status, because it
shifts from high when infected to low when healed either naturally or because it was
modulated through applying different treatments [108–110]. Polyethylene oxide–alginate
wafers loaded with diclofenac and streptomycin show controlled drug release at room
temperature, in simulated wound fluid (BSA, CaCl2, NaCl, C4H11NO3) conditions at
pH 7.5. The diffusion of both drugs from the annealed wafers takes place slowly, making
them potentially useful in highly exuding wounds [23,111]. Because wound pH-variation
has a strong effect on the healing process, researchers also developed, through microfluidic
spinning using their electrostatic interactions, a mesoporous particle hydrogel alginate-
based flexible microfiber linked to a pH-responsive dye linked onto a transparent medical
tape place on top of a wound, in order to observe the pH modifications in real-time [112].

A 3D porous sponge was obtained after a pre-gelled (with bivalent cations) alginate
was frozen and then lyophilized. The type and concentration of both alginate and cross-
linkers, as well as the freezing protocol influenced the mechanical properties as well as
the size (70–300 µm) and display pattern of the pores. This pore size was appropriate
for fibroblast seeding [113]. On the other hand, when comparing the tensile strength for
G-ALG and M-ALG sponge dressings with different ALG concentrations, the elongation at
fracture was not influenced by the alginate concentration, whereas Young’s modulus and
the maximum stress at fracture increased with it [114].

Table 4. Other alginate-based dressings used for wound healing.

Composition Study Type/Target Ref.

Na ALG—0.1% w/v I-labeled SDF-1 plasmid
Na ALG—0.0001% w/v (1 ng/µL) I-labeled

SDF-1 protein

Acute surgical wounds on Yorkshire pigs: SDF-1 release
kinetics, wound healing rate, scar formation [42,115]

Viscose/silver/ALG Vis/Ag-NPs/ALG
Viscose/silver/ALG/nicotinamide

Viscose/silver/ALG/nicotinamide/CaCl2
0.5–1.5% w/w Na ALG in nonwoven fabric

Burn—diabetic rats [105]

Chitosan 4% w/v—1% w/w CH3COOH—4% ALG
Chitosan 4% w/v—1% w/w CH3COOH—4% CG

w/v—5.7% NaCl

Comparative drug release system study: swelling,
Diltiazem HCl-loaded tablet formulation, dissolution in

1:1 complex systems
[116]

Ca ALG versus silicone-coated polyamide net Comparative randomized trial: healing and slippage
rate, removal discomfort degree on skin graft donor sites [117,118]

2% w/v Na ALG—pH-responsive dye—glycerol 0–60%
w/v

Flexible microfibers description, real-time pH
modifications on the pig wound site [112]

collagen—0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0% alginic acid, at
3:1 ratio in cross-linked sheet Sheet characterization [98,119]

75% Alginic acid solution 2% w/v– 45S5 bioactive
glass—25% cell suspension VEGF secretion, cell viability, cytotoxicity [120]

Polyox®—CG—Streptomycin—Diclofenac
(0.75:0.25:0.3:0.25 g)

Polyox®—0.5 g Na ALG—Streptomycin—Diclofenac
(0.5:0.5:0.25:0.1 g)

Wafer characterization, adhesion, drug release, swelling [23,111]

2% w/v Alginic acid—murine antisense nucleotides
(Cx43asODN) based scaffolds

Wounded ICR mice: inflammatory response,
re-epithelization [11,104]

20 µg Smad3 ASOs in Na ALG and chitosan
1:1, 1:2, 1:4, 1:8, 1:16 ALG/chitosan ratio in PEC

Scaffold characterization, wound healing in C57BL/6
mice [40,62,65]

gelatin—1 wt % Na ALG (with or without 0.4 mg/cm2

AgSD) sponge
Wistar rat wound healing [11,98,121]
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Table 4. Cont.

Composition Study Type/Target Ref.

1% solution silk fibroin—1% solution alginic acid in 10:0,
5:5 and 0:10 ratios sponge Sprague Dawley rats full thickness wound [98,122]

2 or 4% w/v high G and high M ALG—0.1–10% w/w
PEG—9.5% w/v poly(D,L-lactide-co-glycolide)

(PLGA)—0.5% w/v insulin microparticles in sponge

Sponge characterization: density, tensile strength, water
vapor transmission rate and absorption capacity. In vitro

study: interaction with HaCaT cells, insulin release
[23,114]

Chitosan—1% w/w Na
ALG—hematoxylin-eosin—DHEA—AgSD in PEC

sponge

Microscope assay, in vitro drug release, cytotoxicity,
antibacterial effect, in vivo burn healing on BALB/C

mice
[49,123]

ALG—0.2, 0.4% chitosan—0.1, 0.5% all-trans retinoic
acid (ATRA). 1:10 ATRA/ALG ratio in microparticles

Microparticles characterization, encapsulation efficiency,
dermal localization, ATRA skin release [42,124]

2% Na ALG (61% M and 39% G)—2–4 µg VEGF in
microspheres In vitro drug release, in vivo angiogenesis [125]

PEG addition to the aforementioned sponge increases the flexibility while having
a plasticizing effect. Furthermore, its concentration and molecular weight significantly
modifies the tensile strength of the sponge. For low molecular weight PEG of 1.45 kDa
a concentration increases from 0.1% to 1% leads to a lower Young’s modulus, maximum
stress at fracture and elongation at fracture. For high molecular weight PEG (10 kDa)
the concentration increases from 0.1% to 1% leads to an increase for Young’s modulus
and maximum stress at fracture, while the elongation at fracture is significantly lower.
While comparing the results between the uses of different molecular weight PEG in the
sponge, the one with a molecular weight of 1.45 kDa displayed higher tensile strength
values than the 10 kDa PEG. PEG addition to the M-ALG sponges also increases the WVTR
and decreases the water absorption capacity, regardless of its molecular weight, but the
observed values for WVTR (16.7 ± 0.4 before PEG addition and (22.9 ± 0.8)–(28.8 ± 2.1)
after PEG addition) were almost double the recommended values (8–10 mg/cm2/h) [114].

8. Commercially Available Pharmaceutical Alginate-Based Products

The list of commercially available alginate-based wound dressing is growing fast
(Table 5), while the most recent FDA approval available on-line at this time was given to
Luofucon® Extra Silver Alginate Dressing (Prescribed only—PO) and Luofucon® Antibac-
terial Alginate Wound Dressing (Over-The-Counter—OTC) [126,127]. The researchers state
the dressings proved their activity against E. coli, E. faecalis, K. pneumoniae, Methicillin-
resistant S. aureus (MRSA), P. aeruginosa, S. aureus, S. pyogenes, and Vancomycin-resistant
Enterococcus (VRE). Silver creates a barrier against a broad spectrum of bacteria [128] for as
long as seven days [126].

Enzymes were added into a PEG-alginate hydrogel called Flaminal® Forte that under-
went human clinical trials for treating partial thickness burns [129] and had better results
than the Ag sulfadiazine-based one (Flamazine®), regarding the times it needed to be
changed [130]. When a patient is unable to move, pressure ulcers may appear. Such a case
was also healed after several dressings were applied, including a honey-loaded alginate-
based product, named Algivon® [131,132]. An improved version of this dressing, Algivon®

Plus, showed good clinical results when applied on chronic wounds [133]. Algivon® Rib-
bon or Plus is also used for diabetic, pressure, and leg ulcers, fungating lesions, infected,
cavity, and chronic or complicated surgical wounds and abrasions [32,131,133–136]. On
the other hand, another Manuka honey loaded calcium alginate-based wound dressing is
Activon® Tube or Tulle for diabetic and leg ulcers, pressure sores, and malodorous, infected,
dry, sloughy, or necrotic wounds [135,137–139].

Recently, researchers have studied the effect of treating human skin lesions, produced
by an atypical form of Henoch–Shönlein purpura, with three hyaluronic acid-based com-
mercially available products Hyalomatrix PA® (a 3D matrix of a hyaluronic acid ester
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(Hyaff) and a transparent film), Hyalogran®, and Jaloskin®, which were maintained on
the wound site for various time periods in a consecutive order. One of the treatments,
Hyalogran®, was an alginate-hyaluronan dressing made of sodium alginate and Hyaff [140].
After the eschar resection, wound debridement, and 21 days of the first dressing, the next
step was applying the second one for two weeks, and the third for an unmentioned pe-
riod. After two months from the first treatment the wound was completely healed [140],
with minimal scaring and thus confirming the benefits of wound treatments involving
hyaluronic acid in combination with sodium alginate. Silvercel®, another commercially
available alginate-based non-adherent dressing, was used in a wound healing study, when
it was applied twice a week on a diabetic patient with a repetitive non-infected venous leg
ulcer and the wound healed in 14 day [141].

Table 5. Alginate-based commercially available pharmaceutical products used in wound healing.

Name Composition/Target Study Type/Effects Ref.

ALGS6 Ag
(Prescribed/Over-The-

Counter)

Ca ALG fiber—Lyocell fiber—1.7% Ag+

Surgical, traumatic, acute and chronic
wounds, ulcers, first and second degree

burns; Minor cuts, burns

Exudate absorption, gel forming, wound
healing promoter if changed weekly [142]

Aquacel™ Ag
EXTRA™

Hydrofiber™
(Prescribed/OTC)

Bi-layer Na ALG
CMC—Ag+—strengthening fibers;

Surgical, traumatic, exuding, infected,
and painful wounds, second degree

burns, ulcers or for minor cuts or burns

Bacterial inhibition, absorbs the wound
exudate while forming a gel, it must be

changed every 1–2 weeks
[142]

Calgitrol™ foam or
SilverSite™

Ag+ in Ag ALG—Ca
ALG—polyurethane foam Antimicrobial effect, cytotoxicity [23,143–145]

Fibracol 10% Ca ALG
in Fibracol Plus®

dressing

90% Collagen—10% Ca ALG; Exuding
full- and partial-thickness wounds,

second degree burns; diabetic, pressure,
and venous ulcers

Clinical Trial: healing time of diabetic
foot ulcers [16,32,146]

Flaminal® gel

ALG—PEG matrix—notatin—
lactoperoxidase—guaiacol; burns,

post-surgery wounds, diabetic, leg and
pressure ulcers. If used with H2O2 and

SCN- it has a bacteriostatic effect against
both gram-positive and
gram-negative bacteria.

Antimicrobial and bacteriostatic effect,
wound surface moisturizer, exudate

absorber, debrides necrotic tissue

[32,129,147,
148]

Guardix-SG®
Na ALG—poloxamer—CaCl2;

post-surgery (silicone implantation,
blepharoplasty)

In vivo post-surgery studies on rabbits:
thermosensitive gel, mechanical barrier

formation, suppression of capsular
contracture, reduced inflammation

and fibrosis

[32,149,150]

Hyalogran® dressing
Hyaluronic acid ester—Na ALG; Leg and

pressure sores, diabetic and ischemic
wounds (with slough or necrosis)

Exudate absorption, gel transformation,
necrotic tissue removal [32,140]

Kaltostat®
80% High G Ca ALG—20% NaALG;

Acute and chronic wounds with
moderate to heavy exudate

Wound healing [6,28,49,62–
65,151]

Luofucon®

Antibacterial Alginate
Wound Dressing

(OTC)

Ca ALG—Ag; minor cuts, abrasions,
and burns

Changed daily it has antibacterial effect
and promotes wound healing [126]
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Table 5. Cont.

Name Composition/Target Study Type/Effects Ref.

Luofucon® Extra
Silver Alginate
Dressing (PO)

Ca ALG—Ag; moderate to heavily
exuding wounds, ulcers, trauma-inflicted

or post-operative wounds, infected
wounds, grafts

Antibacterial effect for seven days and it
promotes wound healing [126]

Medihoney® (gel,
hydrogel or paste)

Ca ALG—Manuka honey; ulcers:
hemorrhagic, heavily exuding, diabetic
foot, leg (arterial or venous), pressure

(partial or full-thickness) ulcers. First and
second partial thickness burns. Surgical

and traumatic wounds

Antibacterial effect [3,23]

Purilon Gel®
Na CMC—Ca ALG; Used with another

dressing for first and second degree
burns or sloughy and necrotic wounds

Wound surface moisturizer [32,147,152,
153]

Saf-gel®

Carbomer propylene glycol sodium—Ca
ALG; Abrasions, cuts, sloughy and

necrotic wounds, second degree burns,
non-infected diabetic foot ulcers, and

pressure and venous ulcers

Wound healing and surface moisturizer. [32,147,154]

SeaSorb® fine foam
sheet

Na ALG/Ca ALG—polyethylene net;
Heavily exuding wounds: cavity

wounds, second degree burns, diabetic,
leg and pressure ulcers, spina bifida

Human clinical trials: fiber to gel
transformation, tolerance, healing rate
with reduced exudate, maceration and

pain intensity

[32,155,156]

Silvercel™

36% Ca ALG with high G—6%
CMC—28% Ag (111 mg Ag/100

cm2)—30% EasyLift Precision Film
(Acelity/Systagenix)

Pig and human trials, wound healing [141,157–162]

Tromboguard®

bi-layer dressing

Polyurethane sponge—chitosan + Na
ALG + Ca ALG + Ag+; Traumatic and

post-surgery wounds
Antibacterial effect and strong hemostatic [32]

Other commercially available dressings contain both ALG and silver, like Aquacel™
Ag EXTRA™ Hydrofiber™ or ALGS6 Ag Alginate Wound Dressing have similar wound
healing characteristics [142]. Various other commercially available alginate-based dress-
ings that were included in a multiple comparative studies were Suprasorb® A (100%
ALG), Suprasorb® A—Ag (ALG—ionic Ag), and LG—nano Ag ® Acticoat Absorbent with
SILCRYST™, for their anti-microbial effect, binding to elastase capacity, MMP-2, TNF-α
and IL-8, antioxidant ability, cytotoxicity, and effect on HaCaT keratinocytes, showing
promising results [42,163,164].

9. Conclusions

The development of alginate-based biomaterials for wound healing has an accelerated
pace. The last years gave patients hopes for receiving better treatment for their wounds
because the development of a wound dressing that might actually become a true ‘ideal
dressing’ seems to be in hands reach. The versatility of alginate-based wound dressings,
the promising results after both in vivo and in vitro trials and the cost-effectiveness of
obtaining them makes alginate one of the favorites when choosing the material that could
act both as a support and as a carrier for the bio-active compounds that have to reach a
wound.
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