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Self‑normalized density 
map (SNDM) for counting 
microbiological objects
Krzysztof M. Graczyk1,4*, Jarosław Pawłowski2,3,4, Sylwia Majchrowska2,3 & Tomasz Golan2

The statistical properties of the density map (DM) approach to counting microbiological objects on 
images are studied in detail. The DM is given by U 2-Net. Two statistical methods for deep neural 
networks are utilized: the bootstrap and the Monte Carlo (MC) dropout. The detailed analysis of the 
uncertainties for the DM predictions leads to a deeper understanding of the DM model’s deficiencies. 
Based on our investigation, we propose a self-normalization module in the network. The improved 
network model, called Self-Normalized Density Map (SNDM), can correct its output density map 
by itself to accurately predict the total number of objects in the image. The SNDM architecture 
outperforms the original model. Moreover, both statistical frameworks—bootstrap and MC dropout—
have consistent statistical results for SNDM, which were not observed in the original model. The 
SNDM efficiency is comparable with the detector-base models, such as Faster and Cascade R-CNN 
detectors.

An inseparable part of every statistical data analysis is the discussion of the uncertainties that characterize the 
data and the model’s predictions. The first type of uncertainty is essential when formulating a model, building the 
likelihood, etc., while the other type reflects the model’s predictive abilities. Indeed, providing the model’s pre-
dictions with uncertainties allows assessing how confident the model is. A detailed error analysis of the model’s 
predictions enables one to investigate the quality of the model, particularly verifying whether the model over- or 
under-fits the data. The latter aspect is crucial if one makes predictions outside the data domain.

Deep learning (DL) methods1 proved their excellence in many domains of life2. Indeed, DL systems are 
utilized in image recognition and classification3 as well as speech recognition4 problems, or even in the game 
GO5. DL systems help optimize complex computational systems6, extracting non-trivial information hidden 
in big data7. DL systems are used in high-risk applications, such as autonomous driving8 or medical image 
analysis9–11. In high-risk applications, the knowledge of how certain the system’s predictions are is decidedly of 
great importance.

There is no doubt that proper estimation of uncertainties of a DL system’s prediction’s is crucial to control the 
validity of its model and applicability. Therefore, many groups have recently been studying this problem—for a 
recent review, see Gawlikowski et al.12. As many model parameters define a DL system, optimizing it requires 
immense computational power. Hence the successful statistical approach to the DL system, one which takes 
into account various sources of uncertainties, should be simple to implement and, at the same time, should not 
decrease the efficiency of the resulting DL model.

The methods for estimating the uncertainties for (shallow) neural networks (NN) were developed before the 
origin of deep learning. One of the directions was to use the Bayesian statistics that offer a consistent approach 
to error analysis for NNs13. Unfortunately, the Bayesian tools are not readily applicable to DL systems. For 
instance, the Bayesian technique developed by MacKay14 utilizes the Laplace approximation, which is simple 
in implementation and fast in execution for the shallow NN, but very difficult to implement for DL systems. 
Indeed, in MacKay’s approach to predicting the model uncertainties, the hessian matrix must be inverted, which 
is impossible to perform in the case of a DL system due to too many model parameters. Other Bayesian methods 
utilize the Monte Carlo (MC) chain algorithms15. Again, using this type of approach for the DL is difficult due 
to the massive number of model parameters. Nevertheless, the Bayesian-inspired, as well as the non-Bayesian 
statistical techniques for DL, have been developed recently16,17. They enable DL users to perform error analysis. 
Many proposed approaches are based on either the MC dropout or the bootstrap technique. The MC dropout18 
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is an example of the Bayesian-inspired approach. In contrast, the bootstrap technique is an excellent example 
of the non-Bayesian method19, which statisticians have successfully exploited for years. Presently, it is widely 
adapted for shallow and deep NN20.

This paper aims to consider one of the practical (microbiological) applications of DL systems—a problem of 
counting microorganisms on images of Petri dishes. Our goal is to perform the error analysis, which will allow 
us to understand the validity of the counting system and let us propose the significant model’s improvements. 
Indeed, our main achievement is a proposal of the self-normalization mechanism, implemented as additional 
modules in the network architecture. A counting system with self-normalization modules works more efficiently, 
accurately, and in the broader domain than the vanilla model.

There are many different approaches to object counting on images. An obvious way to face this type of prob-
lem is to build a regression model21,22. The biggest advantage of this method is that it is enough to label each 
image with the number of objects in it. If a dataset includes more detailed annotation with a bounding box for 
every object in an image, it is feasible to leverage detectors for object counting23–25. Eventually, an autoencoder 
can be used to estimate the density map (DM) based on a given image, which can be later integrated to obtain 
the number of objects26–30. It requires objects to be labeled with the coordinates of their center. The latter two 
methods performed better on the dataset we worked on in our experiments. The main goal of this study is to 
perform a comprehensive statistical analysis for a deep learning solution. Thus, we decided to focus on the density 
map approach because the architecture of autoencoders is usually less complex than recent neural networks for 
object detection, and the methods introduced in this paper are more transparent.

Counting microbial colonies on Petri dishes is an essential step in a microbiological laboratory to evalu-
ate the cleanliness of the samples. Traditionally, this task is done manually or semi-automatically using tradi-
tional computer vision methods31,32. However, recent studies prove that a DL-based methodology accelerates 
the process23,25,29,33–35. We shall utilize the DM method to predict the number of microbial colonies on a Petri 
dish. The DM system is defined by U 2-Net DL model36. To test the DM models, we utilize the AGAR (Annotated 
Germs for Automated Recognition) dataset23, which includes several thousand pictures of Petri dishes with five 
species of microbial colonies grown.

The vanilla U 2-Net network accurately predicts the number of microbes up to about 60 colonies but under-
estimates the counts above. It also overestimates its prediction for some samples with just a few colonies. We 
adapt two known statistical approaches to perform an error analysis of the U 2-Net predictions. Namely, we 
implement the bootstrap and MC dropout frameworks, respectively. The analysis of the model’s uncertainties 
indicates that the main problem with the performance of U 2-Net is not the localization of microorganisms itself, 
but rather the normalization of density maps for a large range of possible outcomes (from 0 to 100 colonies 
on a Petri dish). Thus, we propose a modification of the U 2-Net, called Self-Normalized Density Map (SNDM) 
architecture, which includes extra normalization layers significantly improving the system’s performance in 
the previously failing domain. Moreover, the SNDM works as efficiently as detector-base approaches, such as 
Faster37 and Cascade38 R-CNN.

The paper is organized as follows: in second section the DM and U 2-Net architecture is introduced and the 
AGAR dataset is described; third section reviews two statistical approaches for neural networks designed to esti-
mate the uncertainties, namely, bootstrap and MC dropout; in fourth section we present our numerical results. 
The SNDM is introduced, and its performance is studied in detail. Conclusions are drawn in the last section.

Density map and microbiological data
U2‑net as density map.  The DM, denoted by M , transforms the given input image, x , into a density map 
target

Note that M is parametrized by weights and hyperparameters, which we intentionally omit in notation 
because they are not relevant to our discussion. In our approach, the total number of objects in the image is 
obtained by summing over the entries (the pixels) of the density map y.

The convolutional neural network (CNN) has been designed to face problems such as image recognition, 
image classification39,40, and segmentation. Hence the CNN-based models are also proposed to transform the 
image into a density map. Among several types of CNNs, architecture U-Net-type41 is the most successful in 
reproducing the density map of the objects30. In the present paper, we discuss the results of the analysis in which 
the U 2-Net36 is utilized.

The U 2-Net has a form of a two-level nested U-shaped structure as presented in Fig. 1. The top-level is built 
of eleven U-Net blocks, connected by pooling (encoder branch) or upsampling layers (decoder branch), with 
additional concatenation connections. On the bottom level, each U-Net block itself also has an encoder-decoder 
structure, within additional residual connections in the U-Net block.

The analysis is performed on the AGAR dataset, including images of Petri dishes with bounding box anno-
tations for each colony. To generate density maps, we assume that the center of objects lies in the center of the 
bounding box, and corresponding coordinates are added to an empty map in the form of single pixels. Next, the 
map is blurred with a Gaussian filter, which leads to a smooth density map normalized so that the sum over all 
pixels gives the total number of colonies. In that way we create the annotation map for each input image. The 
autoencoder is trained to transform a real image into a density map. Note that each density map is normalized 
so that the sum over all pixels gives the total number of objects. Hence the network predicting the density map 
for an input picture also provides information about the total number of objects.

(1)y = M(x).
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AGAR dataset.  As mentioned before, we utilize the AGAR dataset23 to test the properties of the U 2-Net 
in the MC dropout and bootstrap approaches. It is a huge microbiological database including 18  000 high-
resolution images of Petri dishes with cultured colonies of 5 standard microbes taken under diverse lighting con-
ditions. Professional microbiologists manually annotated microbial colonies by precisely labeling each colony 
using a bounding box. AGAR is diverse data collected to automate microbial colony counting. The data covers 
edge cases, including highly crowded plates with overlapping colonies, cases with extensive and tiny colonies, 
and cases where colonies are hardly visible, e.g., when located close to the dish edge. Typical plates captured in 
the various setups (three different illumination conditions) with microbial colonies of different shapes and sizes 
are shown in Fig. 2.

Note that AGAR mainly contains images with fewer than 50 colonies, about 85% of samples (see Fig. 3), or 
even empty dishes, which are essential for testing the models’ tendency to generate false-positive counts.

Figure 1.   SNDM network: U 2-Net extended by the normalization bypass-layers (blue) that output β 
normalization parameter. Note that β parameter multiplies last layers of the U 2-Net that creates the output 
density map.

Figure 2.   Exemplary images of Petri dish from the higher-resolution subset of the AGAR dataset that was used 
during the numerical experiments. From the left: empty dish with no colonies, dish containing 16 colonies of 
B. subtilis, dish containing 9 colonies of E. coli, and dish containing 72 colonies of S. aureus. Samples differ in 
numbers of colonies, types of microbial species cultured, and image acquisition setups—detailed information 
can be found in Supplementary Material for Majchrowska et al.23.
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Uncertainties in DM
Some methods of estimation of uncertainties in the predictions of the DM, for the U-Net architecture, have 
recently been discussed by Eaton-Rosen et al.42. Our paper focuses on two approaches: bootstrap and MC dropout 
adapted for U 2-Net. We briefly review both of them in the following two subsections.

Bootstrap method.  A bootstrap method for error estimation is one of the oldest and the most popular 
methods of statistics19. An extensive review can be found in the work of Hastie et al.43, whereas Tibshirani44 
discusses the application of the bootstrap technique in the neural network analyses. Two types of bootstrap 
approaches are distinguished, namely, pairs sampling and residual sampling algorithms. We adapt the first 
option.

The main idea of the bootstrap is to train the same model on some number of data subsets sampled (with 
replacement) from the original set. Then, as a result, one obtains the ensemble of models. In the inference 
mode, one makes predictions of all models in the ensemble. The bootstrap model prediction is then given by 
the mean over the model predictions in the ensemble. Additionally, the variance over the models’ outcomes 
gives 1σ uncertainty.

The procedure of taking the average over the models is robust to overfitting. In our applications, we consider 
B = 20 bootstrap training subsets. The same network architecture is trained for each subset, and the best model 
is selected using the validation subset. If the noise of the data is random and not correlated (from sample to 
sample), then the total error obtained for the ensemble of models is B times smaller than the error of one model. 
For the detailed explanation, see Bishop45. Note that the bootstrap approach is not a Bayesian approach, but if it 
is combined with early stopping, it is interpreted as approximate inference46.

The known strengths of the bootstrap approach are the following:

•	 It is simple in implementation and relatively fast in execution, i.e., it is usually enough to run the analysis for 
B = 10 to 20.

•	 The obtained model is given by the ensemble of networks of the same architecture but with a different con-
figuration of network parameters.

•	 The predictions of the bootstrap model are similar to the Gaussian process (GP) in data range20. Indeed, the 
GP model is defined by some density distribution used to sample the model. The best model prediction is 
given by the average over the outcomes of the model samples.

The mean overall models give the response of the bootstrap model. Therefore the bootstrap model should not 
overfit the data. Indeed, a single fit obtained for a particular subset of the data might be overtrained, but the 
mean over the models is not. Hence the bootstrap model should be characterized by a good generalization ability.

The main steps of the bootstrap approach:

(i)	 consider the training data set Dtrain with the total number of samples equals N;
(ii)	 obtain B subsets Ci ⊂ Dtrain with an equal number of images. Ci is obtained by sampling from the data D 

(with replacement) b images. Note that in our experiments B = 20 , moreover b ≈ 0.63N as it is recom-
mended in the literature43;

(iii)	 consider network M and train it on Ci data subset, as the result one gets the model MB
i ≡ M(Ci);

(iv)	 to make the predictions for given input x compute the outcome of each network MB
i  and take the mean, 

namely: 

(2)M(x) =
1

B

B
∑

i=1

Mi(x),

Figure 3.   Histogram of the number of annotated microbial colonies per image in the training (left), validation 
(center), and test (right) subsets.
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(v)	 to estimate the uncertainty for the prediction of the network calculate the variance: 

 where 
√

�2M(x) is interpreted as 1σ uncertainty.

MC dropout.  In 1995, Neal proved that a class of neural networks with a single hidden layer and an infinite 
number of units converge to the Gaussian process15. Moreover, Rasmussen and Williams47 studied Gaussian pro-
cess methods in supervised learning. In both cases, the Bayesian statistics stand a background for all derivations. 
It is believed that the GP approach allows accessing the model prediction uncertainties with reasonable accuracy.

Motivated by the Bayesian statistics as well as the success of GP techniques in the estimation of model uncer-
tainties, Gal and Ghahramani studied the dropout technique18,48. They showed that a deep neural network with 
a dropout layer after each weight layer can be understood as the Gaussian process.

The main idea of the approach is to keep dropout layers active in the training and inference modes. It means 
that, for a given input x , every prediction is computed with a slightly different configuration of active units. 
Therefore, to obtain the MC dropout prediction for a given neural network, one has to run it N-times. Then, the 
mean over the predictions gives the best value while the variance estimates the uncertainty of the predictions.

The main steps of the MC dropout:

	 (i)	 Consider a network Mdropout;
	 (ii)	 Train the Mdropout on the data set Dtrain . The training is run with regularization—we apply Adam algo-

rithm with weight decay µ = 0.0005 . Note that during the training the dropout layers are active.
	 (iii)	 To make a prediction for given input vector x , run the network Mdropout , r = 20 times, keeping dropout 

layers active. Then the dropout network prediction is given by the 

 where Mi
dropout(x) denotes the i-th run prediction of the network. The 1σ uncertainty is given by the 

square root of the variance: 

Numerical results
This section examines the properties of the U 2-Net architecture as a density map predictor. The results of these 
studies allow us to propose the self-normalization mechanism in the U 2-Net model. We justify the relevance of 
this approach in the following sections.

To study the U 2-Net properties, we consider the higher-resolution subset of the AGAR dataset, represented 
by RGB images of Petri dishes with a resolution of about 4000× 4000 pixels. We limit our discussion to images 
containing no more than 100 colonies. Because, from the microbiological point of view, the accuracy of automatic 
counting is less relevant for more populated samples, i.e. determining whether the sample is contaminated or 
not is the most important.

The analyzed data is divided into three subsets: training (5656 images), validation (706 images), and test 
(706 images) data subset. As introduced earlier, we consider two types of statistical approaches for estimating 
uncertainties in predictions of deep neural networks: the bootstrap and the MC dropout. In both methods, we 
exploit the same network architecture shown in Fig. 1. Moreover, the same training scheme is adapted for both 
models—the Adam optimization algorithm with learning rate of 0.0001, weight decay equals 0.0005, and the size 
of the minibatch of two. The training takes at least 100 epochs.

We ran the computations on NVIDIA TITAN RTX GPU with 24 GB of memory. The training time was about 
40 h for MC dropout. The bootstrap experiments took longer, and the training lasted about four days, performed 
in parallel on five GPUs.

Performance of vanilla U 2‑Net as a density map predictor.  To access the quality of both discussed 
models, we compare the predictions of the network versus the ground truth computed on the test data set; see 
the left column in Fig. 4. Each predicted number of colonies is given with 1σ uncertainty. Note that both statisti-
cal models work well for the samples with the number of colonies smaller than 60. However, for images with the 
number of colonies lower than 10, the DM count is overestimated. Predictions with tiny uncertainties character-
ize the MC dropout for these cases. Consequently, the model disagrees with the data within the 1σ confidence 
level. In contrast, the bootstrap model predictions have larger uncertainties. Hence, the model agrees with the 
ground truth in the 1σ level. From that perspective, the bootstrap approach works better than the MC dropout.

The detailed examination of our results shows that the uncertainty of the model’s predictions depends on 
the mean size of colonies for a given dish. It is illustrated in Fig. 5 (left panel). Interestingly, for the images with 

(3)�2
M(x) =

1

B

B
∑

i=1

(

M(x)−Mi(x)
)2
,

(4)Mdropout(x) =
1

r

r
∑

i=1

M
i
dropout(x),

(5)�2
Mdropout(x) =

1

r

r
∑

i=1

(

Mdropout(x)−M
i
dropout(x)

)2
.
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Figure 4.   Dependence of the predicted number of colonies on ground truth for the test data set within the DM 
model (right), and self-normalized DM model (left). Note that for ideal detection every blue dot representing 
a single Petri dish image should lay on the y = x orange line. Uncertainties, denoted by black bars, in the 
bootstrap and MC dropout approaches are given in top and bottom rows, respectively.

Figure 5.   Dependence of the counting uncertainty on mean colony size calculated for the test subset within 
both models. Uncertainty values are averaged on intervals of mean colonies size.
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smaller colonies, the uncertainties for the bootstrap approach are larger than for the dropout model. However, 
when the size of the colonies increases, the effect is the opposite.

We noted that the uncertainties of the model’s prediction (normalized to the number of colonies) weakly 
depend on the dish coverage (the fraction of the dish covered by colonies), as shown in Fig. 6 (left panel). It is 
interesting to note that the MC dropout uncertainties are systematically larger than for the bootstrap approach, 
see Table 1, where the average (over the test dataset) uncertainties are given.

In Fig. 7, we showed four panels. Each contains an input picture, a map of annotations, network prediction, 
and a map of uncertainties computed for each output pixel. We show the results for two dishes that contain 16 and 
72 bacterial colonies, respectively. The DM prediction agrees with the ground truth in the first case (first panel). 
In contrast to the second case (third panel), the DM underestimates the count. However, in the latter case, the 
DM correctly reproduces spots representing the objects in the image, but the most significant uncertainties are 
consistently observed in the spot positions. Therefore, we conclude that the DM reconstructs the map of spots 
(objects) correctly but has a problem finding the correct normalization for the images with a larger number of 
colonies. Therefore, we propose a modification of the network architecture so that the network can correct by 
itself the normalization of the output.

Self‑normalized DM (SNDM).  To propose the normalization module in the network, we must explain 
how the loss function is constructed in the U 2-Net model.

Let us denote by EU2 the loss function U 2-Net. It is a function of the data and model parameters. From the 
statistical perspective, it refers to the logarithm of the likelihood function. In practice, EU2 has a quite compli-
cated structure36:

where PM and PG denote predicted density map by M-th U-Net block and the ground truth, respectively.
The LM is the standard binary cross entropy function:

where i, j denotes the pixel indexes in the figure of the width W and height H.
The U 2-Net generates six output maps, denoted by S1,...,6 , from the encoder ( S6 ) and five from the decoder 

branch ( S1,...,5 ), respectively. Outputs from smaller blocks ( S2,...,6 ) are next upsampled to fit the size of the output 
map. Note that S1 already has the proper 1008× 1008 size. After upsampling (we still denote them by Si ), each 
of them gives the density map and Pi = σ(Si) , where σ is the sigmoid activation function. All maps P1..6 con-
tributes to the loss function. Moreover, S1..6 maps are fused with a concatenation operation followed by a 1×1 
convolution layer (giving S0 ). Then P0 = σ(S0) is the final density map output of the U 2-Net. The P0 contributes 
also to the loss function.

Our idea is to allow the network to correct the normalization of output pixels in Si maps. Since every output 
pixel ranges from 0 to 1, one can not simply re-scale the Pi-outputs by some normalization number. Therefore, 
we propose the rescaling of pixels normalization in Si map. We use the property that sigmoid is a linear function 
on neighborhood, namely, σ(x) ≈= 1

2
+ x

2
+ . . . . Hence, the rescaling of the sigmoid argument changes the total 

normalization of the sigmoid almost linearly in this range. In practice, we rescale each Si output by a factor β , so

(6)EU2 =
∑

images

6
∑

M=0

L (PM , PG)

(7)L (P, PG) = −

H ,W
∑

i,j

[

PGi,j ln Pi,j + (1− PGi,j) ln(1− Pi,j)
]

,

(8)Pi = σ(Si) → σ(βSi).

Figure 6.   Dependence of the counting uncertainty per single colony on coverage factor calculated for the test 
subset using both models.
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The normalization value β might depart from one, and it can be a function of the distribution of colonies, 
the total coverage, etc. Therefore, we assume that β depends on the input image and is an additional network 
outcome. To limit the number of parameters that define β we connect it with the smallest U-Net block of U 2
-Net, the encoder part, see Fig. 1. In the rest of the paper, the U 2-Net architecture with our modification will be 
called a self-normalized density map (SNDM).

In principle, the system should work without the need for corrections, β = 1 , hence we expect that β should 
take values around one. To keep the control β-dependence, we add to the loss term a penalty term:

In general β can take any positive number, but, in practical applications, we assume that β = σ̃ (. . . ) = �σ(. . . ) 
to speed up the process of training. It guarantees that normalization ranges from 0 to 1.5. In our experiments, 
we tested a sigmoid with � = 2 and σ̃ = ReLU  . However, the most optimal results have been obtained for the 
sigmoid activation function with � = 1.5.

In Fig. 4 (right column of panel), we plot the predictions of SNDM versus ground truth. We see that modifying 
U 2-Net architecture by introducing the self-normalization module significantly improves the network’s predic-
tions. Indeed, the SNDM works well for images containing less than 60 objects and samples with the number of 
objects larger than 60. Interestingly, in the improved model, the bootstrap and MC dropout predictions are in 
agreement. The estimated uncertainties for both approaches became similar, see Figs. 5 and 6 (right panel), as 
well as Table 1. Moreover, the bootstrap uncertainties for SNDM are reduced with respect to the original model.

(9)EU2 → EU2 +
∑

images

1

2
(1− β)2.

Figure 7.   Examples of density maps for two exemplary input images from the test subset (with 16 and 72 
labelled colonies), together with their uncertainties per pixel: the DM model (rows 1st and 3rd), and the SNDM 
model (rows 2nd and 4th). In the first case DM model predicts 17± 0.99 , while SNDM predicts 16± 0.44 
colonies. In the second case DM predicts 63± 3.32 , and the SNDM predicts 71± 1.57 colonies. Uncertainty 
maps calculated using MC dropout method.
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The normalization parameter β depends on the features of the input image, such as the number of colonies. It 
is illustrated in Fig. 8. For both statistical approaches, β varies from 0.96 to 1.06 with the tendency to take lower 
values for less crowded images. On the other hand, for the images containing more than 50 objects, β varies less. 
It is also worth mentioning that β takes a wide range of values for a given number of colonies, which varies with 
the number of colonies, which translates to coverage and other features like mean colony size. It is visible in Fig. 9 
where we plot the dependence of β on the dish coverage. When we group the samples by the mean colony size 
(indicated by different colors of points in Fig. 9), one can observe that β almost linearly depends on coverage. 
Moreover, the slope of the fitted lines increases gradually with the mean size of colonies.

Figure 7, shows density maps together with pixel uncertainties for two input pictures with 16 and 72 objects, 
respectively. The predictions for the SNDM are shown in the second and the fourth panel, respectively. We see 

Figure 8.   Dependence of the normalization parameter β on the number of colonies. Uncertainties of the β 
parameter calculated using bootstrap method (left) and MC dropout (right). Results for the test subset.

Table 1.   Average uncertainties of predictions for the test dataset within the DM and the SNDM models in 
the bootstrap and MC dropout approaches (as presented in Fig. 4). Uncertainties averaged in a group of less 
(more) crowded dishes with ≤ 50 ( > 50 ) colonies and overall.

Dishes with:

Bootstrap MC dropout

DM SNDM DM SNDM

≤ 50 colonies 1.26 0.80 2.38 1.31

> 50 colonies 5.67 3.94 7.74 5.01

overall 1.76 1.19 2.99 1.78

Figure 9.   Dependence of β parameter on dish coverage, together with mean colony size indicated by the 
color of points. The points for different ranges of colony size (see the legend) cluster in subsets that show 
approximately linear dependence between β and coverage. Additionally, a linear function is fitted in each range, 
with a slope that decreases with colony size. Results obtained within MC dropout for the test subset.
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that SNDM outperforms the original U 2-Net. Indeed, the SNDM accurately predicts the number of colonies 
for both images.

Eventually, we note that, overlapping objects is one of the difficulties the counter system must face. In Fig. 7, 
we see an example of colonies that overlap. In this case, the amplitude of density maps is naturally enlarged. But 
the interesting thing is that also uncertainties have higher values there—see the pixel uncertainty maps in the 
last column of Fig. 7. Therefore, we may conclude that these areas have a more substantial impact on counting 
uncertainties. However, if one compares DM and SNDM pixel uncertainty in the overlapping regions, then in 
the SNDM case, uncertainties are slightly reduced compared to DM.

The detailed inspection of the results presented in Fig. 4 shows that there are input figures for which the 
SNDM network overshoots. In Fig. 10 we plot the predicted map with uncertainties for such a case. We see that 
the network’s main problem is the presence of colonies of different sizes on the same dish. It complicates the 
inference of the normalization parameter, which also depends on the size of the colonies, see in Fig. 9. The blue 
boxes in Fig. 10 represent ground truth labels showing the precise position and size of the colonies. It should 
be also noted that the pixel uncertainties for small colonies in the small box area are much larger than for big 
colonies located in bigger boxes.

We close the discussion of the numerical result by comparing the SNDM model predictions with the other 
popular counting systems. In one of our previous papers23,25 we discussed some of them. For the comparison, 
we choose two of the most successful approaches (in our experiments) to count AGAR microbiological colonies, 
namely, Faster R-CNN detector37 and Cascade R-CNN detector38. Note that, for both models, the algorithm first 
performs the detection of interesting objects and then counts them.

To quantitatively compare various models predictions, we consider a standard Mean Absolute Error:

and less common in usage, symmetric Mean Absolute Percentage Error:

where N is a number of all samples, ni is true count of microbe colonies present on i-th image, and ñi is predicted 
number of colonies. Note that the sMAPE shows the relative error with respect to the overall number of colonies.

Both metrics are obtained for the higher-resolution subset of the AGAR dataset and the four models: Faster and 
Cascade detectors, as well as DM and SNDM in the MC dropout approach. The metrics are given in Table 2. We 
see that counting by detection gives better results than the standard DM model. But the SNDM gives comparable 
or even slightly better counting results than the detectors. Further discussion of other deep learning detectors, 
e.g., well-known YOLO, can be found in our previous paper24. Note that preparing annotations for the density 
map models are less expensive than for detector models. Moreover, the training of the detector systems is more 
resources-demanding and time-consuming than the density map models. Therefore, for the data for which the 
density map approaches work with the same or better efficiency as the detectors, the density map systems as 
SNDM are recommended.

Summary
We have shown that the detailed analysis of the uncertainties in the deep neural network model leads to a deeper 
understanding of its limitations. It allows us to assess how uncertain the predictions are. More profound knowl-
edge of the model allowed us to modify the DM model by introducing the Self-Normalization mechanism. The 
SNDM significantly improves the DM predictions. Indeed, before the modification, the model underestimated the 
number of colonies for highly populated dishes. In contrast, for some images with a small number of colonies, the 
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Figure 10.   Density maps of one of the outliers from Fig. 4 predicted with the SNDM. The model predicts 
29± 7.30 colonies, while the sample contains 77 colonies of two types: 19 P. aeruginosa (big ones), and 58 C. 
albicans (small ones). The blue boxes represent all the colonies’ ground truth position and size. Uncertainties 
calculated using the bootstrap method.
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DM model overestimated the counts. The SNDM network proposed by us can correctly count in both mentioned 
domains. Its performance is comparable with the other counting systems, such as Faster and Cascade R-CNN 
detectors. Eventually, we note that the bootstrap and the MC dropout predictions and the estimate of uncertain-
ties in the SNDM are in statistical agreement, which was not observed in the original model.

Data availability
The AGAR dataset used during the current study is available from https://​agar.​neuro​sys.​com/ on reasonable 
request.
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