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Background. Quinolinic acid phosphoribosyltransferase (QPRT) is a rate-limiting enzyme that encodes the uronic acid pathway,
which is involved in cell cycle progression and cancer cell metabolism. Some studies have demonstrated the progrowth effect of
QPRTon breast cancer (BRCA) tumour cells, but its mechanism of action requires further exploration.Methods. We investigated
the expression of QPRT and the prognosis of patients with different tumours by performing a pan-cancer analysis of QPRT.
Prognostic values for overall survival (OS) were determined using uni- and multivariate Cox proportional hazard analyses. +e
prognostic survival of patients with a different pathological staging of BRCA and with QPRT high and low expression was also
analysed. We also explored the relevant pathways by which QPRT affected BRCA tumorigenesis by gene set enrichment analysis
(GSEA) and western blotting. +e impact of QPRT on the PI3K/Akt pathway was also evaluated. Results. Pan-cancer analysis
revealed significant QPRTexpression in pan-cancer and correlated with prognosis in most tumour patients. QPRTwas also highly
expressed in BRCA when patients had poor prognoses, and its expression was associated with different pathological BRCA
subtypes. GSEA revealed an association between BRCA progression and the cell cycle and the phosphatidylinositol 3-kinase
(PI3K)/Akt signalling pathway, and this association was confirmed by western blotting. Conclusion. QPRT is highly expressed in
breast cancer and particularly in HER2 breast cancer. Upregulated QPRTexpression is an independent predictor of breast cancer
prognosis and promotes breast cancer progression by activating the PI3K/Akt signalling pathway.

1. Introduction

As of 2020, invasive breast cancer (BRCA) (2.26 million cases)
remains one of the most commonly diagnosed cancer types
worldwide [1] and is the leading cause of cancer death in
women aged 20–59 years [2]. Currently, standard screening
methods for BRCA include mammography, magnetic reso-
nance imaging (MRI), computed tomography (CT), and biopsy
[3]. Despite significant advances in diagnostic tools and
treatment strategies, BRCA continues to rise in prevalence and
affects approximately one in twenty countries worldwide [4],
with higher rates in developed countries [5]. BRCA is classified,
based on differences in gene expression patterns, into five
major categories, luminal A, luminal B, HER2 overexpression,
basal_like, and normal_like, with HER2 overexpressing breast
tumours having the poorest prognosis [6]. BRCA is metastatic
cancer and can spread to distant organs, such as the bone, liver,
and lung, a condition that is often incurable, whereas early

diagnosed BRCA generally has a better prognosis and survival
rate [7]. +e 5-year survival rate of patients with stage I BRCA
can be as high as 100%, while in patients with stage IV BRCA, it
decreases to 26% [8].

In BRCA cells, a reduction in cellular levels of nico-
tinamide adenine dinucleotide (NAD+) may induce apo-
ptosis [9]. NAD+ is a critical coenzyme involved in the redox
reactions of cancer cell metabolic pathways [10] and plays a
role in DNA repair, gene transcription regulation, the cell
cycle, apoptosis, metabolism, and other biological processes
[11]. +e production of NAD+ is promoted by the activity of
quinolinate phosphoribosyltransferase (QPRT), the rate-
limiting enzyme encoding the kynurenic pathway, via ca-
tabolism tryptophan. QPRT is upregulated in cancer cells,
and this upregulation is resistant to inhibitors of nicotin-
amide phosphoribosyltransferase (NAMPT) [12], the rate-
limiting enzyme of the NAD+ salvage pathway [13]. Studies
have shown that high expression of NAMPT is related to the
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aggressive biological characteristics of BRCA [14] and can
regulate the PI3K-AKT signalling pathway and promote
tumour cell proliferation [15]. Similarly, QPRT expression
has shown great relevance to the migration and invasive
ability of BRCA cancer cells [16], and tumour xenograft
assays have demonstrated the growth-promoting effect of
QPRT overexpression in BRCA tumour cells [17].

+e mechanism of action of QPRT on BRCA onset and
progression has not been adequately studied. +erefore, the
present study aimed to analyse the impact of QPRT on the
expression and prognosis of BRCA tumours. +e biological
functions and pathways of QPRTwere studied through gene
set enrichment analysis (GSEA), the relationship between
QPRT and signalling pathways was established by western
blot analysis, and the mechanism of QPRT effects on breast
cancer progression was determined.

2. Materials and Methods

2.1. Data Sources and Processing. Data were obtained from
+e Cancer Genome Atlas (TCGA) dataset, Cancer Cell Line
Encyclopedia (CCLE), and Genotype-Tissue Expression
(GTEx) dataset, including clinical information data and gene
expression matrices for normal tissues, tumour tissues, and
tumour cell lines. In total, 33 tumour samples were obtained
from the TCGA dataset, RNA sequencing data for 21 tumour
cell lines were obtained from the CCLE dataset, and expression
profile data were obtained for 27 cancer and paracancer tissues
by integrating the TCGA and GTEx datasets. +e expression
matrices of GSE46563 and GSE59246 were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). GSE46563
contains 75 HER− and 19 HER+ samples, and GSE59246
contains a total of 50 HER− and 19 HER+ samples.

2.2. Analysis of QPRT Expression and Survival in Each
Tumour. +e Kruskal–Wallis test was used to analyse dif-
ferences in tumour tissues and normal tissues. Survival
analysis was performed using the R survival package, and the
disease-specific survival (DFS) between QPRT expression
and patients with different tumours was examined using
one-way Cox risk proportional regression analysis, with data
expressed as forest plots. Kaplan–Meier (KM) analysis was
used to test the association between QPRT and survival
among patients with different tumours. A value of P< 0.05
was considered statistically significant.

2.3. Expression and Survival Analysis of QPRT in BRCA.
+e differences in QPRT expressions in different pathological
subtypes of BRCA were analysed using the R package Limma.
+e log-rank test was used to test the survival differences be-
tween the high and low QPRT expression groups, and KM
curves were plotted to show the overall survival (OS) and
progression-free survival (PFS) of different pathological staging.
Univariate and multifactorial Cox risk proportional regression
analyses were performed to compare the relationship between
QPRT expression and each clinicopathological feature with
breast cancer survival for BRCA.+eR package “RMS”was also
used to plot nomograms for 1, 3, and 5 year survival rates.

2.4. Immunohistochemistry (IHC) to Detect Protein
Expression. Immunohistochemical staining results of QPRT
protein in breast cancer tumor tissues and normal tissues
were compared using human Protein Atlas (HPA) database.

2.5. Functional and Pathway Enrichment Analyses. Based on
the median expression of QPRTin breast cancer for high and
low expression groups, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
and pathway enrichment analyses were performed using the
R package clusterProfiler. GSEA was used to demonstrate
the activation or repression of biological pathways mediated
by QPRT expression [18] and was performed using the R
package clusterProfiler to search for potential biological
mechanisms of QPRT in breast cancer. Biological pathway
enrichment of high and low QPRTexpressions was analysed
using the Reactome gene sets in GSEA.

2.6. Cell Culture and Transfection. Human breast cancer
MDA-MB-231 cell line (ATCC® HTB-26™) was cultured in
Dulbecco’s Modified Eagle Medium (DMEM-high glucose, 01-
052-1A, Biological Industries, Beit HaEmek, Israel) containing
5% FBS (04-001-1A, Biological Industries, Beit HaEmek, Israel)
and 4mM glutamic acid base, incubated at 37°C in a humidified
atmosphere of 5% CO2. Lentivirus vector is constructed (ob-
jective: HBLV-h-QPRT-ZsGreen-PURO, control: HBLV-h-
ZsGreen-PURO), plasmid extraction kit (DP117, TIANGEN
BIOTECH CO., LTD, China) was used to extract the plasmids,
and 293T cells were co-transfected with Lipofectamine 3000 kit
(L3000001, +ermo, USA). After infection, MDA-MB-231 cells
were infected with the virus supernatant. After infection, the
fusion rate of cells reached 80–90%, the cells were transferred to
petri dishes, and 0.5μg/mL puromycin was added to screen
positive cells under pressure. When the fluorescence rate and
survival rate of cells were better than 95%, cell lines with stable
expression were obtained.

2.7. Western Blotting (WB). Cells were lysed in RIPA buffer
(50mM Tris-HCl, pH 7.4, 150mM NaCl, 1% sodium deoxy-
cholate, 1% NP-40, 0.1% SDS, 100mM PMSF, 1mM pepstatin
A, and 1mM E64). +e released proteins were separated on an
8–12% SDS polyacrylamide gel, transferred to a PVDF mem-
brane (IPFL00010, Millipore, Burlington, MA, USA), and
treated with a primary antibody.+e specific primary antibodies
are as follows: QPRT (ab171944, rabbit monoclonal antibody,
dilution 1 :1000), Akt (ab8805, rabbit polyclonal antibody, di-
lution 1 : 500), P-Akt (ab38449, rabbit polyclonal antibody,
dilution 1 : 500), PI3K (ab32089, rabbit monoclonal antibody,
dilution 1 :1000), P-PI3K (ab278545, rabbit monoclonal anti-
body, 0.5µg/ml), MDM2 (ab16895, mouse monoclonal anti-
body, used at an assay-dependent concentration), P-MDM2
(ab170880, rabbit monoclonal antibody, dilution 1 : 50000), and
β-actin (ab8226, mouse monoclonal antibody, 1µg/ml). +en
the primary antibody was incubated at 4°C overnight, and the
TBST buffer (100 mM TrIS-HCl, pH 7.5, 150 mM NaCl) was
oscillated and washed for 3 times, 5 minutes each time. +e
second antibodywas incubated at room temperature for 1h, and
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the film was washed 3 times with TBSToscillation for 5 minutes
each time. After the membrane was incubated with TMB
substrate for 1 minute, the membrane was soaked in developing
solution until the strip was clear and cleaned with tap water.
+en the membrane was fixed with fixing solution, and the
imaging was observed with a gel imaging analysis system (XR+,
Bio-RAD Laboratories, China).

2.8. StatisticalAnalysis. Statistical analysiswas carried out using
SPSS software (version 20.0, SPSS Inc., Chicago, IL, USA). Data
were expressed as mean±SD. Student’s t-test was employed to
determine p values. +e χ2 test and Fisher’s exact test were
employed to assess the association between factors. Survival
curves were created by the Kaplan–Meiermethod and compared
by the log-rank tests.Multivariate survival analysiswas conducted
with the multivariate Cox proportional hazard regression model.
Significant difference was recognized at P< 0.05.

3. Results

3.1. QPRT Was Significantly Expressed in Most Tumour
Tissues. Analysis of the CCLE dataset showed that QPRTwas
significantly expressed in all 21 tumour cell lines (Figure 1(a)).
Integration of data in TCGA and GTEx revealed upregulation
of QPRT expression in 16 tumours, including BRCA, COAD,
and GBM, and downregulation in 10 tumours, including
CHOL, KICH, and KIRP, among 27 tumour types.

3.2. QPRT Was Associated with the Prognosis of Certain
Tumours. High QPRT expression was significantly associ-
ated with poor OS prognosis in patients with BRCA, KIRP,
LGG, SKCM, and UVM, and the relationship between high
and low QPRT expressions and patients with each tumour
was further confirmed using KM curves (Figures 2(a) and
2(b)). To avoid the impact of nontumour death during
follow-up, the relationship between QPRT expression levels
and prognostic DSS (disease-specific survival) was analysed,
and QPRT was found to be prognostically significant only
with BRCA, KIRP, LGG, and READ tumours (Figure 2(c)).
QPRT was hypothesized to be a prognostic marker for tu-
mour DSS based on the KM curve (Figure 2(d)).

3.3. QPRT Expression Was Significantly Associated with
DifferentPathological Staging of BRCA. QPRTexpression was
significantly correlated with poor prognosis in BRCA patients,
and QPRT expression was significantly higher in BRCA tu-
mour tissues than in normal tissues (Figure 3(a)). Subsequent
analysis of expression in different pathological subtypes of
BRCA revealed significant differences in QPRT expression in
all pathological subtypes, with the highest expression in the
HER2 type (Figure 3(b)).+e data analysis in the two validation
sets (GSE46563 and GSE59246) revealed a significant differ-
ential expression of QPRT in HER2 breast cancer (Figures 3(c)
and 3(d)). +e immunohistochemical results (Figure 3(e))
showed that QPRT was localized in the cytoplasm, cell
membrane, and nucleus and showed a positive expression in
pathological breast cancer tissues but not in normal tissues.

3.4. ;e Prognosis of BRCAWas Significantly Associated with
Many Factors. Survival analysis showed that breast cancer
patients with low QPRT expression had higher OS and PFS
than those with high expression (Figures 4(a) and 4(b)).
Survival analysis of different pathological staging of BRCA also
showed that the median survival time was significantly longer
in basal-like and HER2-enriched than in luminal A, luminal B,
and normal-like (Figure 4(c)). In addition, high QPRT ex-
pression was significantly associated with the prognosis of
breast cancer patients with different pTNMstages (Figure 4(e)).

We also developed a prognostic model for BRCA to
assess the impact of each factor on survival. In univariate
survival analyses, BRCA cases with high QPRT expression
had a poor OS. In Cox risk proportional regression analysis,
after adapting for age, grade, tumour size, and subtype,
QPRT was still an independent prognostic factor for OS
(Figures 5(a) and 5(b)). Columnar tables were established to
predict the prognostic survival of breast cancer patients at 1,
3, and 5 years, and the ROC curves showed that the 1-year
(AUC� 0.695, 95% CI: 0.599–0.791) survival prediction
model was the best model (Figures 5(c) and 5(d)).

3.5. QPRTMay Be Involved in BRCA Progression through the
PI3K/Akt Signalling Pathway. Enrichment analysis revealed
(Figures 6(a) and 6(b)) that oxygenation levels and the de-
velopment of the reproductive systemwere themost significant
biological functions; the PI3K-Akt signalling pathway was the
most significant KEGG pathway; some of the related functions
and pathways are listed in Table 1. Subsequent GSEA showed
that the oestrogen signalling pathway and cell cycle were the
most significant KEGG pathways and that the cell cycle and
mitosis were the most significantly related biological processes
in the Reactome gene set (Figures 6(c) and 6(d)).

3.6. QPRT Activated the PI3K/Akt Signalling Pathway in
Breast Cancer Cells. We confirmed the influence of QPRTon
the PI3K/Akt signalling pathway by western blotting (Figure 7).
Phosphorylation and protein levels of P-PI3K (ab278545) and
P-Akt (ab38449) were significantly increased in MDA-MB-231
cells with foreign expression of QPRT. We also evaluated the
PI3K/Akt downstream protein kinase P-MDM2 (ab170880)
and found a significant enhancement of its phosphorylation and
protein levels. +ese results indicate that QPRT may promote
breast cancer progression through the PI3K/Akt pathway.

4. Discussion

Cancer is a significant factor affecting the health and lon-
gevity of people worldwide, with nearly 20 million new
cancer cases and nearly 10 million deaths reported world-
wide in 2020 [19]. Pan-cancer analysis can identify the
similarities and differences in the tumour genomes and
provide helpful information for cancer diagnosis and
treatment [20]. In the present study, we evaluated the ef-
ficacy of QPRTfor pan-cancer analysis. QPRTis significantly
expressed in most tumours, and its expression is related to
prognosis. Among them, the expression of QPRT has a
prominent effect on the prognosis of breast cancer patients.
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Because of the strong relationship found for QPRT in
breast cancer, this study mainly analysed the relationship
between QPRT and breast cancer. +e TCGA dataset as the
test set revealed significant QPRT expression in breast
cancer, especially HER2 breast cancer. +ese results were
reproduced in two GEO validation sets. A study screening

for prognosis-related candidate genes in breast cancer
showed that QPRT expression was significantly associated
with prognosis in breast cancer patients [21]. +e analysis in
the present study shows that QPRT is an independent
prognostic factor of breast cancer and is related to different
pathological subtypes.
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Figure 1: Expression levels of QPRT in different tumours: (a) QPRT expression in the CCLE dataset, total 21 tumour cell lines; (b) QPRT
expression in the integrated GTEx and TCGA dataset, total 27 tumors. ∗P< 0.01, ∗∗P< 0.001, and ∗∗∗P< 0.0001.
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Figure 2: Continued.
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Figure 2: OS and DSS of high and low expressions of QPRT in each tumour: (a) forest plot of OS of QPRT in each tumour; (b) forest plot of
DSS of QPRT in each tumour; (c–g) KM survival curve to show the OS of patients with high and low QPRTexpressions in different tumors;
(h–n) KM survival curve to show the DSS of patients with high and low QPRT expressions in different tumors.
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(e)

Figure 3:+e expression of QPRT in BRCA: (a) differential expression of QPRT in BRCA tumour tissues and normal tissues; (b) expression
of QPRT in different pathological staging of BRCA; ((c), (d)) the high and low expression distribution of QPRT in HER2 breast cancer, the
data come from GSE46563 and GSE59246, respectively; (e) breast cancer immunohistochemical map.
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In breast cancer, HER2 gene amplification can lead to the
proliferation of specific aggressive breast cells, and HER2
expression has been identified as an independent factor for
the poor prognosis of breast cancer patients [22]. Targeted
therapy is one of the treatments aimed at improving the
survival rate of HER2-positive breast cancer patients, but the
selection of targeted genes still needs further study [23].

QPRT catalyses the production of nicotinic acid
mononucleotide (NMN), which in turn promotes the syn-
thesis of nicotinamide adenine dinucleotide (NAD+), which
plays a crucial role in cell survival [24]. Zhang et al. used in
vivo and in vitro experiments to confirm that QPRT pro-
motes growth, migration, and invasion of breast cancer and
inhibits cell apoptosis [17]. Liu et al. also provided strong
evidence that upregulation of QPRTpromotes breast cancer
progression [16]. Earlier work indicated that QPRT might
have an antiapoptotic function (Ullmark et al., 2017).
Furthermore, QPRT was identified as a potential prognosis
biomarker of BC [21]. However, whether QPRT is an in-
dependent prognostic factor in invasive breast cancer and
the mechanisms by which QPRTmay contribute to invasive
breast cancer remain undefined. +us, the present study was
based on this previous research and aimed to explore the
mechanism underlying promoting breast cancer progression
by QPRT.

QPRToverexpression is known to activate the PI3K/Akt
signalling pathway in cancer cells [25], but this has not been
proven in breast cancer. +e GSEA results presented here
showed that QPRT expression was related to the PI3K/Akt

signalling pathway, and western blot analysis showed that
overexpression of QPRT can increase the phosphorylation
levels of PI3K and Akt, indicating that QPRT and the PI3K/
Akt signalling pathwaymay have a positive feedback effect in
breast cancer.

Phosphoinositide 3-kinase (PI3K) can integrate sig-
nals from growth factors, cytokines, and other extracel-
lular stimuli, and the modification of this pathway is
closely related to the pathogenesis of cancer [26, 27].
Protein kinase B (PKB, also known as Akt) is an essential
mediator of the PI3K pathway and the signalling endpoint
of various growth factors and cytokines [28]. +e PI3K/
Akt signalling pathway is one of the phosphatidylinositol
signalling systems involved in tumorigenesis, cell growth,
proliferation, metabolism, survival, and apoptosis [29].
+e PI3K/Akt signalling pathway is activated in various
cancers and has been proven to be one of the most im-
portant signalling pathways in cancer development [30].
+e PI3K/Akt signalling pathway has attracted increasing
attention in breast cancer research as activating this
pathway can promote breast cancer cell proliferation,
inhibit apoptosis [31], and modulate cell invasion [16].
Human epidermal growth factor receptor-2 (HER2) is
involved in the development of breast cancer through the
PI3K/Akt/mTOR pathway [27], and the PI3K/Akt/mTOR
pathway is an important pathway involved in chemo-
resistance and survival of triple-negative breast cancer
(TNBC) [32]. However, the current study also had some
limitations. +is research was based on microarray data
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Figure 5: Prognosis of the BRCA prediction column line graph: (a) single-factor Cox regression analysis of the risk relationship of BRCA
with age, race, and pTNM; (b) multifactor Cox regression analysis of the risk relationship of BRCA with age, race, and pTNM; (c) column
line graphs for predicting the overall survival of BRCA patients at 1, 3, and 5 years; (d) ROC curve graphs for overall survival at 1, 3, and 5
years.
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analysis. +e samples from the datasets were insufficient
and without cancer stage information, and data from
biological samples carried out no confirmation. Conse-
quently, large-scale, potential, and widespread clinical

examinations are required to confirm our results. It was
necessary to obtain a single gene to profile QPRT ex-
pression in BRCA. +e mechanism of QPRTneeds further
findings through in vivo and in vitro models.
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Figure 6: BRCA whole gene enrichment analysis: (a) enrichment of GO function in QPRTexpression; (b) enrichment of KEGG function in
QPRT expression; (c) enrichment of the KEGG pathway in GSEA with high and low QPRT expressions; (d) enrichment of biological
processes in the Reactome gene set with high and low QPRT expressions. P< 0.05 is statistically significant.

Table 1: +e most significant GO biofunction and KEGG pathways in the enrichment analysis.

Class Function/pathway p value p. adjust q-value

BP

Response to hypoxia 7.92E-09 3.08E-05 2.57E-05
Response to decreased oxygen levels 1.50E-08 3.08E-05 2.57E-05

Response to oxygen levels 5.54E-08 7.58E-05 6.32E-05
Reproductive structure development 9.59E-08 9.10E-05 7.58E-05
Reproductive system development 1.11E-07 9.10E-05 7.58E-05

Pattern specification process 6.59E-07 0.000450942 0.00037565
Urogenital system development 1.52E-06 0.000852121 0.000709846

Axonogenesis 1.66E-06 0.000852121 0.000709846
Response to glucocorticoid 2.04E-06 0.000874411 0.000728415

Acute inflammatory response 2.34E-06 0.000874411 0.000728415

KEGG

PI3K-Akt signalling pathway 3.00E-05 0.007825176 0.007132445
PPAR signalling pathway 7.00E-05 0.009139327 0.00833026
MAPK signalling pathway 0.000198423 0.014943102 0.01362025

Oocyte meiosis 0.000229013 0.014943102 0.01362025
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5. Conclusions

Collectively, our results here support a vital role for QPRT in
breast cancer and indicate that its upregulation is related to
the poor prognosis of patients with BRCA. Subsequently, in
vitro experimental results show that QPRT upregulation
may affect breast cancer progression by activating the PI3K/
Akt signalling pathway. +e current study implies that
QPRTmay therefore be a novel specific therapeutic target for
breast cancer treatment.
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