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Science has traditionally been driven by curiosity and followed one goal: the pursuit of
truth and the advancement of knowledge. Recently, ethics, empathy, and equity, which
we term “the 3Es,” are emerging as new drivers of research and disrupting established
practices. Drawing on our own field of GIScience (geographic information science), our
goal is to use the geographic approach to accelerate the response to the 3Es by identify-
ing priority issues and research needs that, if addressed, will advance ethical, empathic,
and equitable GIScience. We also aim to stimulate similar responses in other disci-
plines. Organized around the 3Es we discuss ethical issues arising from locational pri-
vacy and cartographic integrity, how our ability to build knowledge that will lead to
empathy can be curbed by data that lack representativeness and by inadvertent inferen-
tial error, and how GIScientists can lead toward equity by supporting social justice
efforts and democratizing access to spatial science and its tools. We conclude with a call
to action and invite all scientists to join in a fundamentally different science that
responds to the 3Es and mobilizes for change by engaging in humility, broadening
measures of excellences and success, diversifying our networks, and creating pathways
to inclusive education. Science united around the 3Es is the right response to this
unique moment where society and the planet are facing a vast array of challenges that
require knowledge, truth, and action.
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Most scientific research has traditionally been fueled by the innate curiosity of the
researcher, by the desire to generate replicable and generalizable knowledge, and by the
need to address practical problems. While there are, of course, less-noble drivers of sci-
ence, most often researchers nobly aim their tools at knowledge creation and measure
contributions through publications, awards, the support of funding agencies and our
institutions, and various less-tangible forms of personal satisfaction. Yet, today we find a
groundswell of support for complementary norms which have been percolating in science
for some time. Here we focus on the “three Es”—ethics, empathy, and equity—which
have scientists reflecting on and responding to questions such as the following:

• Given that we strive at all times for scientific practices to be ethical, how can science
foster empathy and equity as well?

• Will our syllabi and courses attract and address the needs of all of our students?
• Does the culture of science that has evolved over the centuries truly reflect the needs

and desires of all of humanity, or is science better at serving some segments of society
than others?

These fundamental questions and many more like them are already the focus of
long-standing initiatives such as the NSF’s “Broader Impacts” criterion for research
proposals. There are also professional development programs and networks seeking to
accelerate progress in these areas, such as the GeoEthics project of the American Associ-
ation of Geographers (https://aag-geoethics-series.secure-platform.com/a); the American
Geographical Society’s EthicalGEO initiative (https://ethicalgeo.org/); the American
Geophysical Union’s LANDiNG (Leadership Academy and Network for Diversity and
Inclusion in the Geosciences, https://www.agu.org/AGU-LANDInG); the University
Consortium for Geographic Information Sciences’ TRELIS-GS (Training and Retain-
ing Leaders in STEM-Geospatial Sciences, https://www.ucgis.org/trelis); the American
Association for the Advancement of Sciences’ Project on Science, Technology, and Dis-
ability (https://www.aaas.org/programs/education-and-human-resources/project-science-
technology-and-disability); and NorthStar, for increasing the representation, belonging,
and inclusion of people of African descent in the geospatial industry and academia
(https://gisnorthstar.org/). There are inclusive professional organizations such as the
Society for the Advancement of Chicanos/Hispanics and Native Americans in Science
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(https://www.sacnas.org/) and the National Association of Black
Geoscientists (http://www.nabg-us.org/). There has been recent
proliferation of Twitter accounts such as @BlkinGeoscience
and @BlackGeogorg that acknowledge, amplify, and support
the work of diverse scientists from around the world. Finally,
there is the work of dozens of individual scientists who create
social media campaigns on the above questions in order to
accelerate change, lead petitions against racist or unethical
actions by the scientific community, create plans for cultural
transformation within their departments, organizations, or pro-
fessional societies, and much more.
In this paper we explore the implications of the 3Es on sci-

ence, using the example of our own field, which we term here
“geographic information science,” or GIScience for short. We
use its practices and research agenda (i.e., a geographic
approach) as an example of how one branch of science is
adjusting to changing norms, with a focus on how the 3Es
might be implemented and accelerated, all in the hope that our
discussion will also be helpful to readers in other fields. We rec-
ognize at the outset that the meanings of these three terms
overlap substantially and are the subject of very extensive litera-
tures. Rather than attempt precise definitions, we have chosen
examples from our field that illustrate what each of them might
mean in the practices and applications of our science. Some of
these examples are specific to our field, but others are of more
general significance. We first explain what we mean by GIS-
cience and then discuss a number of examples to illustrate how
work in our field is currently being impacted.
GIScience is fundamentally the science of geographic infor-

mation (GI), which can further be defined as information
about what is where: about the locations of features, events,
measurements, organisms, or observations on or near Earth’s
surface—indeed, anything of interest that is tagged with geo-
graphic coordinates. It is thus a holistic way of thinking and
problem solving rooted in the fundamental, integrative
discipline of geography. The alternative terms “geospatial
information” and “spatial information” are often used; geospa-
tial information is virtually synonymous with geographic
information, though spatial often implies any space, not only
geographic space. Without a clear understanding of GI that
structures so much of our knowledge of the world, any associ-
ated models, structures, and hypotheses may be erroneous,
especially those about relationships among complex, multidi-
mensional geographic variables (1).
Such GI is now readily available in vast quantities, due to

the advent of satellite remote sensing, the Global Positioning
System (GPS) and its international analogs, smart phones,
drones, social media, and the so-called Internet of Things (IoT)
(2). A large industry has grown up around these sources of
information and the analytics required to understand them.
The size of the GI market is now estimated by ReportLinker
(3) to grow from $59.5 billion in 2021 to $107.8 billion in
2026, with growth expedited by the increasing number of arti-
ficial intelligence (AI)-based solutions for the development of
smart cities, multidimensional, multidisciplinary scientific
modeling systems, social media tracking, and the increased
deployment of IoT sensors.
Geographic information systems (GISs), the actual software

and related technologies that apply and advance GIScience,
evolved beginning in the 1960s as computer applications for
the capture, synthesis, visualization, analysis, archiving, and
sharing of GI (4). These systems were originally devised for the
simple task of automated cartography but rapidly evolved into
systems for managing and tracking spatially distributed

activities such as transit use or crime, for situation awareness in
the military and intelligence communities, for assessing the
effectiveness of public-health systems, for emergency manage-
ment, and for modeling social and environmental systems (e.g.,
refs. 5 and 6). GIS is today an important research tool in virtu-
ally all of the social and environmental sciences (e.g., ref. 7), an
essential administrative tool, and a key design tool in architec-
ture, landscape architecture, and urban planning (8–10).

In 1992 Goodchild coined the term “GIScience” to encom-
pass the rigorous scientific treatment of GIS design and methods
(11); alternative terms with similar meaning include “geomatics,”
“geoinformatics,” and “spatial data science.” GIScience is built
on the idea that humans have specific ways of orienting them-
selves, acquiring and communicating spatial knowledge, and
finding their way (12), and principles of spatial cognition are
often important in the design of GIS. Elegant data structures
and indexing schemes have been devised for spatial data (e.g.,
refs. 13 and 14), and powerful algorithms have been created for
performing basic operations (e.g., refs. 15–18). Another unique
aspect of GIScience is that it tends to adhere to specific princi-
ples, most notably spatial dependence and spatial heterogeneity
(19), and is impacted by unique uses such as the modifiable areal
unit problem (20). These challenges require specialized treat-
ment of statistical inference and uncertainties (21).

Some of the first discussions of 3E issues in GIScience
occurred in the late 1980s and early 1990s (e.g., ref. 22). GIS
at that time was expensive and tended to be available only to
governments and the military. At the same time, because of the
limited levels of detail of many data sources and the limited
power of computational systems, some GIS solutions could be
seen as simplistic and naïve. GIS also allowed individual loca-
tions to be easily shared, raising questions about locational pri-
vacy (23). Pickles (24) and others argued that maps, at the time
the primary source of much GIS data, are often to be inter-
preted as social constructions that represent the political, com-
mercial, and other agendas of their makers, rather than as
scientifically objective representations of reality. Social critiques
of GIS, that evaluate GIS through the lens of critical theory,
have highlighted the assumptions of the practitioners and
shown how they are reflected in knowledge production (25,
26). These arguments had a significant impact on the develop-
ment of GIS and on GIScience.

Presently, however, it is hard to imagine any conversation in
GIScience, or indeed in any other scientific community, that
does not consider some mix of ethics, empathy, and equity.
The new focus on the 3Es is, in part, a signal of the moment.
The Black Lives Matter movement has brought systemic racism
to the forefront of many conversations. The broader field of
geosciences, in which GIScience often sits, acknowledges collec-
tive underperformance in training and amplifying scholars and
professionals in Black and other underrepresented minorities
(27, 28). As well, in GIScience we are reexamining GIS as a
tool to support more equitable and inclusive design and
decision-making (29) and highlighting the dangerous applica-
tions of GIS technology such as using spatial databases for
policing (30). COVID-19 has also contributed to our focus on
the 3Es, as GIS has been critical to the COVID-19 response
(31). Discussions about how to build and implement spatial
technology have highlighted the need to balance privacy and
analytical power when working with locational data. For exam-
ple, during the early days of COVID-19, spatial technology for
digital contact tracing was an active topic of discussion. How-
ever, as the pandemic continued, we were reminded that wide-
spread use of any technology requiring knowledge of individual
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locations is difficult to implement, and we now recognize the
hazards associated with positional uncertainty.
Our primary goal in this paper is to accelerate response to the

3Es in science by identifying priority issues and research needs
that, if addressed, will advance ethical, empathic, and equitable
GIScience and to stimulate similar responses in other disciplines.
Action in GIScience will have broad implications for all science as
spatial data, methods, and software have permeated across science,
including to engineering (32), health science (33), ecology (34),
and social sciences (35). We recognize that issues and potential
responses to the 3Es are a vast canvas. In GIScience a sample of
the relevant topics includes ethics (36–38); data representation
(39); justice, equity, diversity, and inclusion (40–44); location and
privacy (45); inference from spatial data (46); provenance and
uncertainty in data (47); teaching practices (48, 49); and repro-
ducibility and replicability (50–54). As we cannot give adequate
attention to all topics, we highlight those that either require a
unique response from GIScience or where leadership from GIS-
cience will have broad impacts for science, academia, and society.
Topics are organized around each of the 3Es (Fig. 1).

Ethics of Location

As pertaining to science, ethics typically involves reflection upon
moral questions that arise in research, publication, data collec-
tion and analysis, and other professional activities, all governed
by a set of moral principles or codes of behavior (55). While
ethics in science includes everything from human subjects to cul-
tures of inclusion, ethics intersects uniquely with the field of
GIScience due to the nature of data, the power of cartographic
visualization, and the impact of those topics that attract the gaze
of geographers. Professionalism in GIScience (pertaining to GIS,
but also remote sensing with satellites, drones, and smaller IoT
sensors, cartography, and quantitative spatial analysis) now
involves a commitment to ethical practice as informed by a more
sophisticated understanding of the ethical implications of GI
technologies. For example, the use of GIS for military and sur-
veillance purposes, the lack of privacy introduced by mobile
mapping devices, and the use or misuse of GIS for conservation
and sustainability continue to be challenging issues and topics of
deep concern for many. There are examples of rich studies of
ethics in GIScience (mentioned prior), yet, as a broader aca-
demic subfield, ethics has been on the periphery and often
treated as a footnote, as the final lecture in an otherwise technical
course (49), or as the sole course within an entire graduate
degree or certificate program [https://www.e-education.psu.edu/
research/projects/gisethics (48)].

On the GIS industry front, however, there are established
and published codes of ethics and rules of conduct (two differ-
ent things) that must be agreed to as a final step in professional
certification by organizations such as the GIS Certification
Institute and the American Society for Photogrammetry and
Remote Sensing. In addition, the Urban and Regional Informa-
tion Systems Association was one of the first scholarly and
industry-focused nonprofits to publish a code of ethics (https://
www.urisa.org/about-us/gis-code-of-ethics/), and the American
Association of Geographers, which includes scholarly specialty
groups in cartography, cyberinfrastructure, digital geographies,
geographic information science and systems, and remote sens-
ing, has frequently revised its Statement on Professional Ethics
up to the time of this writing (https://www.aag.org/cs/about_
aag/governance/statement_of_professional_ethics).

The success of GIScience in the 21st century has brought an
even greater urgency and complexity to ethical conversations.
GIScience is has infused many arenas, and as a result ethics in
GIScience has far reaching impacts. Everything from our aca-
demic activities to the individual privacy of everyday smart-
phone users are impacted by the technology and the norms of
our field. Ethics is finally encoded in the latest version of the
University Consortium of Geographic Information Science’s
Geographic Information Science & Technology Body of Knowledge
(56, 57). While institutionalized ethics is an important starting
point, codes will be implemented by humans and, therefore,
must be accompanied by diverse teams. Two ethical concerns
on the forefront of our minds relate to the abundance and
growing use of locational data and maps: locational privacy and
cartographic integrity.

Locational Privacy. Humans have traditionally used place
names to refer to location: names of rivers, lakes, mountains,
and other natural features; names of cities, regions, streets, and
neighborhoods; and names of businesses and institutions. The
accurate measurement of location was an expensive process
requiring the use of sophisticated instruments and technical
skill. By 2010, however, low-cost GPS chips marketed as stan-
dard smart-phone components made it possible to determine
location almost instantly and to a few meters and led to the
development of numerous location-based services: search for
nearby businesses, wayfinding, ride hailing, and the operation
of autonomous vehicles. In some cases, it was also possible for
the providers of such services to acquire the locations of their
users and to aggregate and market such information to third
parties (58). In principle these practices occurred only when
users opted in; in practice, however, many users paid little
attention to the detailed terms and conditions of these services.

Dobson and coauthors (59, 60) coined the term “geoslavery”
to describe what they saw as the social consequence of this kind
of surveillance, “a practice in which one entity, the master,
coercively or surreptitiously monitors and exerts control over
the physical location of another individual. Indeed, there are
many examples of automated surveillance being used for racial
profiling [e.g., refs. 61 and 62)]. Enhanced surveillance and
control may be attained through complementary monitoring of
functional indicators such as body temperature, heart rate, and
perspiration.” Complementary monitoring can also be provided
by the phone’s accelerometer and its route-following apps, and
some models of new cars include direct internet connections
that allow the car’s speed and acceleration to be remotely moni-
tored, whether or not a smart phone is present. It is not hard
to envision the consequences of this kind of capability. Today,
for example, State Farm Insurance offers two programs that

Fig. 1. Organization of the paper around the 3Es: ethics, empathy, and
equity.
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reward drivers with reduced insurance rates based on the com-
pany’s monitoring: Steer Clear, which “reinforces good driving
habits in young drivers and helps them earn a valuable dis-
count” and Drive Safe & Save, which “collects basic informa-
tion about your driving that may earn you a discount and save
you some money” (https://www.statefarm.com/customer-care/
download-mobile-apps/state-farm-mobile-app).
Location data from smart phones have frequently been iden-

tified as the basis for COVID-19 surveillance. It is possible, in
principle, to detect when two smart phones come within a
given distance of each other for a given period of time (say,
2 m and 15 min, respectively, enough for COVID infection to
pass between the owners of the phones). GPS is an obvious
way to do this, though uncertainty in positioning will lead to
numerous false positives and false negatives. Early in the
COVID outbreak Apple and Google announced a joint pro-
gram to use Bluetooth technology for contact tracing, with
advantages in terms of personal privacy (63), but while this
may appear to be an elegant technical solution to contact trac-
ing, the recent “pingdemic” experience in the United Kingdom
points to some of its less-attractive consequences (64).
Some programs of statistical data collection have dealt with the

problem of locational privacy by aggregating data to reporting
zones such as counties or census tracts, blocking any access to
individual data. Randomly distorting locations, or geomasking, is
another possible approach. Individual data can be anonymized,
but it is often trivially easy to deanonymize data by linking
together the “pings” from a single device to reconstruct a track
(e.g., refs. 58 and 64). Privacy of health data, including the
United States’ Health Information Portability and Accountability
Act (HIPAA) of 1996 (https://www.hhs.gov/hipaa/index.html),
limits use on GI in the health sector, and some jurisdictions have
enacted other limits. However, if the data and methods of GIS-
cience are to be used ethically, we clearly need to advance norms
and approaches to protecting locational privacy in all sectors.
Collection of individual-level location data has outpaced devel-
opment guidelines for ethical use, and a broad spectrum of
responses to locational privacy has emerged. On the one hand,
research institutions require IRB (Institutional Review Board)
reviews that place strict limitations on the use of fine-resolution
locational data, while on the other hand new commercial indus-
tries have developed around the largely unregulated collection
and sale of individual location data. The popularity of GI, com-
bined with inconsistency in norms regarding ethical use, has led
to new initiatives like the American Geographical Society’s Ethi-
calGEO initiative (https://ethicalgeo.org/) and the American
Association of Geographers’ GeoEthics program, both launched
in 2019 (65), which are leading an international dialogue on
standards of use for locational data.

Cartographic Integrity. With the proliferation of digital inter-
active mapping and analysis platforms, many of them cloud-
based, there is also a need to update the ethical guardrails for
cartography, a foundation of GIScience. We have seen an
explosive increase in the use of maps in society, no longer solely
in the domain of professional cartographers. With every public-
health agency and major news media outlet serving COVID-19
data through both static and interactive maps and dashboards,
we are reminded of the cartographer’s role in shaping public
opinion and informing policy. The growing reach and influ-
ence of maps raises age-old questions (e.g., ref. 66) of how car-
tography can be used as a mechanism to generate knowledge or
be manipulated to tell a particular story. For example, colleges
and universities have over the past year released a plethora of

coronavirus dashboards, many of them with interactive maps,
and listing active cases, positivity rates, test numbers, and other
statistics (Fig. 2). However, as Vasquez (67) points out, without
a uniform standard for what the maps and other information
presented on these dashboards should include or how often to
update them, confusion reigns as to how truly bad a campus
coronavirus outbreak may be—and where—on any given day.
Institutions are searching for an appropriate level of transpar-
ency, given concerns over student privacy, as well as a desire to
protect their reputations and their ability to retain or attract stu-
dents, faculty, and donors, all with the lives of the people already
within their communities in the balance. On the industry front,
an emerging question is, Does your workforce truly reflect your
community? Accordingly, workforce equity dashboards are com-
ing to the fore accordingly to help answer this question. (Fig. 3)

Monmonier’s (68) instant classic of cartographic literacy and
integrity, How to Lie with Maps, as well as a related paper (22),
set an early standard, especially as a caution to map users as to
how mapmakers can either accidentally or intentionally distort
the information that is presented on a map. As we have moved
further into the digital age, including the advent of virtual and
augmented reality, and the machine- and deep-learning inherent
in AI, we have become aware of the myriad possible distortions
not only of the underlying data but of statistics and other analy-
ses performed on the data and their final depiction in a digital
cartographic product. The third edition of his book (69)
includes new cautionary tales regarding online mapping, with
the accompanying opportunities for “cartographic mischief,”
deceptions by way of AI and physics-based algorithms that can
add degrees of fake “reality” to maps and satellite images (70),
location spoofing (interference with legitimate GPS signals or fal-
sifying the true location of a device), and even map propaganda.

Field (71), in Thematic Mapping: 101 Inspiring Ways to Visu-
alise Empirical Data, explores the issue of cartographic integrity
for the 21st century, paralleling the discussions of Monmonier
(69) and citing in particular the human factors of oversight,
poor judgment, lack of cartographic training, and, perhaps
most importantly, a persistent reliance on what may be inap-
propriate software defaults. These failings often occur even if
the mapmaker has the noblest of intentions. Others have also
written on the topic of ethics in cartography (e.g., refs. 72–75),
but Field (71, 76) chose to update the guidelines of Dent et al.
(77) with accessible principles such as have a straightforward
agenda and purpose; strive to know your audience (the map
reader); do not intentionally lie with data; show all relevant
data whenever possible; do not discard data because it might be
contrary; strive for accurate portrayal of the data; report all data
sources and errors; ensure that symbols do not bias the inter-
pretation of the map; ensure that the map is reproducible by
others; be attentive to differing cultural values and principles;
and, once again, do not let software defaults drive your design.

This tome on contemporary cartographic practice also stands
apart in that the emphasis on “manners for the modern
mapmaker,” whether professional or not, is coupled with an
annual and free massive open online course, or MOOC, based
directly on the content of the 2018 book but also continually
updated (78). Enrollment in this MOOC since its 2018 incep-
tion has numbered in the tens of thousands globally (completion
rates do vary, as with most MOOCs). It is resources such as
these that indicate the continuing desire of cartographers to strive
for truth, fairness, and accuracy in their mapmaking efforts,
including those online. Such resources seek to attract and address
the needs of a broader cadre of students and more segments of
society. They are sorely needed in a posttruth world, filled with
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alternative facts, fake news, and conspiracy theories that erode
trust in science, hampering healthy curiosity in both research and
practice, and ultimately stymying our ability to produce maps
that can be fully trusted, especially when lives are at stake.

From Ethics to Empathy

If ethics, in part, is a reflection upon moral questions that govern
codes of human behavior in professional scientific practice, empa-
thy has long been recognized as the driving force behind much
human behavior. Like many science fields, GIScience has been a
vehicle for building empathy through generating new understand-
ing of people and place. However, among science approaches,
GIScience is perhaps uniquely placed to support building empa-
thy, by enabling integration of data and visualization of multiple
perspectives. There are many examples, for instance, of humani-
tarian groups leveraging the power of GIS to raise awareness and
support logistics (e.g., ref. 79). As well, participatory GIS, which
enables community engagement in mapping and analysis, creates
important mechanisms for empowering underserved and diverse
groups (80) and applications of Storymaps, an easy-to-use tool
for integrating maps and visualize with narratives, is putting pow-
erful communication tools in the hands of many (81, 82).
While empathy has long been an outcome of knowledge,

only recently has empathy been identified as a driving force for
research and learning, stemming from one’s curiosity or desire
to learn about the experiences of others (83). Traditionally,
curiosity has been the driver of research and empathy an out-
come that results from creation of knowledge and enables us to
take on new perspectives (84). Recently, we have observed a
shift toward empathy as more of a driver of research and as the
impetus for curiosity, at the same time enhancing skills in criti-
cal thinking, creative thinking, and collaborative discovery
(83). Empathy-led curiosity is bringing meaning to the aca-
demic work of many students and scholars and is both an
individual and collective response to systemic racism, social dis-
parities, climate-change impacts, and the global pandemic.

Simultaneous to the increase in empathy as a driver of
research, there has been growing abundance of diverse spatial
data and methods. On the surface, more data and methods
seem inherently desirable and could help to advance and diver-
sify knowledge. Yet, we see a potential tension between the goal
of advancing empathy through research that is inclusive, on the
one hand, and the nature of some emerging data and
approaches on the other. Specifically, we consider how two
aspects of GIS may be inadvertently interfering with our aims
to improve empathy: data representativeness and inference.

Data Representativeness. Abundant spatial data are creating
new opportunities for analysis and decision-making support.
Unlike data collected systematically using predetermined
sampling frameworks, much of the increase in spatial data avail-
ability is associated with opportunistic data collection from
GPS-enabled cell phones, social media, and programs that
make use of volunteered geographic information (VGI). For
example, point-of-interest datasets, like Safe Graph, compile
data on movement from millions of cell phones (85); Strava-
generated datasets from application users track bicycling and
other athletic activities (39); and OpenStreetMap (OSM) is
arguably the most successful VGI project, enabling crowd-
sourced mapping globally (86) and often more complete and
more timely than official data sources (e.g., ref. 87).

There are many benefits to big spatial data and opportunistic
data collection, but the trade-off is sampling bias. New sources
of spatial data are creating representations of phenomena that
were previously unmapped, with spatial and temporal resolu-
tions that are incredibly fine. Yet, sampling is biased toward
people who have access to technology or interest in contribut-
ing data. In the example of SafeGraph, people without phones
will be missing from the sample, and this most likely includes
children, older adults, people who are homeless or living in
poverty, and people with disabilities. In the cases of StravaMetro
and OSM, men contribute the majority of data (88, 89). Use of
VGI and other opportunistically generated geographic data raises

Fig. 2. An example GIS dashboard linking an interactive map to infographics, charts, or other indicators reporting the status of issues, measurements,
tests, work orders (from https://esriurl.com/campusdash).
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concerns about the implications of using data that undersample
people already experiencing barriers and underservice. If data
only represent the dominant culture, they cannot be used to gen-
erate knowledge or empathy for people experiencing barriers to
gaining economic, social, and political capital.
Data integration and modeling can be approaches to reducing

bias in crowdsourced and VGI datasets. GIS data integration uses
location as a universal indexing system and allows multiple and
diverse datasets to be combined to create more comprehensive
and inclusive datasets. As a demonstration, consider an example
from transportation safety, where official crash reports, represent-
ing <20% of bicycle crashes (90), can be combined with VGI
[e.g., https://bikemaps.org/ (91)] on crashes and near misses to
provide a more complete map of road safety (92). In this case,
both official and VGI data sources are missing information but
in combination are more representative. As well, modeling can be
used to reduce bias in opportunistically sampled GIS data. Using
training or truth data, it is possible to build statistical relation-
ships with a sample of data that may be biased and thus predict
spatial variation error or bias (e.g., ref. 93). Use of training data
to classify a sample has been widely applied in remote sensing for
image classification; rather than build labels from reflectance val-
ues, training data can be used to quantify spatial variation in bias.
While data integration and modeling can lead to more rep-

resentative spatial data on individual projects, to collectively
advance the 3Es the field of GIScience needs a framework for
identifying, estimating, and communicating bias in spatial
data. Researchers and funding agencies could prioritize
research that will build a generalizable framework for under-
standing sampling bias and representativeness in spatial data.

Such a framework might help us to move toward consistent
ways of documenting and reporting sampling bias, to develop
measures for evaluating change in data bias and representative-
ness, and to build a common language for dialogue on how
sampling bias limits the generalizability of our findings. Evalu-
ating assumptions and bias has always been a critical part of
scientific peer review. The shift toward developing scientific
evidence from data that are generated for nonscience purposes
should be a focus of reviews, and having a framework and lan-
guage for understanding the structures of emerging datasets
will allow us to build toward theory. Data scientists are consid-
ering error frameworks for nonspatial data, and while these
can provide a roadmap, additional dimensions and characteris-
tics of map data will require more nuanced frameworks. Rep-
resentativeness in data will likely lack a universal solution;
rather, there will patterns reflective of different social and
geography contexts from which data emerge. GI solutions may
be best focused on metalevel frameworks for understanding
the link between patterns of representation and the contextual
processes that drive them.

Inference. Much empirical work in GIScience, as in all science,
relies on the making of inferences from conditions as they are
observed on the ground. These so-called natural experiments
differ in profound ways from the controlled experiments of the
laboratory. For example, the principle of spatial heterogeneity
implies that inferences made from observations in one geo-
graphic area will not necessarily replicate inferences from other
geographic areas (53). When inferences are drawn from spatially
aggregated data, such as data about counties or census tracts,

Fig. 3. (Top) An example workforce equity
dashboard built from templates available at
https://racial-equity-community-outreach-our
community.hub.arcgis.com/pages/workforce
to help organizations communicate workforce
diversity metrics and programs as they seek
to build a more representative workforce.
(Bottom) The race and age breakout reporting
of “Facility 1” within the dashboard.
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the modifiable areal unit problem (94) asserts that those infer-
ences will change when the spatial units change—results from
an analysis of counties will not match results from an analysis of
the same data aggregated to voting districts, for example.
Many of the most compelling results of spatial analysis are

based on inferences drawn from such cross-sectional data, that is,
geographic data obtained at one point in time. Unfortunately,
the principle of equifinality asserts that the same cross-sectional
form can result from multiple distinct processes; thus, analysis of
the same data can lead to many alternative inferences, some per-
haps more empathetic than others. In research practice, then, it
may be tempting to claim that the data support a specific infer-
ence that favors some preconceived hypothesis, belief, or argu-
ment, while other possible inferences are ignored. If the goal of
inference is the generation of knowledge, then inferential errors
are a barrier to the kinds of understanding needed to grow
empathy. The link between inference and knowledge is not new,
nor is it specific to GIScience, yet as spatial data have prolifer-
ated and the use of black-box approaches to analysis have gained
traction we see greater temptation and opportunity for inadver-
tent inferential error and damage to the goal of empathy.
An excellent illustration of the need for inferential caution is

the well-known spatial analysis example of Dr. John Snow and
the cholera outbreak in London in 1854 (95). At the time the
popular belief was that cholera was transmitted through
miasma, that is, polluted and noxious air. Snow’s map (Fig. 4)
clearly showed a spatial association between the locations of the
more than 700 deaths in the outbreak and a water pump
located in Broad Street. This natural experiment led Snow to
the inference that cholera was passed through drinking polluted
water, not miasma, and a controlled experiment (preventing
access to the water from the pump) provided confirmation.
Note, however, that based solely on the map one could infer
that the miasma hypothesis was correct (the bad air being
limited to the densely populated and socially deprived Soho
neighborhood), and the map could also support a contagion
hypothesis (the original carrier being located near the pump),

or even a demographic hypothesis (the pattern of deaths reflects
the presence of some population at risk—perhaps the elderly).
The three alternative inferences might be regarded as more
complex, so the principle of Occam’s razor might be cited as
additional support for Snow. Today, Snow’s control over access
to the pump would likely not be possible. Without the ability
to conduct an intervention, even the geographer’s favorite
example of spatial pattern and inference could have been prob-
lematic. It is a reminder that we must be cautious in our efforts
at inference and be mindful that massive amounts of data will
not necessarily overcome this challenge.

While all disciplines are challenged to design studies carefully
to support inference, spatial data create some unique concerns, of
which the ecological fallacy provides an example. Suppose a posi-
tive correlation is observed between some demographic factor,
such as race, and the incidence of infection from some organism,
using aggregate data at the level, say, of the census tract. It is
tempting but nevertheless fallacious in such a situation to infer
that race is a risk factor in infection. Instead, the association has
merely demonstrated that high rates of infection tend to co-occur
with particular racial patterns. King (96) has argued that infer-
ences can be made at the individual level from aggregate data,
but only if certain mathematical assumptions can be made.

The techniques of statistical inference have their origins in
the work of agronomists and experimental psychologists, where
research is often conducted on samples of individuals or plants
that have been drawn randomly and independently from larger
populations. These techniques then allow inferences to be
made about the larger population—in short, to generalize away
from the sample. When these methods are applied to the natu-
ral experiments of GIScience two problems arise. First, the
principle of spatial dependence makes it very likely that the
individuals in a sample will be correlated, or more technically
that the number of degrees of freedom has been inflated. Many
methods of geostatistics and spatial statistics have been devel-
oped to deal with this issue. Second, it is common in GIScience
for research to deal not with a randomly chosen sample but
with the entire available set: all of the counties in the United
States, for example, or all of the census tracts in a city. In such
situations it is difficult to conceive of a larger population, diffi-
cult to see the set as randomly chosen from it, and difficult
therefore to generalize away from the study.

In summary, inference in GIScience is often, if not always,
problematic, and the investigator will frequently be faced with
a number of alternative inferences. In some cases, the choice
will be driven by some prior hypothesis or belief, and in other
cases by the use of Occam’s razor. These practices, however, are
likely to be disrupted in various ways by the 3Es. Given the
power of spatial analysis to inform, and the ambiguities that
often arise when inferences are drawn, our field requires ethical
guides to provide checks and balances on how we use data,
methods, and inference. Without ethical guardrails we run the
risk of amplifying disparities through false findings and misrep-
resentation. These risks are ubiquitous to science, but they are
especially worrisome in spatial science where the additional
dimensions of data (x, y, and t) create ample opportunities for
uncertainty.

From Ethics and Empathy to Equity

With professional scientific practice governed by codes of desir-
able behavior, driven further by a sincere, empathy-led curiosity
to bring societal meaning to academic work, it follows that a
major outcome of that work would be to achieve equity. Equity

Fig. 4. Map of deaths from cholera in the outbreak of 1854 in the Soho
area of London (from public domain imagery available at https://esriurl.
com/johnsnow). The work of Dr. John Snow, based in part on this map,
ultimately helped determine the role of the water pump (red circle) in the
spread of the outbreak.
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can be said to exist when everyone is able to achieve equal out-
comes through equal access to opportunities and resources (97)
and to foster a clear sense of belonging once those opportunities
or resources are obtained. It is further defined by the Annie
Casey Foundation (98) as an inability to predict outcomes
based solely on race, ethnicity, or other defining characteristics,
as for example when no group has a clear advantage in pre-
dicted high-school graduation rates. Racial equity in particular
means that a person’s opportunities are not determined by their
physical appearance or racial background. As such, equity dif-
fers from equality. While equality exists when everyone is
treated in the same way, equity places the emphasis on poten-
tial, and occurs when everyone is able to achieve the same out-
comes. Equity always considers past history and acknowledges
the plethora of existing systemic barriers, with the aim of lifting
everyone to the same level, again with that sense of belonging.
The Black Lives Matter movement has created a new urgency
and more willingness to respond to calls for equity in science,
academia, and society (e.g., refs. 43 and 99–101). Authentically
supporting equity requires change. The issue is complex and
will be a challenge, but it is high time. In this section we dis-
cuss the potential role of GIScience in achieving equity through
social justice and its potential for democratizing access to infor-
mation technology.

Social Justice. As an interdisciplinary field covering physical
and social sciences as well as digital humanities, GIScience is
increasing its emphasis on equity and social justice, perhaps
more than most other technology-centric disciplines. Social jus-
tice can be defined as the mechanisms by which we construct
equality (102) and is closely related to equity, in part, through
the connection between race and space as key predictors of
inequity (e.g., ref. 103). It follows that the reliance on GI and
associated methods and tools to represent and analyze issues of
social justice such as environmental racism, homelessness,
income inequality, unemployment and housing inequality
(especially due to COVID), opioid abuse, blight, community
policing, access to public transit, food deserts and more, includ-
ing the derivation of actual quantitative indicators, is necessary,
logical, and appropriate (97).
Achieving social justice requires in part an understanding of

how current systems have created inequities and injustices over
time, and once understood we can identify the role we play
within the system and what we can do to change it. By collect-
ing knowledge and data we can connect the dots between
oppressive systems and damaging outcomes. Those who are
most impacted by social injustices such as racial disparity and
inequity should also be part of the conversation to guide us
toward the right questions and help us to avoid repeating old
mistakes (104). They must be at the table in helping to develop
the most innovative solutions. It is therefore critical that the
GIScience community itself become more diverse, and work
with changemakers (e.g., from local communities impacted by
racial inequities) to round out the full picture of injustices at
play and to accelerate positive change. In fact, local communi-
ties may even develop their own practical solutions that can be
scaled to a level that government agencies can broadly use (e.g.,
refs. 105 and 106).
It is now possible to apply a social-justice lens more directly

to maps and spatial analytics, to locate populations of concern,
reveal and understand inequities in experiences and barriers to
equality within a community, and support informed and equi-
table decision-making. The preparation of GIScience to acceler-
ate social justice builds on a foundation of work aiming to

improve decision-making and the well-being of all people and
the planet. For example, an established application domain in
GIScience is political redistricting, where the objective function
is prescribed and “getting it right” is driven by concerns that all
people, regardless of social capital, have voice (107, 108). Other
well-established areas include mapping barriers to meeting life’s
basic needs, such as accessing food (109) and green space
(110). With the democratization of data (see next section),
changemakers, with basic GIS skills, can build on the legacy of
GIScience and accelerate social justice interests by leveraging
multiple datasets and creating robust and comprehensive assess-
ments for and with communities (e.g., see the various methods
explained in ref. 111).

Given that GIScience has such close ties to industry, a grow-
ing number of companies in this space, both large and small,
have launched substantive social-justice initiatives, leveraging
significant internal resources as well as close partnerships with
organizations such as the National Association for the Advance-
ment of Colored People (112), the Dolores Huerta Founda-
tion, the nonprofit design firm Territorial Empathy, and the
W.K. Kellogg Foundation (WKKF). The vision shared by
WKKF and the GIS company Esri, as one example, is to
develop community-action hubs to inspire changemakers to
lead conversations about racial inequity, foster collective under-
standing of the issues facing the community, equip these
changemakers with the tools to develop solutions, and broaden
and activate networks for implementation and positive change
(113). In addition, on a broader industry front, Microsoft now
has an Environmental Justice team with an emphasis on
nature-based solutions for communities of color and various
geographic approaches.

Also, while many science, technology, engineering, and
mathematics (STEM) disciplines are aiming to diversify train-
ing programs, the breadth of applications of GIScience is a
powerful aid in introducing diverse students to STEM; there
are a variety of entry points to GIScience, and this creates
access that is difficult to duplicate in other STEM fields. There
are also diverse destinations for people with skills in GIScience,
including all workforce sectors (government, industry, acade-
mia, and nonprofits) and many applied areas (transportation to
health), and entry points are available for people graduating
from a range of programs (technical program to PhDs). The
variety of careers for people trained in GIScience means that
training diverse students will have impact at scale (e.g., ref.
104). On the way to achieving this companies and organiza-
tions need to remain intentional in interning and hiring these
students, investing in partnerships with Historically Black Col-
leges and Universities (HBCUs), Hispanic-Serving Institutions
(HSIs), and Tribal Colleges and Universities (TCUs) along the
way, and showcasing their diverse staff in conference plenaries,
workshops, and demonstration sessions. Along this journey, it
will be important to acknowledge the uneasy history with GI
and racial injustice and address the barriers that have resulted
in relatively few geography, cartography, and GIScience pro-
grams at minority-serving institutions.

Democratizing Access. Given the power of GIScience, there are
equity implications for who has access to data, methods, soft-
ware, and solutions. In the past two decades, GIScience has
made significant gains in improving access to location-based
methods through the creation of versions of software that serve
diverse communities of users. In the early 2000s academics
called for open-source GIS tools (e.g., ref. 114), and in response
communities developed packages like QGIS (115) and R spatial
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(116). By building communities of support for open-source
GIS software, the field created no- to low-cost solutions that
have improved access to GIS methods (e.g., ref. 117). However,
open-source GIS tools have also been a powerful mechanism for
building community through sharing, customizing, and itera-
tively building new solutions. Using open-source platforms,
researchers have been able to implement and deploy cutting-
edge methods that others can build upon to advance GIScience
more rapidly. Open-source tools are also providing practical
support for scientific reproducibility and replicability, as shared
code aids documentation and enables the intricacies of imple-
mentation to be evaluated and repeated by others (118).
The continued rise of open source into the 21st century has

brought further clarity as to what “open” should really mean.
“Open” is used with regard to software and services in the sense
of open source, but also open standards, open data, and open
access have now become equally important, especially with
regard to equity. Also, there is further realization, especially
within the GIScience community, that “open” may not always
mean “free.” To wit, although an organization may produce
open-source code, it may still sell access to the solution built
with that code or charge fees for the technical support and
other services needed to maintain the solution. In the academic
community, technical support for in-house, grassroots open-
source projects often and suddenly disappears with the depar-
ture of the graduate student, postdoc, or faculty member who
originally championed it (or when the grant money runs out).
As such, equally important is the clarification that a commer-
cial, for-profit company can also be open by 1) creating,
leveraging, and contributing to open-source coding projects;
2) providing avenues to directly read, import, and export data
within its platform in hundreds of formats; 3) supporting the
hundreds of geospatial standards currently in use (including
those of the Open Geospatial Consortium and the Interna-
tional Organization for Standardization); 4) providing open
(and often free) access to scores of application programming
interfaces (APIs) and software development kits (SDKs); and
even 5) providing its software, web solutions, and documenta-
tion support in many different languages, including those that
read left to right and right to left, and use either a period or
comma for a decimal. This is all with the investment in profes-
sional quality control and quality assurance to ensure that the
software performs as advertised. This must also pervade across
continued versions and security patches, and on a variety of
operating systems, database management systems, open-source
web servers, external software programs, and related technolo-
gies. Hence, we argue that the opposite of “open source” is not
“commercial.” The opposite of “open source” is “proprietary.”
Further, an open, interoperable, and standards-compliant plat-
form strategy turns out to be not only an expression of corpo-
rate social responsibility but also a good business model (119).
Easy-to-use GIS software, that is professionally coded and

supported, has been important in democratizing access to GIS
methods. Just as statistical software based on a graphical user
interface (GUI) created massive uptake of statistics (120), low-
ering knowledge barriers has created access. Indeed, access to
these methods (also known as workflows) is emerging as yet
another feature of openness (121) and is also an important
ingredient in the replicability of GIScience (52). Commercial
software platforms such as ArcGIS now also routinely include a
number of free application templates and solutions that can be
easily configured by the user. Continuous improvements to the
user experience (UX) via the user interface (UX/UI), as well as
to the performance of the software, exposes more capabilities

while also simplifying the workflows that help researchers learn,
use, share, and reuse methods and analyses. Distributed proc-
essing workflows enable reproducible GIS methods that lever-
age all manner of web services and other features of modern
cloud and web browser technologies (122). GIS analytical
methods can even leverage the simplest of building-block geo-
processing tools and preexisting web services that do not
require any coding by the user. More advanced researchers can
combine these simpler methods with task-specific analytical
workflows that use specific programming routines built using
custom Python or R libraries. All this, coupled with detailed
documentation, a large catalog of low-cost or free online educa-
tion classes and tutorials (including MOOCs), and online user
support communities, is lowering the barrier of entry to global
scientific research production, sharing, and replicability.

Increased access to spatial data is one of the most obvious
ways in which GIScience is being democratized. Spatial data
are more abundant, but with growing availability of low-cost or
free datasets they are also more accessible. An important exam-
ple of the benefits of making spatial data accessible is the
USGS Landsat program, which has captured imagery since
1972 and switched from a fee-based to free-dissemination
model in 2008 (123). Compared to 2009, in 2017 downloads
of Landsat imagery had increased 20-fold to 2 million images
(124). In fact, Esri downloads and processes hundreds of new
Landsat scenes nightly and provides them in simple viewers on
the web so that nonspecialists can better understand and use
this valuable resource (125). Rather than just the picture or
cached image of the Landsat scene, the view contains the full infor-
mation content as a dynamic, high-performance image service that
performs on-the-fly processing and dynamic mosaicking of Land-
sat’s multispectral and multitemporal imagery (e.g., ref. 126). Esri’s
more dynamic tool allows the user to view the different bands, as
well as the spectral and temporal profiles. While more people are
able to use Landsat, the scale of studies has also increased (i.e.,
global mapping and monitoring of forests and water), enhancing
societal benefits of this publicly funded data archive.

Other official data are being made more accessible, in part
because web-based GIS has made it easier for research laborato-
ries and agencies to create portals for data sharing. For example,
it is common for cities to have open data portals, where data,
typically generated for operations and planning, can be shared.
In research laboratories, GIScientists are also using configurable
web-application templates to make it easy for users of all abili-
ties to make their own applications based on the foundational
data provided by the laboratory, which will in turn lead to the
use and adoption of those data, such as, for example, the use of
imagery for burn-scar detection to create a baseline for forest
regeneration and vegetation succession after a fire (e.g., ref.
127). Yet another way to increase the use and value of both
data and information is via the aforementioned dashboards.
These have an additional advantage in providing near-real-time
displays for monitoring instruments, events, or activities, often-
times for “at-a-glance” decision-making, providing key insights
on just a single screen.

Crowdsourcing, VGI (128), and participatory GIS are also
mechanisms for democratizing creation and access to spatial
data. Crowdsourcing and VGI are approaches to data collection
that rely on people to contribute data based on their behavior
or observations. These terms can be used synonymously,
though typically crowdsourcing refers to a large number of peo-
ple contributing data and VGI indicates data collected as map
coordinates. Participatory GIS uses tools similar to VGI but
usually includes some type of community empowerment.
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Crowdsourcing, VGI, and participatory GIS approaches to the
creation of spatial data provide an opportunity for nonexperts
in GIS to engage in mapping, share knowledge, and create
data. For example, OSM, arguably the most successful VGI or
crowdsource mapping project, has been used as a tool for com-
munity engagement and empowerment. As discussed in Data
Representativeness, there are a growing number of businesses
that generate commercial data products from mobility data
crowdsourced from smartphones, often without full knowledge
of the smartphone user. These datasets can be costly and can
create data haves and have nots, based on financial resources,
access to technology, or social capital. Users are becoming more
aware of this practice by companies and educating themselves
about shielding their personal data and movements. Activist
employees in some of these companies are speaking out on the
issue as well, seeking to change the practice and the company
culture that engenders it (129).
One might consider the vast change in the quantities of spa-

tial data a disruption in GIScience and more generally in society.
As with any disruption, new opportunities are created for those
most ready to pivot or take advantage of new circumstance.
While there is a tendency to link greater data access to more
equitable access, unfortunately access differentially empowers
those that hold the knowledge and skills needed to utilize data.
An unintended consequence of the disruption associated with
spatial data availability is that it may put people lacking data sci-
ence farther behind. A good analogy is high-performance com-
puting (HPC), where the power to make use of the technology
tends to widen the gap between the HPC-familiar and the rest.
It is interesting to consider how the disruption of the 3Es coa-
lesce with the disruptions associated with advancing technology
and increasing spatial data, which will create technology as
advances in data and technology have the potential to widen
gaps yet the 3Es require new ways of operating to reduce gaps.

Discussion and Conclusion

The broad use of GIScience methods and data comes with a
responsibility for leadership on the 3Es. As the creators of spatial
data, methods, software, and a workforce that will infuse many
disciplines and sectors, how we do our work and measure success
matters. As we take the pulse of 3E drivers and the response to
them by GIScientists, we see encouraging signs of a community
mobilizing for change. The list of professional development net-
works, professional societies, and individual initiatives mentioned
at the beginning of the paper is a testament to progress in the
3Es. Here we highlight additional actions that may accelerate
authentic change within the field of GIScience and beyond.

Humility. Growing ethics, empathy, and equity in GIScience is a
process that will require humility. We will get it wrong and
make mistakes, and then we must commit to doing better. One
of the authors (T.A.N.) has been working on research to reduce
sampling bias in data (39). The research goal is to increase the
representativeness of bicycling data by correcting bias in data
generated by a fitness application, which oversamples bicycling
patterns of men and of people aged 30 to 50 y. Data-correction
models have been built in cities that had existing reference data,
all of which have predominately White populations. In retro-
spect, the use of available training data has led to reinforcing sys-
temic racism by building better data only in White communities.
It can be painful to admit that our approach to research is part
of the problem, but the reason we need to accelerate the 3Es is
that the approaches we were trained in have left people behind.

Humility is required to admit we got it wrong, and courage is
required to point out when others are designing or conducting
research that reinforces exclusion. GIScientists, and ideally all
researchers, must have the expectation that our colleagues will
point out the potential of our work to reinforce systemic biases,
and we must commit to doing the same for them. GIScience-
related grants and journals can lead by explicitly requiring
reviewers to evaluate papers in the context of the 3Es and to
note any potential for unintended consequences in the work.

Broadening Measures of Excellence and Success. Focusing on
equity will require that we broaden measures of excellence and
success. In a recent graduate seminar taught to incoming stu-
dents at the University of California Santa Barbara, during
introductions nearly every student identified a hope that their
work would positively impact the world beyond academia. The
incoming students’ values are a reminder that the emerging gen-
eration of talent will not be satisfied with careers based only on
traditional measures of academic success. To attract the best tal-
ent and make space for the additional effort required to advance
the 3Es, GIScience must grapple with how to value more
diverse pathways. Contending with how to broaden measures of
excellence is not unique to GIScience. As mentioned in the
Introduction, NSF in 2010 began requiring the inclusion of a
“Broader Impacts” section to grant proposals, signaling the
value of socially impactful research. However, a barrier to
broadening definitions of excellence is that impact can be hard
to measure. At present, we often leave it to individuals to make
value judgments about nontraditional measures of excellence
and success. A starting point is to demonstrate that activities
such as community engagement and knowledge translation have
value, and this is happening. For example, the Canadian Insti-
tute for Health Research funds knowledge translation, or the
conversion of basic research into actionable solutions, creating
funding for students and researchers to connect with decision-
makers. Funding knowledge translation also creates a workforce
that is able to link basic research to decision making and creates
a mechanism for valuing different types of academic work.

Diversify Your Network. Addressing pressing and current issues
related to health, social injustice, and climate-change impacts
requires creativity and diverse perspectives. Now is the time for
all hands on deck. Both generalists and specialists from industry,
government, and academia are greatly needed. Also needed are
people trained in STEM and those deeply understanding cul-
tural context. In other words, there is no time for silos in GIS-
cience; more can be achieved and faster by working together.
Interdisciplinary collaboration is not new in GIScience, but this
article challenges GIScientists to accelerate solutions by regularly
extending themselves to people working in diverse fields. If not
having had the pleasure of asking a colleague to explain their jar-
gon recently, it might be time to consider growing one’s network
or to consider the diversity of that network. If a team is homoge-
neous in race, gender, or sexual identity, consideration should be
given to how to grow that network to include more diverse col-
laborators. The time is past for waiting for the pipeline to diver-
sify itself. There must be a more intentional building of teams
that will support the training of more diverse people, which
means seeking out diverse team members. In growing your net-
work, it is important to be aware of the burden that can be
placed on people when the same individuals are repeatedly asked
to join teams. One may consider finding new people, by asking
the handful of go-to people for recommendations. Buddy
approaches, where the core is asked to invite another scholar to
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join them on the team, can simultaneously grow networks and
reduce the professional exhaustion experienced by scholars from
underrepresented groups when they are consistently the only
voice in the room. Social media also provides a low-burden
approach to growing networks and to learning what interests
scholars of different races, genders, and disciplines.

Inclusive Education and Workflows. Creating multiple path-
ways into GIScience education can be one way to create inclu-
sion in the field. Education in GIScience, as with many STEM
fields, typically relies on a series where lower-level courses
become prerequisites for later courses. When technical skills are
required, it makes sense that knowledge builds. However, pre-
requisites can create barriers to inclusion. For example, while we
delight in students graduating from high school knowing they
want a career in GIScience, it is a relatively rare trajectory and
students that discover the benefits of GIScience late can be chal-
lenged to catch up on prerequisites. Summer intensives, boot
camps, and workshops in programming, statistics, remote sens-
ing, and GIS can serve multiple benefits, including catching
students up on prerequisites and creating more access to GIS.
We also need communities that know how to support diverse
cultural contexts of students. Organizations such as the afore-
mentioned NorthStar (https://gisnorthstar.org/), which supports
and connects people of Black/African diaspora, are important
groups to build partnerships and to grow inclusion and diversity
in the field. In addition, designing workflows, where data man-
agement and analysis steps are clearly laid out, can allow broader
utilization of advanced methods and spatial data. Workflows are

a practical approach to reducing knowledge requirements needed
to benefit from technical advancements and can broaden the
equitable utilization of spatial data.

The field of GIScience must commit to accelerating the 3Es; it
is the right thing for people and for the planet. It is the right thing
for the culture of science and it will require fundamental rethink-
ing of some of the traditional ways we operate. It is important for
students, postdocs, and for serving as many segments of society as
possible. Indeed, when we interact with emerging scholars and
professionals in GIScience we are optimistic. A new generation is
leaning into the 3Es. They are a generation that has grown up
with knowledge at their fingertips and seem focused on how to
leverage knowledge for impact. Amid rapidly advancing technolo-
gies and the ever-broadening reach of our field it is an exciting
time to be a GIScientist, but continuing to attract talent will
require programs, institutions, and industries committed to grow-
ing the 3Es, and opportunities for emerging GIScientists to con-
tribute to a more ethical, empathetic, and equitable world.
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