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Abstract
Increasing evidence suggests that metal dyshomeostasis plays an important role in human

neurodegenerative diseases. Although distinctive metal distributions are described for

mature hippocampus and cortex, much less is known about metal levels and intracellular

distribution in individual hippocampal neuronal somata. To solve this problem, we con-

ducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on

frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two

regions of the hippocampus: dentate gyrus (DG) and CA1. Comparing average metal con-

tents showed that the most abundant metals were calcium, iron, and zinc, whereas metals

such as copper and manganese were less than 10% of zinc. Average metal contents were

generally similar when compared across neurons cultured from CTX, DG, and CA1, except

for manganese that was larger in CA1. However, each metal showed a characteristic spatial

distribution in individual neuronal somata. Zinc was uniformly distributed throughout the

cytosol, with no evidence for the existence of previously identified zinc-enriched organelles,

zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in

endoplasmic reticulum and/or mitochondria. Iron showed 2–3 distinct highly concentrated

puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analy-

ses demonstrate that primary cultured neurons show characteristic metal signatures. The

iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal

distributions observed in mature brain structures are likely the result of both intrinsic neuro-

nal factors that control cellular metal content and extrinsic factors related to the synaptic

organization, function, and contacts formed and maintained in each region.
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Introduction
Metallomics is a rapidly evolving and growing science fueled by a new awareness of the roles
played by various metals in the physiology of living tissues, microorganisms, and in human dis-
ease [1, 2]. The development of quantitative tools such as synchrotron radiation X-ray fluores-
cence (SRXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS),
and proton induced X-ray emission (PIXE) are allowing accurate and precise measurements of
the total metal contents and topography of tissues, single cells and organelles [3–6]. The hippo-
campal formation has a striking and much studied metal distribution [7–10] that reflects its
highly ordered and laminated structure and synaptic organization [11]. Zinc is concentrated in
the hippocampal mossy fiber pathway and begins to accumulate there during early develop-
ment [12]. The mossy fiber pathway originates in the dentate gyrus and projects into the hilus
and stratum lucidum of CA3 and gives the mature rodent hippocampus its characteristic and
well documented zinc profile with Timm’s stain [7]. The mossy fiber boutons contain glutama-
tergic and zinc containing vesicles. This zinc results in higher levels of zinc in the dentate gyrus
and CA3, generally higher than any other region of the brain. This zinc is responsible, at least
in part, for the selective vulnerability of the CA3 region to ischemia, stress, epilepsy, aging, and
neurodegenerative and neuropsychiatric disorders [13, 14]. Manganese and iron show spatial
correlations with zinc as determined by SRXRF of hippocampal slices [10, 15, 16]. While the
characteristic high zinc levels of the CA3 are primarily the result of zinc accumulated in the
boutons [7], it is not thought that manganese or iron accumulates in synaptic vesicles. It is gen-
erally believed, but not proven, that neurons of the CA1 and CA3 contain similar total levels of
zinc and other metals. Thus, we sought to determine if the metal content and subcellular distri-
bution observable in individual cultured primary neurons derived embryonically from these
regions would be consistent with this belief. In the present study, we determined the average
metal content of individual soma and subcellular distribution of several metals using cultured
primary neurons derived from the hippocampal formation and compared those with neurons
derived from the cortex, which have been much more extensively characterized [17, 18].

Methods

Primary Neuron Cultures
The cultures were prepared using custom-ordered cryopreserved SPOT™ kits distributed by
the University of Illinois Research Resources Center (http://www.rrc.uic.edu/portal/SPOT_
Culture_Kit). Kit production was approved by the Office of Animal Care and Institutional Bio-
safety at the University of Illinois at Chicago. The cortical and hippocampal tissue used for pro-
duction of these kits was dissected from the brains of E19 Sprague-Dawley rats. To separate the
CA1 region from the dentate gyrus (DG), the hippocampi were unfolded and divided longitu-
dinally along the border between the CA2 and CA3 regions. The cells from SPOT™ kits were
seeded on silicon nitride windows (SiN, Silson, Ltd. UK) that were coated with a polyethylenei-
mine [17] solution to improve cell adherence. To culture the neurons, neurobasal medium sup-
plemented with 2% B27 and 2 mM glutamine was used. The cells were cultured in a humidified
incubator maintained at 37°C and 5% O2, 5% CO2 and 90% N2 atmosphere [19, 20].

Freezing and Cryogenic Storage of Hydrated Neurons
After 4–6 days in vitro when process growth had mostly stabilized, experimental manipulations
were performed. The SiN windows with neurons attached were carefully lifted from the culture
dish and rinsed two times by gently dipping into an Eppendorf tube containing 1 ml of freshly
prepared ice-cold wash buffer (154 mMNaCl, 5.6 mM KCl, 26 mM NaHCO3, 100 μM EDTA,
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chelex treated, pH 7.4) [21]. Excess liquid on the backside of the window (non-cell side) was
removed by blotting with filter paper. The windows were then attached to the tweezers sup-
plied with a FEI Vitrobot Mark IV plunge freezer. Plunge freezing was carried out by plunging
cells into liquid-nitrogen cooled liquid ethane following the manufacturer’s instructions with
chamber set at 30°C, 100% humidity, and with the following blotting parameters: blot time = 2
s, blot force = 0 mm, and blot total = 1.

Subsequently, SiN windows were transferred from liquid ethane to liquid nitrogen and
detached from the tweezers. The frozen hydrated cells on SiN windows were imaged using a
20x objective in an integrated cryo light microscope (Nikon 50i light fluorescent microscope
equipped with an Instec CLM77K cryostage) around -160°C. Coordinates for neurons of inter-
est were recorded relative to corners of the SiN window. After observation, SiN windows were
vertically inserted into a custom window holder with defined orientation and stored in liquid
nitrogen until they were retrieved for SRXRF imaging.

Synchrotron Radiation X-Ray Fluorescence (SRXRF) Analysis of
Frozen Hydrated Single Neurons
The equipment required for SRXRF analysis is available as part of the general user facility at
the Advanced Photon Source (APS, Argonne National Laboratory, Argonne, IL) beamline
2-ID-D. Upon mounting onto a custom holder in a liquid nitrogen bath, the neuron-contain-
ing SiN window was quickly placed in the center of a Cryojet (Oxford Instruments) that con-
vectively cooled the sample with cold nitrogen gas maintained at 100°K. To prevent frosting of
the sample, the cold nitrogen jet was surrounded by a dry nitrogen jet at ambient temperature
placed inside a chamber with a continuous flow of dry nitrogen. A monochromatic X-ray
beam was focused on the specimen using a Fresnel zone plate. Energy of the incident X-ray
beam was 10 keV allowing excitation of zinc, potassium, sulfur, and other transition elements.
A scan area containing neurons of interest was located by the coordinates obtained from the
observation in cryo light microscope and further defined by a coarse 2-D scan viewed using the
MAPS software (see below). A final high resolution scan was performed with a pixel step size
of 0.25 μm and a 250 msec dwell time.

SRXRF Data Analysis
Because the X-ray fluorescence energy is specific for each element, the spectrum provides
unambiguous information about elemental contents of the scanned neuron. Spectral fitting
and background correction of the elemental fluorescence peaks were performed as described
previously [22]. Elemental fluorescence peak signals were calibrated with a NIST (National
Institute of Standards and Technology, Gaithersburg, MD) standard prior to a scan session.
The detector has very low noise which enables it to count individual XRF photons. The main
contribution of analytical variance is photon noise from Poisson statistic, which is sqrt
(XRF_count) and is generally 5% or less.

Analysis of the raw data 2-D image was performed with the MAPS software [23]. The
MAPS software has a drawing tool that allows an ROI to be manually drawn around any region
in the scan and quantified. In addition the MAPS software allows line scan data to be obtained
from 2-D scans by manually defining the limits of a single line drawn on the scan image. The
MAPS software reports fluorescence intensities for each element along the trajectory of that
line.

A variable amount of extracellular metals unavoidably remains after the washing proce-
dures, this sample background was estimated for each SiN window using the following proce-
dure. The high resolution 2-D scan for potassium was used to identify a region without cellular
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material. This region was carefully outlined manually as a region of interest (ROI) and the aver-
age metal content calculated (μg/cm2) for each metal analyzed. This value was subtracted from
the average metal content obtained from ROIs drawn around the soma or subcellular struc-
tures of the same scan. This method is utilized since the sample background ROI was subjected
to all the same experimental treatments as regions composed of cellular material.

Statistical Analysis
As SRXRF analysis of freeze-dried primary cortical neurons has been replicated many times by
the authors [17], considerations of efficient allocation of resources and beamtime guided the
decision not to generate biological replicates of the studies reported here. Still, the authors are
confident that a random sample of cells from a single culture (as done in these studies) repre-
sents the characteristics of the population as a whole. Based on our experience, biological repli-
cates generally have similar characteristics. It is reasonable to assume that the characteristics of
individual neurons on a coverslip will vary independently and variability will necessarily be
due to various factors of the culture conditions (both extrinsic and intrinsic to the neurons)
acting independently—this strongly predicts a Gaussian distribution of measured parameters.
However, because of the small N of our data, we cannot know with certainty that our data set is
Gaussian. Thus, we used a nonparametric test—Kruskal-Wallis test with Dunn's Multiple
Comparison Test to test significance (GraphPad Prism version 4.03 for Windows, GraphPad
Software, San Diego California USA). In figures where the mean average metal contents of
ROIs are compared, these data were derived from manually drawn ROIs. The number of indi-
vidual neurons or ROIs used to calculate the mean is indicated in the figure legend.

Results

Subcellular Distributions of Metals Observed in the Soma of Cultured
Primary Neurons Derived from the Hippocampus
Synchrotron radiation X-Ray fluorescence (SRXRF) is a powerful technique enabling estimates
of the average cytoplasmic content and generation of topographical maps (2-D scans) of the
spatial distribution of most biologically important elements in individual cultured neurons [17,
18, 24, 25]. As outlined in the Methods section, primary neurons were grown on SiN windows
for several days in vitro, then plunge frozen, stored cryogenically and were maintained frozen
and hydrated during X-ray analysis. Shown in Fig 1A–1F are 2-D SRXRF scans from a well pre-
served region of a SiN window supporting a culture of primary neurons derived from the den-
tate gyrus (see Methods) region of the hippocampus. Shown in Fig 1K is a light microscopic
image of dentate gyrus neurons prior to plunge freezing. Although the neurons photographed
here are not the same as those shown in Fig 1A–1F, the image is taken from the same culture
maintained on SiN. Frozen hydrated cultures from the CA1 region and cortex were scanned as
well and all images used for data analysis are included in S1 Fig.

Below the top row of images are shown quantitative data (Fig 1G–1J) expressed as μg/cm2,
derived from a line scan drawn across the soma of a single neuron that purposely included
the nucleus (see image 1A with red arrow for approximate location of the line scan). Fig 1A
shows the 2-D scan obtained for potassium. Potassium is thought to be uniformly distributed
throughout the cytoplasm and nucleus and is present in high concentrations such that detect-
able fluorescence is obtained even from processes of very small caliber. The potassium scan
shows that at the moment of plunge freezing, cellular structures including the complete process
network were intact and well preserved throughout the X-ray analysis procedure. Fig 1B shows
the 2-D scan for sulfur and adjacent to that is the 2-D scan for zinc (Fig 1C). Like potassium,
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the sulfur scan is useful, as sulfur is generally accepted to be uniformly distributed throughout
the neuron as well. Thus, the sulfur scan, like potassium, generally tracks with the neuron mass
profile and thus cellular thickness. By comparing the zinc 2-D scan with potassium and sulfur,
it is reasonable to conclude that zinc is uniformly distributed throughout the cytoplasm. The
region of the neuron with the largest content of zinc is the nucleus, which overlays well with
the potassium and sulfur profiles. These data suggest that the broad peak in zinc, potassium
and sulfur content observed in the line scan mostly reflects the thickness of the neuron being
scanned. Similar conclusions regarding interpreting SRXRF 2-D scans have been arrived at by
others [10, 26]. This conclusion is supported by the data shown in Fig 1G. Here the line scans
for potassium and zinc are overlaid. Note that the line scan profiles of each element closely
overlap; a reasonable conclusion being that the profiles mostly outline neuronal thickness.
However, zinc does show examples of small localized enrichment in the nuclear region.

Fig 1. 2-D scans and line scan data derived from SRXRF analysis of frozen hydrated primary neurons cultured from the dentate gyrus. The
relative intensity rainbow scale used is shown below the potassium scan (A)–red is highest, black is lowest– μg/cm2. Image size calibration is shown
as a black bar, below the potassium scan. (A) Potassium, (B) sulfur, (C) zinc, (D) calcium, (E) iron, and (F) manganese. (E1) Shows a blow-up of the
region outlined in the white box in E illustrating iron puncta and N represents the approximate location of the nucleus. In E1 the scale is changed to
allow better visualization of the iron distribution in the soma. Using this scale, the iron puncta are over-saturated (see white arrows pointing to red
puncta). Shown in the potassium 2-D scan (A) is a red arrow that illustrates the location and direction of the line scan that produced the plots: (G) zinc
and potassium; (H) calcium and potassium; (I) iron and potassium; (J) iron, calcium and zinc. The maximum analytical variance calculated for these
data: K = 0.13 μg/cm2, Ca = 0.03 μg/cm2, Fe = 0.01 μg/cm2, Zn = 0.005 μg/cm2. Note that the 2-D scans and line scan data are not sample
background corrected. Sample backgrounds for this SiN window were calculated as (μg/cm2): potassium = 0.194; sulfur = 0.034; zinc = 0.005;
calcium = 0.02; iron = 0.009; and manganese = 0.004. (K) Light microscopic image of dentate gyrus neurons prior to flash freezing. Images were taken
using 20x NA 0.3 Zeiss LD A-Plan Hoffman Modulation Contrast lens and Zeiss Axiovert S100 microscope controlled by Zeiss Axiovision v. 4.9.1.0
software. Bar equals 50 μm.

doi:10.1371/journal.pone.0159582.g001
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Calcium, unlike zinc, shows peri-nuclear regions of higher fluorescence intensity and sub-
cellular distribution with clearly discernable peaks (Fig 1D & 1H). The subcellular location of
higher calcium fluorescence would likely correspond with regions generally ascribed to the
mitochondrial network and endoplasmic reticulum, as shown by the overlaid line scans for
potassium and calcium (Fig 1H). Since the calcium level in the nucleus was similar to the level
found in non-peak areas of the cytosol and it is known that the volume of the nuclear region is
greater than the cytosolic region, these data suggest that the average concentration of calcium
was less in the nucleus.

Iron was strikingly different when its subcellular distribution is compared with either zinc
or calcium ion (see Fig 1E, 1I & 1J). Fig 1E and 1E1 show iron distributions. Iron, while having
a uniform fluorescence in the cytoplasm and nucleus, was found in puncta in a peri-nuclear
location with much higher fluorescence intensity. Fig 1E shows the 2-D scan scaled to the
entire range of iron values, whereas Fig 1E1 is a blow-up of the region defined by the box in Fig
1E, scaled so that the distribution of iron in the soma can be better visualized. Using such scal-
ing, forces iron puncta to be over-saturated in intensity (see white arrows pointing to red
puncta). It’s interesting to note that the average iron contents of measured somata were similar
when compared with average zinc contents of the same somata. This indicates that much of
the total iron content of an individual neuronal soma is contained within puncta. This is diffi-
cult to discern from the 2-D scans (compare Fig 1C with 1E), which are scaled to the fluores-
cence intensity range of each individual image, and is better demonstrated when the line scans
are overlaid (see Fig 1J). Iron levels were similar when comparing the nucleus with the cyto-
plasm (ignoring iron puncta—compare line scans in Fig 1I with 1J). This finding suggests that
average iron concentration, like calcium, is less in the nucleus.

To better visualize the correlation between line scan data plots and cellular structure a sche-
matic is shown in Fig 2. Here is shown a drawing of a single neuronal soma. Note that the
region of greatest thickness is the nucleus. Also shown is the location of an iron punctum.
Above the drawing we placed the data from Fig 1I and scaled the x-axis to match the drawing.
It can be seen more easily how fluorescence and the calculated average contents of uniformly
distributed elements like potassium, sulfur, and zinc would follow the contour (mass) of the
soma, in contrast to metals such as iron and calcium that do not.

Finally, a 2-D scan for manganese is shown in Fig 1F. Manganese is one of several trace met-
als that include chromium, cobalt, copper, and nickel, which can be detected in primary cul-
tured neurons by either inductively coupled plasma mass spectrometry or SRXRF [17]. As is
typical of all the trace metals just listed, Fig 1F shows that manganese levels are just barely
detectable above background fluorescence by single cell SRXRF analysis. Thus, there is little
topographical information that can be gleaned from 2-D scans of trace metals, still cellular con-
tent in the soma was measured and compared with the abundant metals and other trace metals
in the same defined region of interest (see Figs 3 and 4 below). Data for other trace metal levels
detectable by SRXRF were collected but levels were close to sample background.

Analysis of the Average Metal Contents of Cultured Primary Neurons
Derived from the Hippocampus and Cortex
Estimates of average metal content (ng/cm2) within a single neuron soma or subcellular region
were obtained by manually outlining a region of interest (ROI) on a 2-D scan using the MAPS
software (see Methods for more detail). Expressing average metal contents as ng/cm2 is the
direct read-out of surface scans performed in the x-y plane. An estimate of concentration can
be made using an average value for the volume of the somata of cultured neurons. It is often
reported that the average volume of a cultured neuron soma is about 1,000 to 2,000 μm3
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(somewhat smaller than cells in intact tissues). Converting the average total zinc content of
neuron somata determined in the present study to number of zinc atoms per soma, consistently
yields a number between 100 and 200 million atoms. This would equate to an average zinc con-
centration of about 100 to 200 μM for a neuron soma with a volume of 1,000 μm3, consistent
with previously published reports [27, 28]. The ROIs outlined manually included either a single
neuron soma or iron puncta (iron puncta were described above in the subcellular analysis of
metal distributions). Data were collected from primary neurons derived from the dentate gyrus
(DG) and CA1 regions of the hippocampus and the cerebral cortex (CTX). Fig 3 shows that no
significant differences were found when comparing the zinc, iron, or copper contents in the
soma of primary cultured neurons derived from these three brain regions. However, when
comparing manganese content across these three brain regions, the observed average manga-
nese levels in neuronal soma derived from CA1 were significantly greater than DG. Using the
estimate described above for average soma volume, the average cellular concentration of man-
ganese would be in the range of 1 to 10 μM. Although the average difference between CA1 and
CTX manganese concentration did not reach significance the trend was for a lower manganese
level in cortical neurons as well, when compared with CA1.

Analysis of the Average Iron Content of Iron Containing Puncta
Iron puncta identified in iron 2-D scans (see Fig 1E and 1E1) were outlined as ROIs allowing
an estimate of their average iron content. The size of iron puncta averaged between 1.5 to

Fig 2. Schematic of an individual neuron soma and how it correlates to line scan fluorescence data.
The red arrow depicts the direction of the scan as shown in Fig 1A. The line scan data shown are taken from
Fig 1I. A single iron punctum is shown in a peri-nuclear region within the soma.

doi:10.1371/journal.pone.0159582.g002
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2.0 μm2 across all cell types. As noted above, several iron puncta were observed in most neu-
rons. Iron puncta were restricted to a perinuclear location, in contrast, processes were devoid
of puncta. We determined that iron levels in iron puncta observed in dentate gyrus neurons
were significantly greater than the iron levels in iron puncta found in either CA1 or cortical
neurons (see Fig 4). However, the average content of iron determined for neuronal soma was
not significantly different when comparing the three cell types (see Fig 3).

Discussion
Using SRXRF, we generated 2-D metal distribution maps of primary cultured neurons derived
from two regions of embryonic rat hippocampus (dentate gyrus and CA1) and cortex and esti-
mated their average metal contents. Our goal was to compare these data to metal distributions
already reported for adult tissues to gain new insights into the factors controlling individual
metal contents and tissue distributions. Our findings showed that cultured primary neurons
from all three regions studied had similar total zinc contents (since each neuron had similar
soma volumes) and showed a uniform subcellular distribution of zinc. This finding is consis-
tent with the idea that the amount of free Zn2+ accumulated in organelles (like that seen in the

Fig 3. Averagemetal contents of neuronal soma from hippocampal and cortical primary neurons. Regions of interest (ROI) were
manually drawn around neuronal soma observed in 2-D SRXRF scans using MAPS software (see Methods) and metal contents are expressed
as the average value for each soma (ng/cm2) with sample background subtracted. The data are displayed as scatter plots (horizontal bar
represents the mean of all measurements for that experimental condition): (A) zinc, (B) iron, (C) manganese, and (D) copper. Each filled circle
represents data obtained from one neuron; an ROI manually drawn around its soma. For each cell type, data were collected from a single SiN
window. *—Comparing calculated means for each metal across cell types, only manganese CA1 was found to be significantly greater than
manganese dentate gyrus–p < 0.05, Kruskal-Wallis test with Dunn's Multiple Comparison Test.

doi:10.1371/journal.pone.0159582.g003
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cytosol [27, 29]) is negligible when compared with the amount coordinated via thiol and other
groups and bound to proteins [19, 29] giving zinc a fairly uniform average concentration
throughout the cytoplasm and nucleus of individual somata.

Of particular interest, is the distribution of zinc in the hippocampal formation. Striking dif-
ferences in zinc levels can be observed in these regions in both human and rodent brains [7,
30]. This unique tissue distribution of zinc has been observed in tissue sections using histo-
chemical methods (Timm’s stain) [31], fluorescent probes [32], and analytical methods such as
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [33–35], synchro-
tron radiation X-ray fluorescence (SRXRF) [8–10, 15, 36], particle induced X-ray emission
(PIXE) [37, 38], and inductively coupled plasma mass spectrometry (ICP-MS) [39]. It is essen-
tial to understand that the various methods listed above can and most often do report on levels
of functionally distinct pools of zinc within the tissue being assayed. The analytical methods
are useful because they simultaneously report levels of total zinc (which includes both bound
and free zinc) with total levels for other metals that are present in the same tissue or cellular
location. On the other hand, histochemical methods and fluorescent probes report mostly on
free or labile zinc levels, although much of the free zinc is understood to be in equilibrium with
an extensive buffering system within the neuronal soma [29]. When comparing the data
obtained by the various analytical methods listed above, they are in good agreement regarding
the relative levels of physiologically important metals such as zinc, iron, calcium, copper, and
manganese in the hippocampal formation. Iron, zinc, and calcium are the highest and much
lower estimates are obtained for trace metals such as copper and manganese.

The characteristic pattern of zinc seen in the rodent and human hippocampus and cortex
with Timm’s stain and fluorescent probes results primarily from the interaction of these mole-
cules with a functionally specialized pool of labile and releasable zinc in synaptic vesicles of glu-
tamatergic nerve terminals. This is confirmed in ZnT-3 zinc transporter knockout animals
where this characteristic pattern is nearly abolished. The loss of this specific pool of neuronal
zinc amounts to about 20% of the total zinc in this area of the brain [40–42]. The other 80% of

Fig 4. Average iron content in regions of interest (ROI) manually drawn around iron puncta (Fe p.,
identified in 2-D SRXRF scans; see Fig 1E1 for examples).Metal contents are expressed for each ROI as
an average value (ng/cm2) with sample background subtracted. The data are displayed as scatter plots
(horizontal bar represents the mean of all measurements for that experimental condition), filled circles
represent individual iron puncta analyzed for each cell type. Data for iron puncta were collected from 5 DG
cells, 7 CA1 cells, and 4 cortical cells. For each cell type, data were collected from a single SiN window. *—
Comparing calculated means for each cell type, Kruskal-Wallis test with Dunn's Multiple Comparison Test,
p < 0.05 for iron puncta (Fe p.) dentate gyrus versus CA1 neurons.

doi:10.1371/journal.pone.0159582.g004
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brain zinc is located in nuclear and cytoplasmic pools and is highly buffered and almost
entirely bound to proteins and other ligands. The average free cytosolic zinc concentration is
estimated to be in the picomolar range in spite of the total average concentration of 200–
250 μM [17, 27, 28]. The typical cell permeable fluorescent probe has an affinity for free zinc
lower than picomolar, so that in resting cells, free cytosolic zinc is nearly undetectable using
fluorescent probes. Thus, synaptic vesicle labile zinc concentration must be higher than the
free cytosolic concentration such that it can be detected by Timm’s stain and certain fluores-
cent probes. Quantification of the total zinc in hippocampal sections by SRXRF indicates that
the average concentration of total zinc in zinc rich areas of the hippocampus is significantly
greater than the average zinc concentration in the rest of the hippocampus [8–10, 15, 36].

Do glial cells contribute to the characteristic distribution of zinc in the hippocampus
observed by Timm’s stain and various analytical methods? Glia can accumulate zinc, express
ZnT-3, and are involved in brain zinc homeostasis [43]. Glia would be predicted to have aver-
age cytoplasmic zinc concentrations similar to neurons and other eukaryotic cells and zinc
should be almost entirely protein bound [44]. Although this zinc is not easily detectable with
fluorescent probes, it should be detectable with SRXRF in tissue sections. Immunostaining
with antibodies to a glial specific protein (glial fibrillary acidic protein) demonstrate that in
hippocampal tissue sections the pattern of glial cell distributions can be clearly distinguished
from the synaptic organization and neuronal connectivity patterns of the hippocampus, as well
as the pattern of zinc distribution. [10]. Thus, the characteristic distribution of zinc in hippo-
campal sections detectable by SRXRF and Timm’s stain pattern must emanate primarily from
neurons not glial cells.

Several analytical methods are available with the necessary sensitivity and resolution limits
allowing one to measure even trace metal levels and subcellular distributions (e.g., copper and
manganese) in single neurons. Each of these methods have their own pro and cons that primar-
ily revolve around either differences in sensitivity and resolution limits or sample preparation
issues, which must be considered when comparing the results of each approach. Several review
articles have recently discussed the use of these analytical methods for metal detection in single
cells and have compiled data from each method for comparison purposes [3, 4, 6, 10, 45].
SRXRF’s sensitivity limit is exceeded only by LA-ICP-MS and has a resolution limit that allows
the detection of subcellular structure. The resolution limit of LA-ICP-MS allows for the analy-
sis of single cells, but is best used for mapping metal distributions in tissue sections. PIXE has a
resolution limit similar to SRXRF, but is tenfold less sensitive. Direct comparison of different
analytical methods is difficult because of differences in sample preparation and because differ-
ent units of measurement are used. To the extent that such comparisons can be made, in gen-
eral, the various analytical methods yield similar results when comparing relative levels of the
more abundant metals (e.g., iron, zinc, and calcium) with trace metals (e.g., copper and manga-
nese). The data reported here for average metal contents in neuronal somata derived from
CA1, DG, and cortex are in agreement with previously reported data (except where noted
below).

When comparing metal levels in primary cultured neurons with adult tissue sections, the
culture conditions should be matched as closely as possible to in vivo conditions. The ionic
composition, pH, osmolality, etc., of body fluids including cerebrospinal fluid are well known
and are matched closely by commercially available neurobasal media. The cultured neurons in
this study were maintained with serum free supplement B27. The concentrations of factors
added to B27 is proprietary and optimized for neuron survival in culture. This mix of supple-
ments does not match the rich environment of neurotropic factors present in the brain during
synapse formation In addition, both free and total zinc in the culture media should be consid-
ered, the most important being free zinc, since this pool would be the primary source of zinc
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that differentiating and developing neurons would utilize. It has been determined that free zinc
levels in neurobasal/B27 media are approximately 30 nM [46] and free zinc in extracellular
fluid of the brain is 5–25 nM [47]. Thus, free zinc concentrations in neurobasal/B27 are very
similar to in vivo free concentrations. We failed to see significant differences in average zinc
content when neurons derived from the CTX, DG and CA1 region of the embryonic brain
were cultured separately in neurobasal/B27. Our results suggest that extrinsic factors present in
the developing brain are probably critical for initiating and maintaining the accumulation of
labile zinc in the synaptic vesicles of glutamatergic nerve endings, since this environment is not
easily replicated in primary culture. This conclusion is consistent with the observation that
zinc accumulates in the brain during postnatal development [12], which correlates well with
the establishment of glutamatergic synaptic contacts. On the other hand, our data would pre-
dict that the average zinc content of individual neurons in the hippocampal formation (exclu-
sive of synaptic vesicles) is similar being determined to a greater extent by cellular intrinsic
factors and zinc uptake, both being common to neurons in primary culture and mature
hippocampus.

In many studies of primary cultured neurons (and other cell types) where zinc-responsive
fluorophores (e.g., TSQ, zinquin, ZinPyr-1) are used to visualize intracellular Zn2+ using
microfluorometry, highly fluorescent presumably zinc-enriched puncta have been observed
[48, 49, 50]. Such structures have been termed zincosomes (for review see [51]), but should not
be confused with zinc containing synaptic vesicles [7]. We failed to detect zinc puncta in the
soma or processes of cultured neurons using SRXRF analysis. When observed with epifluores-
cence microscopy, cytoplasmic zinquin fluorescent puncta in cultured primary cortical neu-
rons were circular with an average width of 500 nm [49], but their actual size could be
significantly smaller. The digital spatial resolution limit of SRXRF at the 2-ID-D beamline at
APS is the result of Fresnel zone plates that focus X-rays from a high brightness undulator
source to a 200–400 nm spot on the sample and the scan step size (250 nm in all experiments).
Thus, we expected to observe zincosomes by SRXRF if their actual size was indeed 500 nm or
greater. Although we could find no evidence for the existence of cytoplasmic zincosomes by
SRXRF, this observation does not preclude the existence of zincosomes smaller than the digital
spatial resolution limit of SRXRF.

A likely explanation for the observance of zinc puncta when using zinc-responsive fluoro-
phores, but not when using SRXRF, is that zincosomes may preferentially accumulate zinc-
responsive fluorophores and increased fluorescence intensity mostly reflects fluorophore accu-
mulation. For example, a strong ZinPyr-1 fluorescence can be found in lysosomes even if all
chelatable Zn2+ is sequestered by TPEN [52]. Thus, although the structures exist and contain
zinc, the average zinc concentration in these structures is similar to the average concentration
in the cytosol, nucleus, and other organelles and thus undetectable by SRXRF.

Finally, we should discuss the possibility that sample processing disturbed cellular ultra-
structure enough to negatively influence the detectability of zincosomes. We have shown that
radiation damage during X-Ray scanning is minimal [24], but a change in cellular ultra-struc-
ture during plunge-freezing and storage of the cells under liquid nitrogen cannot be absolutely
excluded either. Plunge freezing and keeping the neurons cryogenically preserved in a fully
hydrated state provides the optimal conditions to minimize disruptions to cellular structure
and this approach has been used by others to preserve cellular ultra-structure [6, 53].

Iron puncta or siderosomes characterized by ultrastructural analyses of tissues subjected to
iron overload [54] are circular and average 1 μm in diameter [55]. We were able to detect iron
puncta of similar size by SRXRF, which is safely above the digital spatial resolution limit of
SRXRF. Iron puncta have been observed previously using SRXRF in rodent cultured primary
cortical and midbrain dopaminergic neurons and in hippocampal tissue sections [10, 17, 18,
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25, 56]. Typically, scanned neurons exhibit one to several iron puncta. But, morphologically,
there is no evidence that primary cultured neurons are suffering from iron overload [17]. We
have suggested that primary neurons maintained in neurobasal and B27 supplement (see
Methods) take up iron from the media accumulating iron in one to several siderosomes of sim-
ilar size [17]. Iron taken up by neurons in the brain is thought to be mostly transferrin bound
[57] and B27 supplement includes transferrin [58]. The concentration of iron in neurobasal
media (Invitrogen, ThermoFisher) is 250 nM, but with 2% B27 supplement added, the total
iron concentration in the culture media increases 10 fold above that value [27].

The greater capacity of dentate gyrus neurons to store iron in siderosomes (with no change
in total cellular iron content and no apparent deleterious effects) could be interpreted as a pro-
tective mechanism against redox damage that could result if cytosolic levels of iron were
allowed to rise producing damaging reactive oxygen species within the cell [59–61]. It is well
established that much cytosolic iron is stored within ferritin cages protecting the cell from
potentially harmful redox reactions [62]. Siderosomes may be a second mechanism by which
neurons can store cytosolic iron in a non-reactive form. Both storage mechanisms may have
implications for human neurodegenerative diseases as experimental evidence suggests that
iron levels increase in the hippocampus of Alzheimer’s disease patients [63–66] and with nor-
mal aging [67]. Iron chelation has been shown to reverse age related cognitive deficits in rats
[68].

The hippocampus contains measureable amounts of manganese, but a specialized role of
manganese specific for hippocampal neurons has not been identified [69]. Many cellular mech-
anisms exist that regulate the influx and efflux of manganese in neurons, which are designed to
maintain intracellular levels within narrow limits [70]. Manganese is thought to function pri-
marily as a cofactor for enzymes critical for normal physiology and development. Any function
ascribed to manganese should take into consideration that levels are much lower than abun-
dant metals like iron, zinc, or calcium and more similar to levels of other trace metals like cop-
per or nickel [17, 39].

In hippocampal and dopaminergic neurons exposed to manganese in culture, manganese
appears to accumulate in a peri-nuclear location likely to include the Golgi apparatus [52, 71,
72]. Because of low levels of manganese detected in the present study, a convincing peri-
nuclear spatial distribution in resting primary neurons was not obtained. We observed that
CA1 neurons in primary culture exhibited a greater mean average manganese content than DG
or CTX neurons. Previous studies using mature hippocampal slices found the CA3 region had
the highest manganese content. However, we did not study primary neurons derived from the
CA3 region. Our studies will require additional replicates and a larger sample size before any
conclusions can be made regarding their significance and implications for regional differences
in manganese and hippocampal function.

Conclusions
In this study, we used SRXRF to study average contents of the soma and intracellular spatial
distributions of several metals in primary cultured neurons from the hippocampal formation
and cortex. In the mature hippocampus and cortex, distinctive distributions of metals such as
zinc, iron, and manganese have been observed. Particularly for zinc, these distributions are
thought to be related to the synaptic function of these brain regions. We sought to determine if
the different metal contents observed in these brain regions were intrinsic to the neurons com-
prising each region by determining the average metal contents of primary neurons cultured
from embryonic tissues. Although our conclusions are limited by a small sample size, we found
few differences in the mean average metal contents of primary neurons cultured from the
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dentate gyrus or CA1 regions of the hippocampus and cortex. We did find that manganese lev-
els were somewhat higher in the CA1. On the other hand, we found characteristic and distinct
intracellular spatial distributions when analyzing individual neurons from these regions. Zinc
was uniformly distributed. Calcium showed a peri-nuclear distribution that could be best
explained by accumulation in endoplasmic reticulum and mitochondria. Iron showed distinct
high concentration puncta in peri-nuclear locations; in the rest of the cytoplasm, iron concen-
tration was much lower and distributed uniformly. Iron puncta contained the highest levels of
iron in DG when compared with CTX or CA1. Our results are consistent with the belief that
metal distributions in mature brain structures are most likely influenced by both the intrinsic
properties of the neurons and extrinsic factors, related to synapse formation postnatally and
maintenance of synaptic organization and contacts in the mature tissue.

Supporting Information
S1 Fig. 2-D scans for all cells used in the metal analyses reported in the manuscript. Each
image series is labeled CA1, DG, or cortical (CTX) and each scan is labeled with the metal it
represents. Images are not background corrected.
(PDF)
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