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Abstract

Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This

study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolutionand in the fixation of

drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences

(from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and

adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze

the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic

diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric

patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had

from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for

HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the

year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both

DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine

learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric

patients.
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Importance

This is the first study that analyzes the interactive effects of

28 clinical and virological features in the intrahost evolu-

tion of HIV-1 in pediatric patients during a long HIV-1

exposure time. During the HIV infection, clinical, epidemi-

ological, and virological parameters fluctuate over time,

presenting differences across patients. These parameters

seemed to be relevant in the course of the infection and

HIV-1 evolution. Understanding whether variation in these

clinical parameters also affect within-host HIV-1 evolution

may also help to design more efficient control strategies.

However, more related studies are required for a better

understanding of HIV evolution in children and

adolescents.
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Introduction

RNA viruses present high potential for generating large pop-

ulation genetic diversities at the intra and interhost levels

(Lemey et al. 2006; Holmes 2009; Gray et al. 2011;

Sede et al. 2014). This provides a high capacity for viral ad-

aptation to new environments, which may represent an enor-

mous evolutionary advantage with far-reaching

consequences for key viral traits such as disease progression,

infectivity, transmissibility, and response to antiviral treat-

ments (Holmes 2009; Santoro and Perno 2013). Thus, under-

standing the factors that determine the level of intra and

interhost genetic diversity in RNA virus populations is required

to understand viral disease dynamics (Holmes 2009).

Human immunodeficiency virus type 1 (HIV-1) is an RNA

virus presenting high genetic diversity mainly due to the high

mutation rates derived from the error-prone nature of its re-

verse transcriptase (Abecasis et al. 2009; Maldarelli et al.

2013), to its high recombination rate (Zhuang et al. 2002;

Moradigaravand et al. 2014), and to the high replication rates

and large population sizes (Perelson et al. 1996). Levels of HIV-

1 genetic diversity differ between HIV-1 subtypes and

recombinants (Abecasis et al. 2009), and may also be affected

by clinical factors. A higher within-host HIV-1 genetic diversity

in naı̈ve patients has been associated with lower levels of T

lymphocyte CD4 count (Markham et al. 1998; Lemey et al.

2007), higher viral load (Mani et al. 2002; Shriner et al. 2006),

larger virus exposure time (Maldarelli et al. 2013; Ryland et al.

2010), and age (Carvajal-Rodriguez et al. 2008). In treated

patients, antiretroviral therapy (ART) has been demonstrated

to have complex effects on HIV genetic diversity, promoting

adaptive evolution and fixation of mutations conferring drug

resistance (Lorenzo et al. 2004; Pennings 2012) or reducing

virus genetic diversity (Gall et al. 2013; Kearney et al. 2014).

However, during the course of an infection or an epidemic,

HIV-1 populations face changes in viral load (VL), CD4 count,

and ART experience that occur simultaneously. Thus, further

analysis of the role of these clinical factors in determining the

genetic diversity of HIV-1 populations and of their interactive

effects is required (Lemey et al. 2006). However, such studies

are scant, mainly focused in adult patients and limited to con-

sider the interaction of a maximum of two clinical factors

(Carvajal-Rodriguez et al. 2008).

HIV evolution in children has received much less attention

than in adults (Carvajal-Rodriguez et al. 2008), even though

HIV-1 genetic diversity does not necessarily evolve in the same

way in adult and pediatric patients, as clinical features of HIV-

1 infection in children and adults are very different. Children

present a faster rate of disease progression, substantially

higher viremia at early times postinfection and a slower de-

cline after initial infection compared to adult infections

(McIntosh et al. 1996). The clinical course of HIV infection in

children also varies according to the age of infection and

transmission route. Most of the pediatric infections occur in

perinatally infected children (Chakraborty et al. 2008) whose

immature immune system would exert less selection pressure

on the virus than in adult patients, at least in the early stages

of infection (Ceballos et al. 2008). Indeed, a large variation in

immune responses among pediatric patients has been ob-

served (Becquet et al. 2012). Disease progression has been

shown to differ between patients infected through mother-

to-child transmission as compared to those infected by other

routes (Tobin and Aldrovandi 2013). In a previous study, our

group demonstrates that the HIV-1 between-host evolution-

ary dynamics differs between children and adult populations

of Madrid, and identified three clinical factors (age, CD4/mm3

and antiretroviral experience) as major determinants of HIV-1

population genetic diversity (Pag�an et al. 2016). Higher HIV-1

subtype B genetic diversity was observed with increasing child

age, decreasing CD4/mm3 and upon antiretroviral experience

(Pag�an et al. 2016). However, HIV1 evolutionary dynamics are

not the same at the between- and within-host levels (Castro-

Nallar et al. 2012). This study analyzes the relative importance

of 28 clinical/epidemiological/virological parameters in deter-

mining within-host HIV-1 subtype B evolution during longitu-

dinal pediatric HIV-1 infection for a better understanding of

HIV evolution in children.

Materials and Methods

Study Population

The Madrid cohort of HIV-infected children and adolescents

(established in 2003) registered 561 HIV-1 infected children

until March 2016. We selected those perinatally infected

patients carrying HIV-1 subtype B (HIV-1B) with three or

more available partial pol sequences derived from samples

collected within a spanning time of at least two years.

Following these inclusion criteria, a total of 24 children were

enrolled in the study (table 1). The project was approved by

the Human Subjects Review Committee at University Hospital

Ram�on y Cajal (Madrid, Spain), and informed consent of the

parents or guardians was obtained.

HIV-1B Sequences

A total of 162 partial HIV-1B pol sequences from 24 patients

were included in the study. Sequences (1,102 nt) encom-

passed the complete protease (PR) gene and the nucleotides

comprising the first 335 amino acid residues of the reverse

transcriptase (RT). For each patient, sequences were obtained

at baseline, at least at one intermediate time point, and in the

last clinical visit in a time interval ranging from 2.2 to

20.3 years (mean 7.7). From 3 to 24 (mean 7) partial pol

sequences per patient were included in the analysis (table 1).

Sequenced samples were collected during 20 years (from

October 1993 to October 2013). Most sequences were gen-

erated and previously used by our group for other analyses
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(de Mulder et al. 2012; de Mulder et al. 2011; Rojas S�anchez

et al. 2015; Rojas S�anchez et al. 2016). For this study, only 7 of

the 162 sequences (4.3%) were newly obtained from HIV-1

infected plasma samples provided by the Paediatric HIV

BioBank integrated in the Spanish AIDS Research Network

(RIS) RD12/0017/0035 and RD12/0017/0037 (Garc�ıa-Merino

et al. 2010). Samples were processed following current pro-

cedures and frozen immediately after their reception. New

HIV-1 sequences were generated as previously reported (de

Mulder et al. 2012). Sequence alignments were constructed

using MUSCLE 3.7 (Edgar 2004) and adjusted manually

according to the amino acid sequences using MEGA 6.0.6

(Tamura et al. 2013). The full list of GenBank accession num-

bers from the 162 partial pol sequences, year of isolation of

the sequenced samples and associated relevant clinical

parameters is available in supplementary file S1,

Supplementary Material online.

Drug Resistance Analysis

Drug resistance mutations (DRM) in pretreated patients were

defined following the International AIDS Society—USA (IAS)

2015 list (Wensing et al. 2014). We recorded the DRM to

three drug families: nucleoside analogues RT inhibitors

(NRTI), non-NRTI (NNRTI) and protease inhibitors (PI).

Among drug-naı̈ve patients, transmitted drug-resistance

mutations (TDR) were defined according to the mutation list

for Transmitted Drug Resistances surveillance as recom-

mended by the WHO (Bennett et al. 2009). Drug susceptibility

was predicted using the Stanford HIVdb algorithm (http://si

erra2.stanford.edu/sierra/servlet/JSierra), which classifies drug

susceptibility in four categories depending on mutation

scores: susceptible, low-level, intermediate, and high-level

resistance.

Genetic Distances and Selection Pressures

Genetic divergence (d) was estimated using the Kimura-2-

parameters nucleotide substitution model as implemented

in MEGA 6.0.6 (Tamura et al. 2013), which was the best-

fitted nucleotide substitution model as determined by

jModelTest 2.1.8 (Darriba et al. 2012). Standard errors

(SE) of each measure were based on 1,000 bootstrap rep-

licates for permutation tests. Selection pressures were

measured as the ratio between the mean number of non-

synonymous (dN) and synonymous (dS) nucleotide substitu-

tions per site (dN/dS) calculated by the Pamilo–Bianchi–Li

method as implemented in MEGA 6.0.6. Individual values

of dN and dS were also obtained. The dN/dS ratio was also

estimated at individual codons in the partial pol sequence,

using different methods implemented in the HYPHY pro-

gram (SLAC, Single Likelihood Ancestor Counting; FEL,

Fixed Effects Likelihood; IFEL, Internal Fixed Effects

Likelihood; REL, Random Effects Likelihood; FUBAR, Fast

Unbiased Bayesian Approximation) (Kosakovsky and Frost

2005) to determine whether each codon was under nega-

tive (dN/dS< 1), neutral (dN/dS¼ 1), or positive (dN/dS> 1)

selection. These analyses were performed after confirma-

tion of the absence of recombinant sequences in our data

set by using four different methods available in the RDP4

package: RDP, GENECONV, Bootscan, and Chimaera, and

employing the default parameters (Martin et al. 2015).

Supplementary file S1, Supplementary Material online

includes the observed values for d, dN, dS, and DRM

associated with each viral sequence.

Data on Clinical Factors

We analyzed the influence of 28 clinical/epidemiological/viro-

logical factors on HIV-1 subtype B evolution in children. They

included five virological parameters (DRM, DRM to NRTI, DRM

to NNRTI, DRM to IP, and VL), five clinical parameters (CD4

and CD8 lymphocytes T counts or cells/mm3 and percent,

CD4/CD8 ratio) and 18 epidemiological parameters (child-

ren’s origin, year of infection (birth year), year of HIV-1 diag-

nosis, age at HIV-1 diagnosis, coinfection with HBV or HBC,

year of sampling sequence, patient’s age at HIV-1B sequenc-

ing, antiretroviral treatment (ART) exposure (naı̈ve or treated),

Table 1.

Main Features and Available HIV-1 Sequences from the Study Cohort

Features Patients

HIV-1 vertical transmission 24

HIV-1 subtype B 24

Gender

Male 15

Female 9

Origin country

Spain 22

Guatemala 1

Peru 1

Year of infection (birth year)

1984–1989 7

1990–1999 15

2000–2002 2

Year of HIV-1 diagnosis

1984–1989 1

1990–1999 19

2000–2004 4

Mean age in years (range)

At HIV-1 diagnosisa§ 1.7 (0.1–8.6)

At first ARTb 3 (0.1–8.5)

At baseline sampled sequencec 8.8 (0.3–18.8)

At last sampled sequenced 16.8 (5–23.9)

Mean number of HIV-1 sequences per patient (range) 7 (3–21)

Years between the first and the last sequence (range) 7.7 (2.2–20.3)

Unknown data in 6a, 1b, 5c, and 4d patients; §Thirteen (68%) children were
diagnosed before the first year of life, three (15.8%) children were diagnosed be-
tween the first and the fourth year of life, and two children were diagnosed be-
tween the fourth and the ninth year of life. ART, antiretroviral treatment. HIV-1
sequences, partial pol including the complete PR and the first 334 amino acid resi-
dues of RT.
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year of first ART, age at first ART, number of previous ART

regimen switches, number of antiretroviral drugs used and

drug family experience for NRTI, NNRTI, PI, fusion inhibitor,

and integrase inhibitor per patient).

Machine Learning Classification Methods

We applied supervised classification methods to analyze the

relative importance of clinical factors in HIV-1B evolution. We

constructed multivariate models using HIV-1B d, dN, dS, and

frequency of DRM as the variables to be predicted, and the

previous 28 clinical parameters considered were used as pre-

dictors. To build the models, we categorized some of the

continuous variables in order to avoid imbalance in the num-

ber of instances of each variable. HIV-1B evolutionary param-

eters were discretized into three categories, according to the

three tertiles of the distribution formed by the values of each

variable. Thus, HIV-1B evolutionary variables were classified as

follows: d (<0.011, 0.011–0.022,>0.022,); dN (<0.007,

0.007–0.019,>0.019,); and dS (< 0.002, 0.002–

0.075,>0.075). Data related to DRM were discretized into

two categories (presence or absence), either considering the

different classes of DRM separately (NRTI, NNRTI, and PI) and

all classes as a whole. CD4 and CD8 (count and percent), VL,

age at sequencing and age at diagnosis were also discretized

following the CDC recommendations (Centers for Disease

Control 1994). Prior to model selection analyses, we perform

Variance Inflation Factor (VIF) analyses to test for predictor

collinearity. Given that VIF was smaller than 2 in all predictors,

we did not include any variance–covariance matrix or

reduced-rank analyses in machine learning methods.

Machine learning methods in Weka (http://www.cs.wai

kato.ac.nz/ml/weka/) were used to analyze the data. To re-

move irrelevant variables that could introduce a bias in the

predictive models and to evaluate the predictive power of

each subset of predictor variables, the Feature Subset

Selection (FSS) tool was implemented in the analysis using

three different techniques: two univariate methods (1), one

multivariate methods (2), and (3) Wrapper method: 1) two

univariate algorithms analyze (InfoGainAttributeEval and

GainRatioAttributeEval) that explored the importance of

each variable separately in the data set; 2) The multivariate

algorithm Correlation Feature Selection (CFS) which predicts

the value of each individual variable based on the best subset

of features using an induction algorithm as a part of the eval-

uation function; 3) Wrapper methods which uses a search

algorithm for predicting the relative usefulness of subsets of

variables. To evaluate the contribution of each predictor using

Wrapper method, we analyzed the strength of 6 algorithms

(classifiers) in order to find the best predictive model: classifi-

cation tree (J48 tree), Nearest-neighbor (IB-1 and IB-K, where

K¼ 3), logistic regression and Bayes algorithm (Naive Bayes

and tree-augmented Naive Bayesian Network or TAN) testing

the whole data set. To evaluate each algorithm or classifier,

a set of measures (confusion matrix, true positive [TP] rate,

true negative [TN] rate, precision, accuracy, recall, f-measure,

and area under the ROC curve [AUC]) were obtained. For

each algorithm, HIV-1B evolutionary parameters were consid-

ered as the variables to be predicted, and clinical, epidemio-

logical and virological parameters as the predictor variables.

We chose the two best algorithms or classifiers for our data

set to evaluate the relative importance of each clinical factor.

The clinical factors selected with univariate

(InfoGainAttributeEval and GainRatioAttributeEval), multivar-

iate and the best Wrapper algorithms providing the highest

values of correctly classified instances and the highest area

under the ROC curve (AUC) (were considered the most im-

portant variables affecting HIV evolution in the pediatric co-

hort under study. The ROC curve is a graphical representation

of sensitivity versus specificity for a binary classifier system.

With a higher area (>0.75), separation of data should be

better. Importantly, this representation is independent of

the existence of unbalanced sampling).

Results

Clinical, Epidemiological, and Virological Features of the
Study Population

A total of 24 patients from the Madrid Cohort of HIV-1

infected children and adolescents were enrolled in the study.

Their baseline clinical and epidemiological features are shown

in table 1. Most were Spanish (91.7%), male (62.5%), diag-

nosed before 2000 (83.3%), with a mean age of 3 years at

first ART experience and under follow up in pediatric units

(table 1). The mean age for collection of the first sequenced

viral sample (baseline sequence) was 8.8 years (range 0.3 to

18.8 years) and for the last sampled sequence 16.8 years

(range 5–23.9 years). Clinical and virological features of the

24 patients were available in the first clinical report (at collec-

tion time of the first sequenced viral sample) and in the last

(table 2). In the monitored time interval, we observed an in-

crease in the rate of patients with undetectable VL

(�50 copies/ml) from 8.3% to 17.4%; v2¼ 3.73; P¼ 0.052.

The number of patients with low CD4 counts (<500

CD4 cells/mm3) also increased from 33.3% to 60.7%

(v2¼ 4.52; P¼ 0.033) (table 2).

We also analyzed the change of viremia and lymphocyte

rate over the course of the infection. We calculated the mean

values from CD4 and CD8 rates, CD4/CD8 ratio, and VL along

the monitoredHIV-1B exposure time. We observed an increase

in the CD8 rate over time (r¼ 0.93; P¼ 0.001) (fig. 1A) from

10% in newborns to 65% at the largest HIV-1 exposure time

(age of 18 years). We also noticed a nonsignificant decrease in

the CD4 rate (r¼�0.44; P¼ 0.072) (fig. 1B). The CD4/CD8

ratio reached a maximum at early times, and rapidly decreased

afterwards, stabilizing its value after 5 years of HIV-1 exposure

time. Indeed, we detected a significant logarithmic association

between the CD4/CD8 ratio and exposure time (r¼�0.77;
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P¼ 0.006) (fig. 1C and table 2). Finally, VL decreased over time

(r¼�0.75; P¼ 0.002) (fig. 1C).

As expected, the 24 patients showed high drug experience

and several regimen switches (table 2), and most analyzed

viral sequences presented DRMs (supplementary fig. S1,

Supplementary Material online), which did not significantly

change in number over time (126/1,128 vs. 147/1,128 v2

¼ 1.84, P¼ 0.175) (table 2). The most common DRMs at

the last available sequence (last report) were: NRTI mutations

T215YF (45.8%), D67N (41.6%), K219QR and L210W (each

37.5%), and M184V (33.3%) at RT; NNRTI mutations Y181C

(33.3%), K103NR (29.2%), and G190A (25%) at RT; and PI

mutations V82ATS (33.3%), M46I (29.2%), I54V (25%) and

L90M (25%) at PR (supplementary fig. S1, Supplementary

Material online). Considering each antiretroviral family individ-

ually, we observed a similar rate over time of patients carrying

DRMs to NRTI (57.3% vs. 53.7%; v2¼ 0.14; P¼ 0.724) and to

PI (27.4% vs. 23.1%; v2 ¼ 0.49; P¼ 0.476) but a significant

increase of DRM to NNRTI (12.3% vs. 23.1%; v2¼3.95;

P¼ 0.044). Despite the presence of DRMs in every viral se-

quence according to the Stanford algorithm, viruses presented

preserved susceptibility to some new antiretrovirals (ARVs)

such as darunavir (DRV/r) in six children, tipranavir (TPV/r) in

four, and etravirine (ETR) and rilpivirine (RPV) in five patients

(fig. 2). During the spanning time between baseline and last

analyzed sequence (7.7 years on average, table 1), DRMs to at

least one ARV family reverted to wild type (wt) residue in 8 of

the 24 children. DRMs to PI, NNRTI, and NRTI reverted to wt in

5, 4, and 2 children, respectively (supplementary table S2,

Supplementary Material online). One of the two children

with available viral sequence before ARV experience was firstly

infected with a resistant virus to PI and NRTI, carrying changes

V82A at the PR and L210W and T215S at the RT (supplemen-

tary table S2, Supplementary Material online).

Within-Host HIV-1B Genetic Diversity and Selection
Pressures

Average within-host HIV-1B genetic diversity in the analyzed

virus population was of 0.004 6 0.001, but varied up to one

Table 2.

Clinical Features of the 24 Patients Included in This Study

Features Number of Patients

At First

Sampling Time

At Last

Clinical Report

Clinical follow-up

Pediatric Unit 24 11

Adult Unit 0 9

Lost to follow-up 0 1

Exitus 0 1

Unknown 0 2

ART status

Naive 2 0

Treated 22 24

Regimen switches,

mean (range)

3.4 (0–12) 5.9 (2–12)

1–2 9 1

3–6 10 14

7–12 2 6

Unknown 3 3

Previous ARV drugs,

mean (range)

5.9 (0–18) 9.7 (5–18)

<3 3 0

3–6 12 4

7–13 5 15

>13 1 4

Unknown 3 1

Number of DRM

Total 126 147

To NRTI 71 79

To NNRTI 21 34

To PI (major) 34 34

Viral load

(HIV-1 RNA-copies/ml)

�50 2 4

>50–500 2 2

>500–1,000 2 2

>1,000–10,000 7 8

>10,000–100,000 9 6

>100,000 2 1

Unknown 0 1

CD4þ T rate

<25% 12 16

25–50% 10 7

>50% 0 0

Unknown 2 1

CD4þ T cells/mm3

<350 3 10

350–500 4 4

501–1,000 11 8

1,001–1,500 1 1

>1,500 2 0

Unknown 3 1

CD8þ T cells/mm3

<350 1 1

350–500 0 0

(continued)

Table 2. Continued

Features Number of Patients

At First

Sampling Time

At Last

Clinical Report

501–1,000 3 5

1, 001–1,500 7 5

>1,500 5 6

Unknown 8 7

CD4/CD8 mean ratio (range) 0.8 (0.1–3)a 0.4 (0.06–0.9)b

Unknown data in 8a and 7b patients. ART, antiretroviral treatment; ARV, anti-
retroviral; IQR, interquartile range; DRMs, drug resistance mutations to NRTI, NNRTI
and PI (major) according to IAS2015 (Wensing et al., 2014).
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order of magnitude between patients (d: from 0.003 6 0.000

to 0.040 6 0.001) (table 3). In addition, averaged nonsynon-

ymous and synonymous diversities were of 0.003 6 0.001

and 0.008 6 0.003, respectively, with both evolutionary

parameters greatly varying among patients (dN: from

0.001 6 0.000 to 0.032 6 0.001; dS: from 0.002 6 0.001 to

0.058 6 0.003) (table 3). The analyzed pol fragment was on

average under negative selection (dN/dS: 0.565 6 0.386).

Indeed, HIV-pol was under negative selection (dN/dS signifi-

cantly smaller than 1) in 14 (58.4%) patients, under positive

selection (dN/dS values> 1) in 9 children (37.5%) and under

neutral evolution in the remaining child (4.1%).

Average evolutionary parameters varied over the course of

the infection. Genetic diversity (substitutions per site) increased

between the baseline and the last report (from 0.052 6 0.006

to 0.090 6 0.014; r¼ 0.54; P¼ 0.038) (fig. 1D). This was due

to the accumulation of nonsynonymous mutations (from

0.033 6 0.005 to 0.086 6 0.004; r¼ 0.50; P¼ 0.058),

whereas synonymous mutations remained relatively constant

over time (from 0.088 6 0.009 to 0.123 6 0.011; r¼ 0.21;

P¼ 0.450). When comparing the baseline versus the last col-

lected viral sequences, we also observed a significant increase

in the number of sites under neutral evolution (115/334 vs.

293/334 v2¼ 10.32, P¼ 0.002).

Relative Contribution of Clinical Factors to the Evolution of
the Pediatric HIV-1B Population

The relative contribution of each analyzed clinical factor on

HIV-1B evolution was obtained after analyzing how each con-

sidered clinical factor predicted HIV-1B evolution using six

classifiers (J48 tree, IB-1, IB-3, logistic regression, Naive

Bayes, and TAN). We observed different accuracy among

these classifiers; IB1, IB3 and J48 were the best classifiers.

They showed the highest percentage of correctly classified

instances (83.1%, 81.4%, and 76.5%, respectively), good

precision and high F-Measures (0.83, 0.81, and 0.76) and

high AUC (�0.8) (supplementary file S4, Supplementary

Material online). To identify the best predictors of HIV-1B

evolution as estimated by IB1, IB3, and J48, we used

three different techniques: two univariate algorithms

(InfoGainAttributeEval and GainRatioAttributeEval), one mul-

tivariate algorithm (CFS) and Wrapper (Wrapper/IB1,

Wrapper/IB2, and Wrapper/J48).

Table 4 shows the best predictors of HIV-1B evolutionary

parameter and DRM presence, which were more frequently

obtained by univariate, multivariate, and wrapped algorithms.

Associated with HIV-1B d, we found the variable age of HIV-1

diagnosis (values of: 0.105 by GainRatioAttributeEval, 80% by

CFS, 100% by Wrapper/IB3 and Wrapper/J48, 70% by

FIG. 1.—Correlations between patient HIV-1B exposure time and T-CD4þ and T-CD8þ rates (A), CD4/CD8 ratio (B), viral load or VL (C) and evolutionary

parameters, namely HIV-1B genetic diversity (D), mean number of nonsynonymous (dN) and synonymous (dS) nucleotide substitutions (D). For each

correlation the R2 and the P values are shown. Dashed line in panel C refers to undetectable viral load<2.7 log (<500 HIV-1-RNA copies per milliliter of

plasma). P values: 0.038 (d), 0.058 (dN), 0.450 (dS), 0.001 (%CD8), 0.006 (CD4/CD8), and 0.002 (VL).
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Wrapper/IB1). For HIV-1B dN, the best predictors was age

at first ART (values of 0.226 by GainRatioAttributeEval,

60% by CFS and 100% by Wrapper/IB3 and Wrapper/

J48); and for HIV1-B dS, an association with variable

year of HIV-1 diagnosis was detected (values of 0.211

by GainRatioAttributeEval, 50% by CFS and 100% by

Wrapper/IB1, 90% by Wrapper/IB3, 70% by Wrapper/

J48). These three epidemiological variables are interre-

lated, as most of the children involved in this study had

received ART at HIV-1B diagnosis time.

In addition, our analyses indicated that year of infection

(birth year) and year of sequencing were relevant for the

development of DRMs at large (0.116 by

GainRatioAttributeEval, 100% by CFS, for birth year; 0.116

by GainRatioAttributeEval, 100% by CFS and 60% by

Wrapper/J48, for year of sequencing), DRMs to PI (0.168 by

GainRatioAttributeEval, 100% by CFS and 100% by

Wrapper/J48, 90% by Wrapper/IB1 and Wrapper/IB3 and,

for birth year; 60% by CFS for year of sequencing), and

DRMs to NRTI (0.149 by GainRatioAttributeEval, 60% by

FIG. 2.—Predicted susceptibility according to the Stanford HIVdb Interpretation Algorithm among those virus carrying DRM to PI (n¼15), to NRTI

(n¼19) or to NNRTI (n¼14) in the first available partial pol sequence (A) and to PI (n¼10), to NRTI (n¼18) or to NNRTI (n¼16) in last sequence (B) collected

after a mean spanning time of 7.7years (range 2.2–20.3 years). DRM, drug resistance mutations; NRTI, nucleoside reverse transcriptase inhibitors; NNRTI,

non-NRTI; r, ritonavir used for boosting; ATV/r, boosted-atazanavir; DRV/r, boosted-darunavir; FPV/r, boosted-fosamprenavir; IDV/r, boosted-indinavir; LPV/r,

boosted-lopinavir; NFV, nelfinavir; SQV/r, boosted-saquinavir; TPV/r, boosted-tipranavir; 3TC, lamivudine; ABC, abacavir; AZT, zidovudine; d4T, estavudine;

ddI, didanosine; FTC, emtricitabine; TDF, tenofovir; EFV, efavirenz; ETR, etravirine; NVP, nevirapine; RPV, rilpivirine. The approval year for each drug in Spain

was: 1988 (AZT), 1993 (ddI), 1996 (d4T, 3TC, IDV/r, SQV/r), 1998 (NVP, NFV), 1999 (ABC, EFV), 2001 (LPV/r), 2002 (TDF), 2003 (FTC), 2004 (ATV/r, FPV/r),

2005 (TPV/r), 2007 (DRV/r), and 2008 (ETR); data available at Agencia Espa~nola de Medicamentos y Productos Sanitarios (https://www.aemps.gob.es/).
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CFS, 90% by Wrapper/IB1, Wrapper/IB3, and Wrapper J48,

for birth year; 90% by CFS and 60% by Wrapper/IB1 for year

of sequencing) (supplementary file S4, Supplementary

Material online). Other clinical factors had lesser relevance in

HIV-1B evolution (both as genetic diversity and DRM fixation)

such as year of infection, experience to different ART, number

of previous regimen switches, CD8TþCell/mm4 and %CD4

and CD4/CD8 ratio (table 4 and supplementary file S4,

Supplementary Material online).

To test the robustness of our estimates, we performed FSS

analyses, which also indicated that IB1, IB3, and J48 were the

supervised classification paradigms that reported the highest

values of precision, and identified the same variables as the

best predictors of HIV-1B evolution after Infogain, Gain Ratio,

and CFS analyses (table 5).

Discussion

This is the first study that analyzes the interactive effects of

more than two clinical and virological features in the intrahost

evolution of HIV-1 in pediatric patients during a long HIV-1

exposure time. During the HIV infection, clinical,

epidemiological, and virological (VL, DRM) parameters fluctu-

ate over time, presenting differences across patients, as we

observed in our population study. These parameters may be

relevant for the course of the infection and for HIV-1 evolution.

Previous results from our group indicate that some of these

parameters (children age, decreasing CD4/mm3, and upon an-

tiretroviral experience) are key determinants of HIV-1 between-

host evolution (Pag�an et al. 2016). Understanding whether

variation in these clinical parameters also affect within-host

HIV-1 evolution may help to design more efficient control strat-

egies (Rambaut et al. 2004). Our study showed that the best-

predictor variables for HIV-1B evolutionary parameters were the

age of HIV-1 diagnosis for d, the age at first ART for dN and the

year of HIV-1 diagnosis for dS. The year of infection (birth year)

and the year of sampling seemed to be relevant for fixation of

both DRM at large and, considering drug families, to PI.

In this study, we applied machine learning algorithms

whose main benefit is the ability to analyze big data sets and

construct accurate predictive models, accommodating all types

of predictors and response variables (Larra~naga et al. 2006).

Importantly, and at odds with most classical methods, these

algorithms allow incorporating a stochastic component to

Table 3.

Evolutionary Parameters of the Partial pol Sequences Obtained from 24 HIV-1B Population Under Study

Code HIV Exposure Time (years) No Sequences d1 dN
2 dS

3 dN/dS
4

Mean SE Mean SE Mean SE Mean SE

P18 2.3 3 0.004 0.001 0.003 0.001 0.008 0.003 0.565 0.386

P11 6 6 0.028 0.008 0.018 0.004 0.050 0.019 1.736 0.508

P14 6.8 5 0.015 0.007 0.008 0.004 0.024 0.012 0.222 0.111

P24 7.3 3 0.028 0.009 0.020 0.005 0.040 0.013 0.628 0.092

P1 9 20 0.017 0.001 0.020 0.002 0.006 0.001 1.919 0.262

P17 10.7 3 0.020 0.004 0.010 0.002 0.044 0.009 0.254 0.022

P16 10.7 5 0.006 0.001 0.004 0.001 0.010 0.003 0.670 0.268

P5 11.7 6 0.006 0.003 0.007 0.004 0.002 0.001 2.444 1.222

P4 12.5 11 0.022 0.004 0.024 0.004 0.013 0.004 1.665 0.416

P2 12.8 20 0.040 0.001 0.030 0.001 0.058 0.003 0.790 0.011

P10 13 4 0.009 0.002 0.007 0.002 0.018 0.003 0.350 0.117

P19 14.3 3 0.018 0.006 0.015 0.006 0.020 0.004 0.657 0.205

P22 14.3 4 0.004 0.001 0.002 0.000 0.007 0.001 0.287 0.038

P3 14.6 18 0.015 0.005 0.008 0.002 0.030 0.009 0.199 0.035

P20 14.7 3 0.008 0.001 0.006 0.003 0.009 0.003 1.215 0.764

P21 14.7 4 0.012 0.005 0.014 0.005 0.005 0.002 1.850 0.513

P9 15.6 5 0.029 0.001 0.026 0.001 0.031 0.002 1.004 0.058

P23 15.7 3 0.007 0.002 0.004 0.001 0.011 0.004 0.235 0.074

P12 15.9 9 0.003 0.000 0.001 0.000 0.006 0.001 0.152 0.054

P13 16 5 0.037 0.011 0.027 0.006 0.053 0.020 2.220 0.818

P12 16 5 0.026 0.001 0.032 0.001 0.008 0.002 1.724 0.145

P8 18.6 5 0.007 0.000 0.006 0.000 0.007 0.000 0.511 0.043

P15 19.8 5 0.020 0.002 0.014 0.001 0.035 0.005 0.359 0.039

P7 25.6 7 0.008 0.002 0.009 0.002 0.007 0.001 1.185 0.168

Total/Average 12 162 0.004 0.001 0.003 0.001 0.008 0.003 0.565 0.386

Patients ordered according to HIV exposure time. d, genetic diversity; dN, frequency of nonsynonymous mutations; dS, frequency of synonymous mutations; dN/dS, selection
pressure; SE, standard error.
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model construction.Weusedsix supervisedclassificationmeth-

ods to predict three HIV-1B evolutionary parameters (d, dN, and

dS) and the fixation of DRM. Supervised classification techni-

ques are algorithms with high predictive power and are

designed to optimize the statistical classification procedures

(Stephens and Diesing 2014). Among these six methods, IB1,

IB3,andJ48generatedthebestpredictormodels.Althoughnot

all these methods allow building an explicit predictive

model, our results suggest that these showed advantages

over other methods since they required less preprocessing,

had a better performance in the presence of interacting

features, generally required less training data to learn

Table 4.

Consensus Best-Predictor Variables for Each Evolutionary Parameter and for Drug Resistance Mutations Presence in the Study Cohort

Evolutionary parameters ARV resistance

d dN dS Major DRMs to PI DRMs to NRTI DRMs to NNRTI DRMs presence

Consensusbest-

predictor

variables

Age of HIV-1

diagnosis

Age at first

ART

Year of infection Year of infection Year of infection NNRTI

experience

Sampling

year

Year of infection NNRTI

experience

Year of HIV-1

diagnosis

Patient’s origin Coinfection with

HCV or HBV

No. of ARVs No. of previous

ART regimen

switches

No. of previous

ART regimen

switches

No. of ARVs Coinfection with

HCV or HBV

Coinfection with

HCV or HBV

No. of ARVs CD4/CD8 ratio CD4 cel/

mm3switches

Year at first ART Year of HIV-1

diagnosis

Year of first ART Age at first ART %CD8 %CD4 Year of infection

Year of HIV-1

diagnosis

CD8 cell

counts/mm3

Age at first ART No. of previous ART

regimen switches

%CD4 CD8 cell

counts/mm3

Year of HIV-1

diagnosis

NNRTI experience CD4/CD8 ratio PI experience Year of HIV-1

diagnosis

Year of first ART %CD8

CD8 cell/m3 No. of previous

ART regimen

switches

No. of ARVs Sampling year Age at

sequencing

Iint experience Sampling year IP experience

CD4 cell/mm3

Age at first ART

%CD8

d, genetic diversity; dN, frequency of nonsynonymous mutations; dS, frequency of synonymous mutations; DRMs, drug resistance mutations; PI, protease inhibitor; NRTI,
nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; ART, Antiretroviral treatment; HBV, Hepatitis B viruses; HCV, hepatitis C virus;
ARVs, antiretroviral drugs; Iint, Integrase inhibitor. In each column, the variables are sorted by relative importance.

Table 5.

Percentage of Correctly Classified Instances by Each Model Using Wrapper, Gain Ratio, and CFS Data Sets in Our Study Cohort

Model Data set Parameter

d dN dS Major DRM to PI DRM to NRTI DRM to NNRTI DRM presence

J48 Wrapper Correctly

classified

instances

47.4% 79.3% 76.4% 91.5% 86.7% 80.6% 93%

Gain ratio 86.1% 66.8% 72.8% 77.9% 80.6% 79.6% 89.3%

CFS 68% 68.9% 63.6% 81.2% 85.1% 80.1% 90.6%

IB1 Wrapper 37.1% 69.4% 72.8% 87.7% 82.6% 80.1% 86.8%

Gain ratio 78.4% 73.6% 75.9% 92.5% 83.7% 86.6% 92.5%

CFS 76.3% 68.4% 67.7% 85.5% 82.4% 83.3% 93.1%

IB3 Wrapper 47% 68% 67% 88.7% 85% 79% 91.8%

Gain ratio 74.2% 70.9% 75.4% 85.9% 83.2% 87.1% 93.1%

CFS 73.7% 68.4% 64.1% 73.7% 89.2% 85.5% 94.9%

Predictive models: J48, Classification tree; IB1 and IB3, Nearest-neighbor; CFS, Correlation Feature Selection; d, genetic diversity; dN, frequency of nonsynonymous mutations;
dS, frequency of synonymous mutations; PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non nucleoside reverse transcriptase inhibitor; DRM, drug
resistance mutations.
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good settings, and were more cost-efficient than others.

Although multivariate analyses have been extensively used to

study others HIV-infected cohorts and clinical studies (Reddy

et al. 2016; Auld et al. 2016; Gilbert et al. 2016; Cakır and

Demirel 2011; Sahle 2016), this is the first time that machine

learning techniques have been applied to understand the im-

portanceof clinicalparameters indeterminingwithin-hostHIV-

1 subtype B.

Most HIV-infected children under study were born in the

80’s–90’s (75%), had detectable VL (>50 c/ml) at last se-

quence (83.3%) and had monotherapy and/or dual therapy

experience (34.8%), leading to treatment failure and reducing

ARTefficacydueto the incompletevirus suppressionafterDRM

selection (Lorenzo et al. 2004; Abrams et al. 1998; Rojas

S�anchez and Holgu�ın 2014). In fact, treatment failure in chil-

drenduringART is frequent, leading to immunological damage

(Judd et al. 2016) and the emergence of DRMs is a major

obstacle for effective treatment (Rojas S�anchez and Holgu�ın

2014).Clinicians faceproblemsofmanagingheavilypretreated

perinatally infected patients with many resistance mutations,

not completely adherent to the treatments or with previous

suboptimal regimens, such as in those children born in the

mono or biotherapy era or in areas with limited ARV

availability. In our study, all 24 patients (except one child) car-

ried viruses with DRMs at first and last available sequence, al-

though they maintained susceptibility to some antiretroviral

drugs licensed or under evaluation to control HIV pediatric in-

fection (https://www.aemps.gob.es/). The high resistance rate

to most ARVs across resistant viruses reflects the change of

treatment choices by clinicians during the last decades depend-

ingontheapproval timeofARVforpediatricuse inSpain (fig.2).

The effect of ART on plasma HIV-1 diversity has been

studied in adults (Lorenzo et al. 2004; Pennings 2012;

Gall et al. 2013; Kearney et al. 2014). We previously observed

an increase of the mean between-host virus diversity during

ART exposure across pediatric patients from the same cohort

of the 24 children under study (Pag�an et al. 2016), indicating

that plasma virus diversity is sustained during each phase of

viral decay despite the large decreases in the replicating pop-

ulation size. Our results obtained by machine learning showed

that those variables related with ART (as year of first ART,

NNRTI experience, number of ARVs and of previous ART reg-

imen switches) had an effect on HIV-1 evolutionary parame-

ters. Therefore, the effect of these variables on within-host

HIV-1 subtype B evolution should be analyzed in more detail

in future studies. The NNRTI experience seems to have a direct

effect on genetic diversity and frequency of nonsynonymous

changes at pol coding region. This result reinforces the impor-

tance of treatment on HIV-1 evolution, since virus replication

continues in patients under ART, even in patients with viral

suppression and persistent low-level viraemia (Martinez-

Picado and Deeks 2016; Vardhanabhuti et al. 2015).

It is known that theevolutionarypathwayandHIVevolution

at pol can also be highly dependent on the viral genetic

background, at DRM as well as nonDRM sites (Rath et al.

2013). We observed that the within-host HIV-1B genetic diver-

sity, nonsynonymous and synonymous mutation rates and se-

lection pressures also changed among patients, probably due

to the different selection forces at sampling time and different

viral genetic background across patients. In the study we ob-

served a similar number of children carrying DRM over time for

NRTI and PI. However, we observed an increase of DRM to

NNRTI in the last 5 years, maybe due to the reduced ARVs

options in children with high virological failure experience

and to the approval of two new NNRTI during that period.

Genetic diversity significantly varied over time, increasing

when comparing the baseline versus the last collected viral

sequences, mainly due to the accumulation of nonsynony-

mous mutations. This could be favored by clinical changes

over time in patients, including decline of CD4/CD8 ratio, in-

complete virus suppression, suboptimal therapies and higher

experience to ARVs that promote the fixation of DRM

(Markham et al. 1998; Castro-Nallar et al. 2012; Rojas

S�anchez and Holgu�ın 2014). Note that the number of sites

under neutral evolution also increased over time, which would

be in apparent contradiction with the observed increase in

nonsynonymous mutations. However, if accumulation of non-

synonymous mutations occurred only in a few positions (for

instance, DRM-related sites), the rest could have evolved to-

wards neutrality. Indeed, we detected that the number of

DRMs increased over time, which would be compatible with

this explanation.

According to machine-learning algorithms, other clinical, vi-

rological, and epidemiological factors, although lesser, could

play a relevant role in DRM fixation and HIV-1B evolution.

Thus, VL would not have had an impact on the three HIV-1B

evolutionary studied parameters (d, dN, and dS) in infected chil-

dren. However other clinical factors (%T CD4, T CD8 count,

and CD4/CD8 ratio) appear to contribute to HIV-1 evolution in

children. Twenty-three of the 24 children failed to normalize

the CD4/CD8 ratio in the last clinical report, even despite VL

suppression or low viraemia after effective ART in most of

them. The CD4/CD8 ratio is a surrogate marker of immune

activation and immunosenescence (Serrano-Villar et al. 2013;

Sainz et al. 2013). In the present study we observed a signifi-

cantly decreased CD4/CD8 ratio over time. This could be due to

the higher immune activation and immunosenescence caused

by the long-time HIV infection present in vertically HIV-1-

infected patients, whose immune system has developed in

the presence of the virus since birth or pregnancy (Sainz et al.

2013). Consequently, all of these interactive clinical factors

could modify the HIV-1 replicative environment, affecting the

genetic diversity of HIV-1 in children in agreement with previous

reports (Carvajal-Rodriguez et al. 2008; Ryland et al. 2010).

Despite the robustness of our predictive models, this study

presents limitations. Since all 24 children were perinatally

infected, we assumed that HIV-1 was transmitted at delivery

time to consider the infant age as HIV-1 exposure time. The
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exact time of HIV infection is difficult to estimate in infants/

children acquiring the HIV infection from their HIV-infected

mothers. It will depend on when HIV transmission from

mother to child occurred: during 9 months pregnancy, at de-

livery or during breastfeeding (variable duration after birth).

Hence, our estimates of time of infection may have a gap of

plus minus a year. However, previous studies indicated little

variation in HIV-1 d, dN, and dS during the first years of infec-

tion (Carvajal-Rodriguez et al. 2008). Thus, we do not expect

that this uncertainty would have big effects in our results.

Another potential caveat is the number of patients included

in the study. Although this number and that of analyzed

sequences were modest in size, pol sequences were sufficient

in number to perform an intrahost HIV-1 evolution analysis.

Moreover, associated clinical/immunological/virological infor-

mation was available in all analyzed sequences at sampling

time and during the clinical follow up of each patient, and this

allowed constructing accurate predictive models. Another lim-

itation of our work is that the monitored time span differed

between patients. Using sequences collected during the same

time interval would be more a consistent strategy. However,

this would have limited our analyses to a time span of 2–

3 years, and the analyses shown in figure 1 suggested that

few evolutionary changes occur on the HIV-1 genome during

such short period of time. Thus, we prioritized an approach

that allowed monitoring virus evolution for a longer period.

Finally, since only partial pol coding region was analyzed, it

would be interesting to perform the same analyses using com-

plete pol sequences to study the molecular HIV evolution on

each three HIV-1 pol proteins (PR, RT, and integrase).

In summary, this study identifies for the first time using

machine learning and using univariate and multivariate meth-

ods, several factors affecting HIV-1B pol evolution and those

affecting DRM fixation in HIV-1B infected pediatric patients,

with high values of precision. More studies are required for a

better understanding of HIV evolution across patients and viral

genes in children and adolescents with HIV infection.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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