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Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely dis-
tributed in the central nervous system (CNS) and many peripheral organs, such as the digestive tract,
endocrine, reproductive and respiratory systems, where it plays different regulatory functions and
exerts a cytoprotective effect. The multifarious physiological effects of PACAP are mediated through
binding to different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and
VPAC2 (VPAC2-R) receptors. In the gastrointestinal (GI) tract, PACAP plays an important regulatory
function. PACAP stimulates the secretion of digestive juices and hormone release, regulates smooth
muscle contraction, local blood flow, cell migration and proliferation. Additionally, there are many
reports confirming the involvement of PACAP in pathological processes within the GI tract, including
inflammatory states, neuronal injury, diabetes, intoxication and neoplastic processes. The purpose of
this review is to summarize the distribution and pleiotropic action of PACAP in the control of GI
tract function and its cytoprotective effect in the course of GI tract disorders.

Keywords: gastrointestinal tract; PACAP; mammals; pathological conditions; physiology

1. Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that
was first identified in an ovine hypothalamus extract in 1989. It is involved in stimulating
adenylate cyclase from cultured rat pituitary cells [1]. PACAP is encoded by the ADCYAP1
gene located on chromosome 18, which has four exons. Exon 4 encodes PACAP and
originates two biologically active peptide isoforms [2]. PACAP-38-consisting of 38 amino
acids and is C-terminally α-amidated. PACAP-27-is the result of post-translational pro-
cesses in which it is shortened at the C-terminus, keeping the same amino acid sequence
at the N-terminus [2,3]. Previous studies have shown that PACAP-38 is the dominant
form in mammals [3]. PACAP exhibits a high degree of homology with vasoactive in-
testinal peptide (VIP) on the N-terminus amino acid sequence (68%) and belongs to the
VIP/glucagon/secretin superfamily [4]. Amino acid sequences of the members of this
superfamily were described by Vaundry et al. [5]. The occurrence of PACAP was confirmed
in the central nervous system (CNS) and many peripheral organs, such as the digestive
tract, endocrine, reproductive, and respiratory systems, where it plays different regulatory
functions and exerts a cytoprotective effect [4–8]. In the gastrointestinal (GI) tract, PACAP
plays an important regulatory function. PACAP stimulates the secretion of digestive juices
and hormone release, regulates smooth muscle contraction, local blood flow, cell migration
and proliferation [8–10]. Additionally, there are many reports confirming the involvement
of PACAP in pathological processes within the GI tract, including inflammatory states,
neuronal injury, diabetes, intoxication, and neoplastic processes [10–15]. Therefore, the pur-
pose of this review is to summarize the distribution and pleiotropic action of PACAP in the
control of GI tract function and its cytoprotective effect in the course of GI tract disorders.
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2. Localization of PACAP in the Gastrointestinal Tract in Individual Species of Mammals

The presence of PACAP in the GI tract has been described in various mammal species,
including humans [7,10,11,16–33]. However, it should be emphasized that the distribution
of PACAP differs between different parts of the GI tract in the same species and shows
interspecies differences. The studies on the distribution of PACAP in the GI tract in
individual mammalian species are presented below and summarized in Table 1.

Table 1. Distribution of PACAP in the GI tract of various mammals’ species.

Species Localization References

Oesophagus

Rat nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous
plexuses and in the mucosa [7]

Pig nerve terminals in the striated muscle [23]

Human
neurons in the myenteric ganglia

intraganglionic nerve fibers in the myenteric ganglia
nerve fibers in the circular and longitudinal muscle layers

[27]
[27]
[28]

Cat nerve fibers in the myenteric ganglia and muscle layers [19]

Sheep nerve fibers in the myenteric ganglia and muscle layers [19,33]

Ferret nerve fibers in the myenteric ganglia and muscle layers [19]

Stomach

Rat

nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous
plexuses and in the mucosa

neurons in the myenteric ganglia
the enterochromaffin-like (ECL) cells in the mucosa

[7,18]
[7,18]
[17]

Mouse nerve fibers in the mucosa
nerve fibers in the circular muscle layer in the antrum

[19]
[20]

Pig neurons in the myenteric and submucous plexuses in the corpus and prepyloric area [11,24]

Human nerve fibers in the mucosa and muscle layers
cells in the gastric glands

[19]
[28]

Cat nerve fibers in the myenteric ganglia, muscle layers and mucosa
cells in the gastric glands [19,28]

Sheep nerve fibers in the myenteric ganglia and muscle layers [19,33]

Ferret nerve fibers in the myenteric ganglia and muscle layers [19]

small intestine

Rat
neurons in the myenteric and submucous plexuses

nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous
plexuses and in the mucosa

[7,9,16]

Mouse nerve fibers in the myenteric ganglia and smooth muscle [19]

Guinea pig
nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous

plexuses and around blood vessels of the submucosa
neurons in the myenteric ganglia

[21,22]

Pig neurons in the myenteric plexus, outer submucous plexus, and inner submucous plexus
nerve fibers in the mucosa and both muscular layers in the ileum [10–12,25,26]

human
neurons in the myenteric and submucous ganglia

nerve fibers in the circular and longitudinal muscle layers, in the mucosa and in the
enteric ganglia

[19]

Cat nerve fibers in the myenteric ganglia and muscle layers [19]

Sheep nerve fibers in the myenteric ganglia and muscle layers and arterial walls [19,33]

Ferret nerve fibers in the myenteric ganglia and muscle layers [19]
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Table 1. Cont.

Species Localization References

large intestine

Rat
neurons in the myenteric and submucous plexuses

nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous
plexuses and in the mucosa

[7,9,16]

Guinea pig
nerve fibers in the circular and longitudinal muscle layers, myenteric and submucous

plexuses and around blood vessels of the submucosa
neurons in the myenteric ganglia

[21,22]

Pig

neurons in the myenteric plexus, outer submucous plexus, and inner submucous plexus
in the descending colon

nerve fibers in the circular and longitudinal muscle layers, in the mucosa and in the
enteric plexuses

[10,11]

Human neurons in the myenteric plexus and submucous plexus
nerve fibers in both enteric plexuses, mucosa and muscular layers

[14,29,30]
[31]

Cat nerve fibers in the myenteric ganglia and muscle layers [19]

Sheep nerve fibers in the myenteric ganglia and muscle layers [19,33]

Ferret nerve fibers in the myenteric ganglia and muscle layers [19]

Pancreas

Rat endocrine parts of pancreas [18]

Sheep nerve fibers in the islet of Langerhans and small arteries
neurons in the intrapancreatic ganglia [32,33]

2.1. Rodents

Numerous PACAP-immunoreactive (IR) neurons and nerve fibers have been found
in the myenteric and submucous plexuses in the rat small and large intestine [16]. The
presence of PACAP-IR fibers was described in the circular and longitudinal muscle layers
using both light and electron microscopy. Additionally, a synaptic connection of PACAP-IR
cell bodies with PACAP-containing nerve fibers was also demonstrated [9]. Detailed distri-
bution of PACAP in the rat digestive tract (esophagus, stomach, small and large intestine)
was demonstrated using radioimmunoassay, chromatography, immunocytochemistry, and
in situ hybridization by Hannibal et al. [7]. Research has shown that PACAP-38 is the
predominant form in this species. Fibers immunoreactive to PACAP have been described
in both layers of muscularis as well as in the mucosa in the entire length of the GI tract
and in both types of enteric ganglia (submucous and myenteric). However, PACAP-IR cell
bodies have been visualized in the myenteric ganglia in the esophagus, stomach, small
and large intestine and submucous ganglia only in the small intestine. PACAP is also
present in the enterochromaffin-like (ECL) cells of the gastric mucosa [17]. PACAP and
its mRNA was also detected in the pancreas and the gastric mucosa using the sandwich
enzyme immunoassay (S-EIA) and RT-PCR technique [18].

In the available literature, there are few reports describing the distribution of PACAP
in the GI tract of mice. The presence of PACAP-IR nerve fibers has been described in the
myenteric ganglia and smooth muscle in the gut. Additionally, PACAP-IR single nerve
fibers were visualized in the gastric mucosa [19]. Other authors visualized PACAP only in
the circular muscle layer of the wild-type mouse antrum [20].

PACAP immunoreactivity was also studied in guinea pig small and large intestines.
Fibers were mainly detected in the myenteric and submucous plexuses, in the longitudinal
and circular muscle layers and around blood vessels of the submucosa. PACAP-positive
neurons were detected only in myenteric ganglia and, due to their morphology, were
qualified for Dogiel type-I [21]. In another study in guinea pig, immunolabeled nerve
fibers were described in both myenteric and submucous ganglion in the jejunum with a
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significant numerical advantage in the myenteric ganglion. Similarly, PACAP-containing
nerve fibers were visualized in both enteric ganglia [22].

2.2. Pigs

The distribution of PACAP in neuronal structures within the GI tract of the pig is
well documented. PACAP-IR nerve terminals have been visualized in the striated muscle
of the porcine esophagus [23]. In the prepyloric area of the porcine stomach, PACAP-
IR neurons have been identified in both submucous and myenteric plexuses, where they
constituted only a small percentage of enteric neurons [24]. A similar observation was made
in the porcine corpus of the stomach [11]. A slightly larger, but still not very numerous,
population of PACAP-immunopositive enteric neurons has been described in all type of
enteric plexuses (i.e., myenteric plexus (MP), outer submucous plexus (OSP), and inner
submucous plexus (ISP)) within the small intestine (duodenum, jejunum, and ileum) [11].

The occurrence of PACAP in intramural ganglia in the duodenum has also been de-
scribed by other authors [25,26]. Additionally, Gonkowski et al. [12] visualized a moderate
number of PACAP-IR fibers in the porcine ileum. The distribution pattern of PACAP was
also determined in the porcine descending colon. PACAP-IR cell bodies were present in
enteric plexuses (MP, OSP and ISP), and PACAP-immunopositive fibers were detected in
enteric plexuses, the circular muscle layer and the mucosal layer [10,11].

2.3. Humans

Similar to the pig, PACAP has been detected along the entire length of the human
digestive tract. According to Uddaman et al. [27], single PACAP-positive neurons and a
dense network of PACAP-IR intraganglionic nerve fibers have been detected in the myen-
teric ganglia in the lower esophagus. Moreover, abundant PACAP-containing nerve fibers
were observed in the longitudinal and circular muscle layers. Further studies performed
on the stomach confirmed the presence of low-density nerve fibers in both the mucosa and
the muscle layers, numerous PACAP-containing cells in the glands of the fundus and the
corpus and slightly less numerous in the cardiac and pyloric glands [28]. Rare PACAP-IR
nerve profiles were also described in the human stomach by Sundler et al. [19]. In the small
intestine, numerous PACAP-immunopositive nerve fibers were detected in all intestinal
layers and in the enteric ganglia. In turn, PACAP-IR cell bodies were abundant in the
submucous ganglia and slightly less numerous in the myenteric ganglia within the small
intestines [19]. Within the large intestine, the most detailed study on the distribution of
PACAP in the enteric nervous system was made by Godlewski and Łakomy [14]. It was
found that the number of PACAP-IR neuronal cells in the submucous plexus in the colon
amounts to about 45%, while in the myenteric plexus, PACAP was noted in about 32% of all
enteric neurons. In both enteric plexuses, numerous PACAP-IR fibers were also observed.
Other studies have reported a similar distribution of PACAP in neuronal structures of
ENS [29]. Moreover, PACAP-containing fibers were observed in the mucosa and muscular
layers [29–31].

2.4. Other Species

There are also reports describing the presence of PACAP in the wall of the GI tract
of cat, sheep and ferret [19,28,32,33]. In all species, PACAP-immunopositive nerve fibers
were observed in the myenteric ganglia and muscle layers in the entire length of the
digestive tract [19]. More detailed research was conducted on sheep. Köves et al. [33]
described the presence of PACAP in nerve fibers in the longitudinal muscle layer in
the esophagus, stomach, and small and large intestines, the circular muscle layer of the
stomach and intestine and the arterial walls in the duodenum. PACAP-containing fibers
was also observed in the pancreas, including islets of Langerhans and the small arteries.
Moreover, PACAP-IR cell bodies were described in the intrapancreatic ganglia, in which
PACAP-positive cell bodies accounted for about 88% of all intrapancreatic neurons [32]. In
turn, in cats, the distribution of PACAP was examined in detail in the stomach. PACAP-
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IR cells were visualized in the stomach glands, especially in the corpus, and numerous
PACAP-immunopositive fibers were observed in the mucosa and the muscle layers [28].

3. Co-Localization of PACAP with Other Neuroactive Substance in the GI Tract

The ratio of colocalization of PACAP with other neuroactive substance in the neuronal
structures in the wall of the GI tract was also determined using the double-immunofluorescence
technique in many mammalian species. Generally, in the esophagus, PACAP co-localized
with VIP in both enteric neurons and nerve fibers [7,27]. Moreover, in the myenteric plexus,
PACAP co-existed with neuropeptide Y and helospectin [7,9]. In the stomach, PACAP
colocalized with VIP, calcitonin gene-related peptide (CGRP) and gastrin-releasing peptide
(GRP) in the nerve fibers in both the mucosa and muscular layers [7]. However, in PACAP-
IR, myenteric neurons were also VIP-, GRP-and nNOS-positive [7,28]. Similarly, in the
small intestine, numerous PACAP-IR neurons and nerve profiles in all intestinal layers
were simultaneously immunoreactive to VIP [7,22]. PACAP co-localized with nNOS only
in the myenteric neurons and nerve fibers in the muscle layers. Only single perivascular
PACAP-IR fibers were also CGRP-positive [7]. In turn, in the large intestine, the co-
existence of PACAP with VIP, nNOS and the cocaine-and amphetamine-regulated peptide
transcript (CART) was only observed in the nerve fibers in all intestinal layers, while
PACAP+/CGRP+ nerve profiles were visualized only in the mucosa [7,34].

4. PACAP Receptors and Their Localization in the GI Tract

The multifarious physiological effects of PACAP are mediated through binding to
different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and
VPAC2 (VPAC2-R) receptors [35] (Figure 1). PAC1-R exerted a 100-fold higher affinity
for PACAP than for VIP, whereas VPAC1-R and VPAC2-R exhibit a comparable affinity
to PACAP and VIP [36]. Molecular studies identified diverse receptor conformational
ensembles and microstate transition paths for each receptor and revealed differential
peptide-receptor interactions (at the atomistic detail) for each receptor important for PAC1,
VPAC1 and VPAC2 receptor ligand selectivity [37].

The PAC1-R has various variant transcripts (Null, Hip, Hop1, Hop2, Hiphop1, Hiphop2,
short and very short isoforms), which lead to the activation of two different signaling path-
ways: increasing the intracellular level of cyclic AMP (cAMP) by adenylyl cyclase (AC) and
the stimulation of phospholipase C (PLC) [36,38]. Activation of VPAC1-R and VPAC2-R
stimulate AC and some other cAMP-independent signaling cascades [39].
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Figure 1. PACAP receptors (PAC1R, VPAC1R, and VPAC2R) and their biological action. cAMP-cyclic adenosine3′,5′-
monophosphate; AC-adenylate cyclase; PKA-protein kinase A; ATP-adenosine triphosphate; Gα/β/γ-G protein al-
pha/beta/gamma subunit; PLC-phospholipase C; PIP2-phosphatidylinositol 4,5-bisphosphate; DAG-diacylglycerol; IP3-
inositol trisphosphate; PI3K-phoshoinositide 3-kinase. The figure is based on the graphics contained in the article of
Gabriel et al. [40].

To date, the distribution of PAC1-R in the GI tract has been confirmed in the smooth
muscle of the stomach in guinea pig [41] and neuroendocrine cells (enterochromaffin-like
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cells (ECL)) in rats [17,42], the gastric artery in dogs [43], the smooth muscle of ileum in
guinea pigs [44], rats [45], and dogs [46], the longitudinal smooth muscle of the colon in
humans [47], and rats [48], the circular smooth muscle of the colon in guinea pigs [49],
taenia caeci in guinea pigs [50], as well as in human and rat livers [51,52], the guinea
pig gallbladder [53] and the rat pancreatic acinar cell line AR 4-2J [54]. Additionally, the
expression of PAC1-R was detected on the myenteric neurons located in the human GI
tract [55] and rat gastric and colonic myenteric neurons [56].

VPAC1-R was also widely distributed in the digestive tract. The expression of VPAC1-
R has been detected in the human intestinal cell lines [57], the internal anal sphincter in
opossum [58], jejunum, ileum and colon in mice [59], sigmoid colon and small intestines in
humans [55,59], jejunum in mice [60], pancreas islets in rats [61] and insulin-secreting cell
line MIN6 in mice [62].VPAC2-R was most commonly found in neuroendocrine cells, blood
vessels and smooth muscle in the human small intestine [55], smooth muscle of the stomach
in rabbits [63], guinea pigs [64] and rats [65], taenia coli in guinea pigs [64], the pancreas in
rats [61] and insulin-secreting cell line MIN6 in mice [62]. Additionally, there are reports
describing the expression of common PACAP/VIP receptor along the entire length of
the digestive tract (esophagus, stomach, small intestines, colon, liver and pancreas) in
several animal species without a clear distinction between type 1 and type 2 [60,65,66].
Both VPAC1-and VPAC2-receptors were also detected in the submucous plexus of the
mouse jejunum [60].

5. Physiological Role of PACAP in the GI Tract

There are many reports confirming the significant role of PACAP in the control of the
physiological functions of the mammalian GI tract [8,9,41–43,53,66–91]. Generally, PACAP
regulates secretion, motility, blood flow and proliferation, but its effect depends on both the
part of the GI tract and stimulated receptors (Figure 2). In the esophagus, PACAP evokes a
dose-dependent relaxation of the lower esophageal sphincter (LES) in human and cats [66].
There are also reports suggesting the involvement of PACAP in the control of secretory and
sensory function in this part of the GI tract [42].
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Moreover, several studies have shown that PACAP stimulates gastric acid secretion
and hormone release in the stomach. Regulation of secretory functions is accomplished by
PACAP through interaction with neuroendocrine cells. The presence of the PAC1 receptor
on ELC cells and the common receptors for VIP/PACAP on D cells was demonstrated [67].
The vast majority of available data confirm that PACAP directly induces hydrochloric acid
secretion and stimulates histamine secretion [68,69]. In contrast, some authors demon-
strated that PACAP inhibits gastric acid secretion by stimulation of somatostatin release
from D cells [70]. PACAP probably stimulates the secretion of hydrochloric acid immedi-
ately after filling the stomach with a meal (the neural phase) and inhibits it in the later phase
by increasing the secretion of somatostatin [71]. Furthermore, PACAP stimulates the release
of other substances in the stomach, such as pancreastatin, gastrin-releasing peptide, VIP,
and substance P (SP) [8]. There are also reports describing the stimulatory effect of PACAP
on pepsinogen secretion from isolated chief cells in the guinea pig [67]. As mentioned
above, PACAP induces cell proliferation and differentiation. PACAP, as a strong mitogen,
stimulates the proliferation of ECL cells with up to 100 times stronger potency than VIP and
higher efficiency than gastrin [72]. However, research by van Assche et al. [73] on primary
explant cultures of rabbit gastric antrum smooth muscle revealed that PACAP does not
affect myocyte proliferation. One of the most detailed described effects of PACAP in the
stomach is the regulation of smooth muscle contractility. PACAP exerts a dose-dependent
relaxation of longitudinal and circular muscle strips of the fundus in many mammal species,
including rats, mice, guinea pigs and rabbits [41,65,74,75]. PACAP also elicits an inhibitory
effect on the spontaneous phasic contractions of the pylorus via activation of common
VIP/PACAP receptors and, thus, regulates gastric emptying [53]. Additionally, due to the
presence of PACAP in the nerve fibers innervating blood vessels, the vasodilatory role and
regulation of local blood flow were also confirmed. In particular, PACAP exhibits a strong
vasodilatory effect in the left gastric artery in dogs via acting on PAC1 receptors [43].

In the case of the small intestine, the regulation of intestinal motility is considered the
most important physiological role of PACAP. Previous studies have shown that its effect
depends on the animal species, the site of action and stimulated receptor. In vitro studies on
the isolated rat ileum showed that PACAP elicits intestinal smooth muscle relaxation, and
this effect is many times higher than VIP [45,75]. In turn, in the guinea pig ileum, it induced
contractility, mainly by the release of acetylcholine and substance P [41,44]. A similar
observation was made by Onaga et al. [76] in the ovine duodenum. Recent studies have
shown that PACAP is one of the major neurotransmitters of the enteric inhibitory motor
neurons (IMNs) located in the myenteric plexus and exhibiting a relaxing effect on the
muscle the gut circular [77]. Furthermore, PACAP plays an important role in the regulation
of intestinal secretion. PACAP stimulated electrogenic ion secretion in the jejunum [78]
in rats and humans [79]. PACAP is also a potent stimulator of bicarbonate secretion in
the rat duodenum [80]. There are also reports describing the stimulatory effect of PACAP
on cholecystokinin (CCK) and secretin secretion and inhibition of 5-hydroxytryptamine
(5-HT) in the rat and mouse small intestine [81–83].

Knowledge of the physiological role of PACAP in the large intestine is more fragmen-
tary. Most of the available data concern the human colon [9,47]. PACAP induced relaxation
of the longitudinal muscle of human sigmoid colon and rat distal colon and guinea pig
caecum in vitro [47,48,84]. It is also likely that PACAP stimulates ion transport and the
secretory functions of the mucosa [9].

In the liver, due to the induction of glucose output from the perfused rat liver by
PACAP, the latter is regarded as a regulator of hepatic glycogenolysis [85]. There also
reports describing its influence on gallbladder contraction. The stimulatory effect was
probably mediated by activation of PAC1R, whereas activation of VPAC receptors led to a
relaxation of smooth muscle contraction [53]. In turn, in the pancreas, PACAP is one of
the most potent secretory agents and stimulates both exocrine and endocrine secretion.
It was confirmed that PACAP induces amylase [86], secretin, amylase and lipase [87,88]
and bicarbonate secretion [89] and increases local blood flow [90]. The influence of PACAP
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on pancreatic endocrine secretion has been studied in detail in many in vitro and in vivo
animal models and humans. PACAP participates in glycemic control by glucose-dependent
stimulation of glucagon and insulin secretion [90,91].

6. PACAP Participation in Pathological Processes in the GI Tract

An increasing number of reports have confirmed the involvement of PACAP in the
regulation of pathological processes in the GI tract. PACAP has been shown to have
anti-inflammatory, antioxidant and cytoprotective effects [7,10–15,29–31,92–109]. The in-
volvement of PACAP in the regulation of gastrointestinal disorders is presented below and
summarized in Table 2.

Table 2. The involvement of PACAP in the regulation of gastrointestinal disorders.

Organ Species Disease Model References

Stomach
Rat extrinsic denervation

experimental ulcers
[7]

[107]

Pig experimentally-induces hyperacidity
diabetes

[24]
[11]

Small intestine

Rat intestinal autotranslantation
ischemia-reperfusion

[101]
[102]

Pig diabetes [11]

Mouse cold and warm preservation in the course of intestinal transplantation [103]

Intestinal INT407 cells Human
lipopolysaccharide (LPS) exposure and bacterial adherence (Escherichia coli,

Salmonella Typhimurium, Klebsiella pneumoniae, Enterococcus faecalis)
oxidative stress

[94]
[104]

Duodenum Pig naproxen and indomethacin administration [25,108]

Ileum

Mouse acute ileitis
subacute ileitis

[92]
[93]

Rat a dysfunctional (atrophic) intestine [106]

Pig zearalenone intoxication [12]

Large intestine Human
inflammatory bowel disease

carcinoma
Hirschsprung’s disease

[100]
[14]
[29]

Colon

Mouse dextran sulphate sodium (DSS)-induced colitis
acute Campylobacter jejuni-induced enterocolitis

[96–98]
[99]

Human
symptomatic diverticular disease
drug-resistant ulcerative colitis

malignant tumor

[30]
[31]
[15]

Pig

chemically-induced inflammation
proliferative enteropathy

axotomy of caudal colonic nerves
diabetes

[10]
[10]
[10]
[11]

Colonic Caco-2 cells Human lipopolysaccharide (LPS) exposure and bacterial adherence (Escherichia coli,
Salmonella Typhimurium, Klebsiella pneumoniae, Enterococcus faecalis) [94]

HCT8 human colonic
tumor cell Pig tumor [109]

Liver Pig bisphenol A dietary exposure [13]

6.1. Inflammatory Condition

The anti-inflammatory properties of PACAP have been observed in acute ileitis in
mice [92]. Mice infected with Toxoplasma gondi treated simultaneously with synthetic
PACAP showed increased anti-inflammatory IL-4 concentration in mesenteric lymph nodes,
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a greater density of small intestinal FOXP3+ cells and reduced level of pro-inflammatory
cytokines (IL-23p19, IL-22, IFN-γ, MCP-1) resulting from a decreased number of ileal
leucocytes. In addition, PACAP-treated mice had a higher survival rate than placebo-
treated mice [92]. Similarly, in experimentally-induced subacute ileitis in mice, PACAP
elicited a cytoprotective effect on ileal epithelia and decreased the level of T lymphocytes,
which resulted in a reduced synthesis of pro-inflammatory cytokines in the intestinal
wall [93]. Furthermore, Illes et al. [94] investigated the effect of PACAP on intestinal INT407
culture cells exposed to different species of bacteria. Although PACAP had no impact on
the number of bacterial colonies and adhesion, it led to a reduction in IL-8 and CXCL-1
secretion in INT407 cells. Other studies have shown that PACAP deficient mice exhibits
altered intestinal microbiota composition and the complete absence of bifidobacteria, which
may predispose them to increased frequency of intestinal disorders [95].

There are also many reports describing the beneficial effect of PACAP in the course
of large intestine inflammation. Increased level of PACAP mRNA was observed in dex-
tran sulphate sodium (DSS)-induced colitis in mice [96]. Other authors using the DSS-
induced model of colitis have shown that PACAP-deficient mice had a reduced level of
pro-inflammatory cytokines in the proximal and distal colon and more severe clinical
symptoms of colitis [97,98]. Furthermore, in the acute Campylobacter jejuni-induced ente-
rocolitis in mice PACAP treatment led to reduction of clinical symptoms such as wasting
and diarrhea and less severe the microscopic features of colitis [99]. Moreover, Gonkowski
and Całka [10] reported that both chemically-induced inflammation and proliferative en-
teropathy led to an increased population of PACAP-IR enteric nerve cells and fibers in the
wall of the porcine descending colon. In comparison, patients with inflammatory bowel
disease exhibited higher expression of PACAP, which was reversed by the administration
of antibiotics [100]. Symptomatic diverticular disease in human resulted in an upregulated
level of PACAP in the enteric plexuses in the colonic mucosa [30]. In turn, a reduced
density of PACAP-containing nerve fibers was observed in the colon mucosa in the course
of drug-resistant ulcerative colitis in children, which may be a result of the degeneration of
mucosa [31].

6.2. Injuries and Intoxications

To date, numerous studies on the cytoprotective role of PACAP in the GI tract and
its role in recovery processes after damage have been conducted. Nedvig et al. [101]
demonstrated that PACAP shows a cytoprotective and anti-inflammatory role in the rat
intestinal autotransplantation model. Further research has shown that PACAP protects the
intestinal structure and alleviates the oxidative stress associated with intestinal damage
during ischemia-reperfusion and autotransplantation [102]. Moreover, PACAP-38 knockout
mice showed pathological changes in the intestine, including the destruction of the mucosal
layer and crypts, increased tissue lipid peroxidation after both cold and warm preservation
in the course of small intestinal transplantation [103]. The protective role of PACAP on
intestinal epithelial cells having high turnover (INT 407) against oxidative stress was also
demonstrated [104]. Recent research elucidated that PACAP preserves mitochondrial
functionality and suppress apoptotic signaling in oxidative stress condition [105]. In turn,
in atrophic rat ileum, decreased expression of PACAP was reported, as well as a transient
supersensitivity of the longitudinal muscle to the PACAP [106]. Extrinsic denervation
decreased the concentration of PACAP in the wall of the rat stomach but had no influence
on the small intestine [7]. In contrast, an increased population of PACAP-IR cell bodies
in each kind of enteric plexuses and a higher density of PACAP-containing nerve fibers
in the mucosa and muscle layers of the descending colon was observed in pigs subjected
to axotomy of caudal colonic nerves [10]. This may be explained by the different role of
PACAP in the pathophysiological processes in different animal species and in particular
sections of the digestive tract.

There are also reports describing the engagement of PACAP in the control of stomach
hyperacidity, which may lead to mucosal barrier damage, ulcers and cancer. Elevated
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PACAP-immunoreactivity was observed in the submucous plexuses within the porcine
stomach after experimentally induced hyperacidity [24]. In a rat model of ulceration, a
higher density of PACAP-IR nerve fibers was observed in the smooth muscle adjacent
to the ulcer and an upregulated level of PACAP mRNA was detected in the myenteric
ganglia [107].

The latest research focuses on the role of PACAP in the protection of the gastrointesti-
nal tract against the effects of toxins and drugs. Czajkowska et al. [25,108] investigated the
effect of non-steroidal anti-inflammatory drugs (NSAIDs) on the neurochemical phenotype
of enteric neurons in the pig duodenum. Both naproxen and indomethacin administration
led to a significant increase in PACAP-immunoreactivity in all intramural plexuses in the
duodenum as a result of mucosa damage. Additionally, bisphenol A dietary exposure
resulted in an increased density of PACAP-positive hepatic nerve fibers in the pig [13]. A
higher number of PACAP-contained nerve fibers within the circular muscle layer of the
porcine ileum was also noted in the course of zearalenone intoxication [12].

6.3. Neoplastic Processes

As a cytoprotective factor, PACAP plays an important role in maintaining organism
homeostasis. However, it can also participate in oncogenesis, leading to the growth of
tumors located in the intestines. The distribution of PACAP was also determined in the
human tumors located in the large intestine. Decreased PACAP-immunoreactivity was
determined in colon tumor samples by radioimmunoassay [15]. Less numerous PACAP-
IR nerve fibers in the submucosal and myenteric plexuses in sections with cancer of the
human large intestine were also established [14]. Furthermore, Le et al. [109] demonstrated
the presence of the PAC1 receptor on HCT8 human colonic tumor cell and the beneficial
effect of PACAP on cell viability and regulating Fas-R expression, which suggests the
involvement of PACAP in colon cancer development.

6.4. Other Disorders of the GI Tract

The occurrence of PACAP-containing nerve structures was determined in ganglionic
and aganglionic portions of the large intestine of patients with Hirschsprung’s disease.
PACAP was present in all intestinal layers, but a small number of PACAP-IR nerve fibres
were visualized in aganglionic segments of the intestine [29]. In turn, elevated PACAP
immunoreactivity in the neuronal cell within the porcine digestive tract was demonstrated
in the course of diabetes [11]. Prolonged hyperglycemia led to a significant increase in
the population of PACAP-IR neurons in all types of intramural neurons in the stomach,
duodenum, jejunum, ileum and descending colon. The severity of the changes depended
on the examined plexus and gastrointestinal segment. Nevertheless, the obtained results
confirm the participation of PACAP in regulatory processes of the GIT function in the
course of diabetes.

7. Therapeutic Use of PACAP and Its Receptors Agonists

The main problem in the therapeutic use of PACAP is its restricted bioavailability and
rapid degradation (a plasma half-life less than 5 min) [110]. Due to the fact that most of
the beneficial properties of PACAP are mediated via PAC1-R, recent structure-function
and conformations studies have focused on finding a selective agonist for the PAC1-R
with less affinity for the VPAC1 and VPAC2 receptors [110,111]. Conformational analysis
of PACAP-27 has shown an initial disordered N-terminus sequence of eight amino acid
residues followed by a region, from amino acid residues 9 to 24, that consists of four distinct
domains [112]. The first domain (residues from 9 to 12) forms a β-turn-like conformation
whereas the three others are composed of distinct helical regions that extend from residues
12 to 14, 15 to 20, and 22 to 24, respectively [5]. The conformation of PACAP-38 is the same
as PACAP-27 in the N-terminal region (region 1–27) and shows slight differences in the C-
terminal region, which suggests that the N-terminal region of PACAP is responsible for its
biological activity [5,113]. The three-dimensional structure of PACAP shows a high degree
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of similarity to that of other VIP/glucagon/secretin superfamily members, particularly VIP.
However, there are slight conformational differences between VIP and PACAP resulting
in differences in the selectivity of the peptides for their receptors [5,112]. The discovery
of a synthetic metabolically stable analogue of PACAP (acetyl-[Ala15, Ala20]PACAP38-
propylamide), a super-agonist towards the PAC1-R and other PAC1-R selective agonists
created potential therapeutic opportunities in some clinical conditions [110,111]. However,
PAC1-R has numerous splice-variants with different affinities for PACAP (and its ana-
logues) and abilities to activate intracellular response [110]. Future research will focus on
the distribution of individual receptor splice-variants in tissues/organs and the therapeutic
effects of individual analogs in these tissues.

8. Conclusions

Numerous morphological and neurochemical studies indicated that PACAP is widely
distributed in the GI tract of numerous species, including humans. PACAP participates
in many physiological functions in the digestive tract, such as regulation of motility, the
secretion of digestive juices, exocrine function of the pancreas, intestinal absorption, cell
migration and proliferation. Moreover, an increasing number of scientific reports have
confirmed that PACAP is an important cytoprotective factor with anti-apoptotic, anti-
inflammatory and antioxidant properties. Recent research has also demonstrated that
PACAP is involved in the control of inflammatory states, recovery processes after neuronal
damage, intoxication and neoplastic processes in different segments of the GI tract and
various animal species. The discovery of a synthetic metabolically stable analogues of
PACAP may contribute to its application in the treatment of gastrointestinal disorders,
which requires further research.
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