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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with increased oxida-

tive stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxi-

dation and reduced activities of antioxidant enzymes have been reported in AD plasma.

Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including

complement activation and acute phase reactions, which may also be reflected in plasma.

Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We

investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with

amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) on cultured micro-

glial cells. AD plasma and was found to significantly decrease cell viability and increase gly-

colytic flux in microglia compared to plasma from healthy controls. This effect was

prevented by the heat inactivation of complement. Proteomic methods and isobaric tags

(iTRAQ) found the expression level of complement and other acute phase proteins to be al-

tered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis

pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants

in AD plasma may alter the energy metabolism of glia.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder that results in the progressive and ir-
reversible loss of cholinergic neurons in specific areas of the brain [1]. Amnestic Mild Cognitive
Impairment (aMCI) is considered to be a pre-dementia stage of AD [2], with a proportion of
aMCI cases progressing to AD with time. AD is characterised by an abnormal accumulation of
amyloid β (Aβ) and tau proteins, increased oxidative stress and redox metals in the brain all of
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which are associated with an immunological response [3]. Aβ primarily accumulates extracel-
lularly and eventually leads to the formation of amyloid plaques, the main pathological hall-
mark of AD. The accumulation of Aβappears also appears to occur in synaptic mitochondria
leading to impaired respiration and increased oxidative stress [4].

Damage to the blood-brain barrier is thought to occur in AD, and this may increase move-
ment of proteins between the brain and the vasculature [5]. It is therefore possible that AD and
its precursor, MCI, may be associated with the presence of specific biomarkers detectable in
plasma and recent work has successfully used a panel of plasma biomarkers to predict disease
severity and progression from MCI to dementia [6]. There are a number of proposed plasma
biomarkers for AD, some of which reflect increased protein, lipid and nucleic acid oxidation
and reduced activities of antioxidant enzymes in the AD brain [7–13]. AD has been reported to
be associated with reduced plasma levels of vitamin A, C and E [9]. Isoprostanes, which arise
from free-radical-mediated peroxidation of polyunsaturated fatty acids, are elevated in the AD
brain, CSF and plasma [11]. 4-hydroxynonenal, another product of lipid peroxidation, is also
increased in AD plasma [8].

A variety of inflammatory markers are increased with the onset of AD pathology, including
cytokines and chemokines, coagulation factors and acute-phase reactive proteins as well as reac-
tive astrocytes and activated microglial cells, the main cells involved in the neuroinflammation
process [3,14]. Previous studies have shown that upregulation of the acute phase protein clusterin
in plasma, is associated with prevalence, rate of progression, brain atrophy and disease severity in
AD patients [15,16]. Other studies however have found no difference and suggest against the
idea that acute phase protein changes in the CNS can be detected in plasma [17,18]. Alternative-
ly, ADmay be associated with a more widespread immune dysregulation, detectable in plasma.

Previous studies investigating the effects of human AD plasma on cells in culture have
found differential effects on protein expression and cell biology. One study aimed to determine
if exposure to serum from AD patients would affect markers for AD brain lesions [19], and
found that 24 hour exposure to AD serum increased four molecular markers characteristic of
AD senile plaques and neurofibrillary tangles (NFTs) in rat hippocampal neurons [19]. These
markers were Alz-50, beta-amyloid, MAP2 and ubiquitin [19]. This stimulation of AD markers
by human serum suggests that the genesis of both neuronal plaques and tangles may arise from
exposure of susceptible neurons to toxic serum factors and/or failure to detoxify these factors.
Another study found that antibodies in serum of patients with AD caused immunolysis of cho-
linergic nerve terminals from the rat cerebral cortex, supporting the hypothesis that autoim-
mune mechanisms may operate in the pathogenesis of AD [20].

Other studies have shown that serum of multiple sclerosis patients causes demyelination in
rat CNS explant cultures and also induces cytotoxicity in rat oligodendrocytes in culture
[21,22]. Demyelination was present not only in multiple sclerosis sera but was also found in
sera from patients with other neurological diseases and complement was shown to be a factor
involved in the effect [23,24]. In yet another study, human serum from patients with septic
shock was shown to induce apoptosis in human cardiac myocytes [25]. This work demonstrat-
ed the utility of examining effects of disease plasma on cell culture systems, to facilitate the
study of both disease markers and disease mechanisms.

Since previous studies indicate that AD plasma may contain oxidative stress markers as well
as cytotoxic factors, we investigated the effect of the addition of pooled control, MCI and AD
plasma from 20 individuals each on a microglial cell line. Cell viability, proliferation and mito-
chondrial function were investigated following 48 hour treatment with non heat-inactivated
plasma and plasma in which complement proteins had been deactivated. We also tested the ef-
fect of commercially purchased complement factors alone and in combination on cultured glia.
We then undertook proteomic analysis of the plasma from each group and iTRAQ quantitative
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proteomic analysis of cell extracts exposed to plasma from each group to investigate possible
plasma protein alterations unique to MCI or AD, to detect any protein aberrations within the
cells treated with the plasma and to correlate these finding to cell viability and mitochondrial
function assays measured in vitro.

Materials and Methods

Subjects
Age matched healthy control (n = 20), amnestic mild cognitive impairment (aMCI, n = 20),
and probable AD (n = 20) plasmas were pooled and used in both the cell culture and plasma
proteomics experiments. AD patients were recruited from the Memory Clinic of the Depart-
ment of Old Age Psychiatry of the Prince of Wales Hospital and participants in a clinical drug
trial of donepezil (Aricept). All met the NINCDS-ADRDA criteria [26] for probable AD. The
aMCI subjects were recruited from the Memory and Ageing Study, a longitudinal study of
community dwelling individuals aged 70–90 [27]. The diagnosis of aMCI was determined
using the Petersen Criteria as follows [28]: (i) subjective complaint of memory impairment,
(ii) objective impairment in memory (performance>1.5 SD below normal for age on a stan-
dardised memory test) (iii) essentially preserved general cognitive function (MMSE� 24)
(iv) intact functional activities as indicated by instrumental activities of daily living; and (v) not
meeting DSM-IV criteria for dementia. Healthy control subjects had a normal performance for
age on a range of neuropsychological tests and intact functional activities. Ethics committee ap-
proval was obtained from the University of New South Wales (UNSW) and the South Eastern
Sydney Illawarra Area Health Service (SESIAHS) ethics committees and written informed con-
sent was obtained from all participants.

Cell Culture
CHME-5 cells are a human microglial cell line obtained from embryonic fetal human microglia
through transformation with SV-40 virus [29,30] and were a generous gift from Prof Gilles
Guillemin (Macquarie University, Sydney, Australia). These cells express antigens present on
adult human microglia, secrete pro-inflammatory cytokines upon activation, exhibit properties
of primary human microglia and have been successfully used as a model of microglial activa-
tion by others [29,31]. Cells were maintained in RPMI1640 cell culture medium, supplemented
with 10% heat inactivated foetal bovine serum, 2 mM l-glutamine, and 1% penicillin/strepto-
mycin, at 37°C in a humidified atmosphere containing 95% air/5% CO2. Before experimenta-
tion, cells were seeded into 24 or 96 well culture plates to a density of approximately 1x104 or
2x103 cells respectively. Cells were left overnight and then supplemented with up to 20%
(by volume) heat-inactivated and non heat-inactivated control, MCI or AD plasma for
48 hours. For the cell viability and iTRAQ proteomic analyses cells were washed to remove all
plasma, and lysed in RIPA buffer (Thermo Fisher Scientific, IL, USA) followed by sonication.
For the complement factor experiments cells were seeded into plates and treated with 1, 5 or 10
μg of each complement factor or the complement standard (in a total volume of 200μL cell cul-
ture media) and then incubated for 48 hours. These concentrations are within the physiological
range of these proteins in plasma [32].

MTT Cell Proliferation Assay
In actively proliferating cells, an increase in 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide (MTT) conversion in cells relative to controls represents an increase in cellular
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proliferative activity. Conversely, in cells that are undergoing apoptosis, MTT conversion, and thus
biological activity, decreases. Cell proliferation was analysed using established protocols [33,34].

NAD(H) Assay
Damaged cells show mitochondrial dysfunction, which results in decreased cellular nicotin-
amide adenine dinucleotide (NAD) levels. Intracellular NAD(H) concentration was quantified
using the thiazolyl blue microcycling assay established by Bernofsky and Swan and adapted
here for the 24 well plate format [35].

Lactate Dehydrogenase (LDH) Leakage
Cytoplasmic enzyme leakage has been shown to be a useful tool for measuring early cellular
damage or impairment [12], and has also been used as a sign of cytotoxicity [36,37]. LDH is re-
leased from cells due to loss of membrane integrity. Therefore LDH was measured in the cell
culture medium as well as in cell homogenates as another measure of cell viability.

XF24 Microplate-Based Respirometry as a measure of mitochondrial
function
To determine the effect of human control, MCI and AD plasma on oxygen consumption rates
(OCRs; an indicator of mitochondrial respiration) and extracellular acidification rates (ECARs;
a measure of glycolytic flux) in the microglial cell line, the Seahorse XF24, extracellular flux an-
alyzer (Seahorse Bioscience, North Billerica, MA, USA) was employed and assays performed as
previously described [38–40]. The basal control ratio (BCR) and the uncoupling ratio (UCR)
were determined as previously described [41]. Essentially, the BCR is a measure of how close
the basal level of respiration is to the maximum level of respiration. The closer this ratio is to
1, the greater the mitochondrial malfunction. The UCR is a measurement of mitochondrial
functional integrity and measures the ratio of uncoupled to physiologically normal respiration
levels. The greater the maximum level of respiration, the greater the mitochondrial
functional integrity.

Fractionation of Plasma
Control, MCI and AD plasma from 20 subjects was pooled and fractionated by two methods.
To fractionate it into its protein and metabolite fractions, a PD10 column separation method
was used. The PD10 column was washed with MilliQ water before the addition of 500 μL of
plasma. The flow-through was collected as 750 μL fractions topping the column with MilliQ
water. In total 20 fractions were collected and the absorbances read at 280nm. For the proteo-
mics analysis, fractionation into low and high abundant protein fractions was undertaken
using an MARS-Hu6 column (Agilent Technologies, CA, USA) according to the manufactur-
er’s instructions. The MARS-Hu6 column depletes the top 6 contaminating proteins (albumin,
IgG, IgA, transferrin, haptoglobin and antitrypsin) from plasma. This eliminates the masking
effect of highly abundant proteins so lower-abundant proteins can be more easily detected. The
low abundance fraction produced was used for the proteomic analysis experiments.

Proteomics of MCI and AD plasma
A one dimensional SDS 4–12% NuPAGE (Thermo Fisher Scientific Inc, MA, USA) gel was run
using the low abundance fraction from each of the three groups. The gel was colloidal coomas-
sie stained [42], and the lanes uniformly cut into 7–8 bits using a gridcutter and mount from
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The Gel Company, CA, USA. The gel bits were trypsin digested and then analysed using mass
spectrometry as outlined in detail in S1 Methods.

Peak lists were generated by MassLynx (version 4.0 SP1, Micromass) using the Mass Mea-
sure program and submitted to the database search programMascot (version 2.2, Matrix Sci-
ence, London, England). Search parameters were: Precursor and product ion tolerances ± 0.25
and 0.2 Da respectively; Met(O) and Cys-carboxyamidomethyl were specified as variable modi-
fication, enzyme specificity was trypsin, one missed cleavage was possible on the
NCBInr database.

Scaffold Q+ (version 4.3.4), Proteome Software, Portland, OR, USA) was used to identify
any altered proteins between the groups. The Scaffold programme uses mass spectrometric
data to identify protein changes in biological samples by collating Mascot data and using the
ProteinProphet algorithm [43]. We compared the normalised total spectral count values from
Scaffold [44] with the emPAI values from Mascot [45], which uses a different algorithm for
spectral counting.

iTRAQ Proteomics of Cell Lysates Treated with Human Control, MCI
and AD Plasma
Two biological replicates of cells treated with 10% (by volume) non-heat inactivated fetal bo-
vine serum, human control, MCI or AD plasma were washed to remove all plasma/serum and
then lysed using RIPA buffer and probe sonicated. Total protein concentrations were deter-
mined using the Bicinchoninic acid (BCA) protein assay kit (Pierce, IL, USA). The total protein
(120 μg) from each sample was reduced with 2 μl of 5mM tris-(2-carboxyethyl) phosphine
(TCEP) for 60 min at 60°C followed by alkylation with 200 mM iodoacetamide (1 μL) for 10
min at room temperature. To remove any buffer components incompatible with mass spec-
trometry a buffer exchange was performed with 50 mMNaHCO3 using Microcon centrifugal
filter devices with a 3,000 Da nominal molecular weight limit membrane (Millipore, MA, USA)
to give a final protein concentration of 1 μg/μl.

For tryptic digestion 100 μg total protein from each sample was incubated overnight at 37°C
with 4 ug of trypsin. Samples were labelled using the 8-plex iTRAQ kit (Applied Biosystems, CA,
USA). Each iTRAQ reporter label was mixed with a biological replicate of cell lysate sample, pH
adjusted to basic (ca pH = 9) with 2 μl of 50 mM of Na2CO3 and incubated for 2 hours. The re-
porter masses for the samples were labelled as follows: fetal bovine serum; 113 and 117, human
control plasma; 114 and 118, humanMCI plasma; 115 and 119, human AD plasma; 116 and 121.

Sample clean-up was performed using a strong cation exchange cartridge (Applied Biosys-
tems, CA, USA) and a syringe pump at a flow rate of 9.5 ml/hr, and using the manufacturer’s
protocol. Sample was then passed through a C18 Peptide Macrotrap (Michrom Bioresources,
CA, USA). The flow-through from the C18 step was passed through an Oasis cartridge
(Waters, MA, USA) to maximise peptide recovery and the two eluants pooled and dried under
vacuum, resuspended in 0.2% heptafluorobutyric acid and then analysed using mass spectrom-
etry as outlined in detail in S1 Methods.

Protein identification and quantification was performed using the MS/MS data (WIFF files)
and the Paragon algorithm as implemented in Protein Pilot v4.0 software (Applied Biosystems,
CA, USA) using the NCBInr database. Only proteins identified with a ProteinPilot unused
score of� 1.3 (greater than 95% confidence in sequence identity) were accepted as previously
described [46,47]. The unused score is a ProteinPilot generated value for the level of confidence
in protein sequence identification. As an approximate guide, ProteinPilot unused scores give
the following percentage levels of confidence; score�1.3(�95% confidence), score�2(�99%
confidence), score�3 (�99.9% confidence) [46]. The only fixed modification used was
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iodoacetamide alkylation of cysteine residues. Mass tolerances were set to 50ppm for the pre-
cursor and 0.2 Da for the fragment ions. Autobias correction was applied to correct for any sys-
tematic bias in total protein concentration during sample pooling. Both biological replicates
for the three human plasma types (control, MCI and AD) were compared to the fetal bovine
serum control (iTRAQ reporter 117) and data exported to Microsoft Excel software (Micro-
scoft, WA, USA).

Protein interactions between dysregulated proteins were determined using the web-based
bioinformatics tool STRING v9.1 (http://string-db.org). STRING has a database that collates
information on protein-protein interactions and associations. It scores and weights connec-
tions and provides predicted interaction network maps from literature mining searches. The 27
proteins which were significantly deregulated in glia treated with AD plasma, but not deregu-
lated in either control or MCI plasma treated glia were analysed in STRING v9.1. MCL cluster-
ing was used with the 2 clusters option picked and with the confidence view selected to display
the strength of evidence for protein associations and analysis of enrichment was
also performed.

Statistics
All cell viability values are presented as means ± SEM. Statistical comparisons were performed
using two-tailed student t-tests assuming equal variance. Differences between treatment groups
were considered statistically significant at the p< 0.05 level. Scaffold values are represented as
normalised total spectral counts and p-values for significantly altered proteins were obtained
using the ProteinProphet algorithm of the Scaffold Q+ software (Proteome Software, OR,
USA). All iTRAQ values are presented as ratios of cells treated with human plasma to cells
treated with fetal bovine serum control. Ratios and p-values for significantly altered proteins
were obtained through the Paragon algorithm of the Protein Pilot v4.0 software (Applied Bio-
systems, CA, USA).

Results

Cell Proliferation
Cells treated with non heat-inactivated pooled control and AD plasma for 48 hours showed a
significant decrease in cell proliferation in cells treated with AD plasma compared to controls
(Table 1). The addition of MCI plasma to the cells also caused a similar drop in cell prolifera-
tion, though not reaching statistical significance (Table 1). Mild heat treatment at 56°C for 30
minutes is an established approach for inactivating complement proteins [48,49]. Such heat
treatment prevented the effects of MCI and AD plasma on cell proliferation (Table 1).

To determine whether the effect on cell proliferation was exclusively due to the protein
component or to both the protein and low molecular weight components of plasma we separat-
ed proteins and metabolites. Plasma was fractionated using a PD10 column into its protein and
metabolite portions to determine which portion of the plasma was causing the cytotoxic effect
(Fig. 1). Addition of these two fractions to the cells showed that it was exclusively the protein
portion which was initiating the reduction in cell proliferation (Fig. 1). Protein fractions of
both MCI and AD plasma were found to significantly reduce cell proliferation (Fig. 1). The me-
tabolite fraction of the plasma had no significant effect on microglial proliferation (Fig. 1).

Treatment of the cells with complement factors C1q, C1 inhibitor, C4, C5 and C9 effected a
downward trend in cell proliferation with increasing concentration, but did not reach signifi-
cance (Table 2). In combination, the factors were found to reduce cell proliferation at the high-
est concentration tested. The human complement standard which contains the factors C1q,
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C2, C3, C4, C5, C6, C7, C8, C9 and factor B was found to be the most potent at preventing cell
proliferation (Table 2).

NAD levels and LDH Leakage
Incubation with non heat inactivated plasma caused a significant drop in cell viability as re-
flected in lower NAD levels, for cells treated with both MCI and AD plasma, compared to con-
trols (Table 1). This result was again prevented by plasma heat inactivation (Table 1). The
addition of human complement standard containing C1q, C2, C3, C4, C5, C6, C7, C8, C9 and
factor B was found to significantly reduce NAD levels in the microglia (Table 2).

A significant increase in LDH leakage into the cell culture medium was seen in cells incubat-
ed with non heat inactivated AD plasma (Table 1). A concurrent decrease was seen in the
amount of intracellular LDH in these same cells (Table 1).

Fig 1. Fractionation of non heat inactivated control plasma into protein andmetabolite fractions and the effects of plasma treatment on cell
proliferation. Panel A: Fractionation of non heat inactivated control plasma into protein and metabolite fractions using PD10 column Panel B: Effect of these
fractions on cell proliferation. Three replicates were performed. Plasma used for the measurements were obtained from the pooled plasma of 20 patients
from each of the three groups (Control, MCI and AD). * p� 0.01 vs Control, ** p� 0.001 vs Control. Panel C: Images of microglia after 48 hour incubation
with non heat inactivated 20% control plasma (left) and 20% AD plasma (right), showing increased toxicity and reduced cell proliferation in the AD plasma
treated cells.

doi:10.1371/journal.pone.0116092.g001
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Mitochondrial Function and Cellular Bioenergetics
To determine whether mitochondrial bioenergetic mechanisms are associated with AD patho-
genesis, we assessed mitochondrial function in glial cells treated with human plasma using the
Seahorse XF24 (Seahorse Bioscience, MA, USA). We observed a significant decrease in OCRs
and an increase in ECAR for cells treated with AD plasma and MCI plasma effected similar
trends though did not achieve statistical significance (Fig. 2). We also observed a significant in-
crease in the BCR and a decline in the UCR in microglial cells after 48 hour incubation with
AD plasma (Fig. 2), consistent with impaired mitochondrial function and increased shift
towards glycolysis.

Plasma fractionation and 1D gel electrophoresis
Fractionation using the MARS-Hu6 column provided a baseline separation of low and high
abundant proteins (Fig. 3). These fractions were run on a 1D SDS NuPage gel and proteins
were shown to be effectively separated with a substantial depletion of high abundant proteins,
revealing many lower abundant protein bands in the low abundant fraction (Fig. 3).

Proteomics of MCI and AD plasma
Following proteomic analysis of pooled control, MCI and AD plasma, normalised total spectral
counts using Scaffold software and emPAI values from Mascot showed complement compo-
nent 2, fibronectin and fibrinogen to be significantly increased in the AD groups compared to

Fig 2. Effects of human plasma on cellular bioenergetics in a microglial cell line. (A) Effect of human plasma on oxygen consumption rates (OCR) in a
microglial cell line for 48 hours. *p<0.05 compared to non-treated cells (control); (n = 4 for each treatment group). (B) Effect of human plasma on extracellular
acidification rates (ECAR) in a microglial cell line for 48 hours. *p<0.05 compared to non-treated cells (control); (n = 4 for each treatment group). (C) Effect of
human plasma on the basal control ratio (BCR) in a microglial cell line for 48 hours. *p<0.05 compared to non-treated cells (control); (n = 4 for each treatment
group). (D) Effect of human plasma on the uncoupling ratio (UCR) in a microglial cell line for 48 hours. *p<0.05 compared to non-treated cells (control); (n = 4
for each treatment group).

doi:10.1371/journal.pone.0116092.g002

Biological Effects of Exposure to Alzheimer’s Disease Plasma in Glia

PLOS ONE | DOI:10.1371/journal.pone.0116092 March 18, 2015 10 / 30



the control group (Table 3). Thrombin was decreased in the MCI and AD patients compared
to controls (Table 3). A full list of proteins identified and normalised spectral counts in human
control, MCI and AD plasma can be found in S1 Table and the peptide false discovery rate
analysis can be found in S1 Fig.

Fig 3. Chromatogram of fractionation using Hu6 column and 1D SDS/PAGE of these fractions. Low abundant proteins are eluted first (first peak on
chromatogram) and high abundant proteins are eluted after (second peak). Gel shows significant depletion of high abundant proteins in the low abundant
fractions. Loading was 50 μg/lane. First and last lanes contained molecular weight markers. Each fraction was run in duplicate.

doi:10.1371/journal.pone.0116092.g003
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iTRAQ proteomic analysis of cell lysates treated with Control, MCI and
AD plasma
Differential protein expression in glial cells treated with fetal bovine serum (control) or human
plasma from control, MCI and AD subjects were analysed with two biological replicates per-
formed using an 8-plex iTRAQ experimental design. In total, 791 proteins were identified with
95% or greater confidence in correct protein sequence identification and 750 proteins with a
false discovery rate of 5% (see S2 Table for full summary of identified proteins and S3 Table for
full false discovery rate analysis). Fourty-one proteins were found altered between the MCI and
AD groups of cellular lysates (Table 4). The highest numbers of dysregulated proteins were
found in the cells treated with AD plasma (Table 4, 27 proteins highlighted in bold). Interest-
ingly a significant number of proteins involved in the glycolysis cycle were shown to be upregu-
lated in this group, namely glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate
kinase, enolase, aldolase and pyruvate kinase. These enzymes catalyse five of the ten enzyme re-
actions of the pathway and their functions are shown in Fig. 4. Transketolase was also shown
to be significantly elevated in both the AD plasma treated cell sample replicates. This enzyme is
part of the pentose phosphate pathway and connects this pathway to glycolysis. Analysis of
protein interactions of the 27 dysregulated glial proteins treated with AD plasma using the on-
line STRING v9.1 tool confirmed a significant enrichment of proteins involved in glucose me-
tabolism (Fig. 5 and Table 5).

Discussion
A variety of studies have looked at the effects of plasma on cell cultures in different diseases. For
example, Brewer et al found 24 hr exposure of human serum from AD patients to rat hippocam-
pal neurons increased four molecular markers characteristic of Alzheimer senile plaques and
neurofibrillary tangles [19]. Another study has shown that Parkinsonian serum has comple-
ment-dependent toxicity to rat dopaminergic neurons [50]. A study using a differentiated neuro-
nal cell line investigated the susceptibility of neuronal cells to human complement. It was found
that human serum caused lysis of the neurons by complement, as tested by cell viability. The ef-
fect was lost when cells were treated with complement-depleted serum by heat inactivation [51].

Our cell culture results also showed that the loss of cell viability and reduction in cell prolif-
eration caused by AD plasma can be prevented by inhibiting the activity of plasma complement
proteins. Alterations in peripheral proteins may reflect changes in the brain, especially since
damage to the blood-brain-barrier (BBB) resulting in increased permeability has been reported
in MCI and AD [52,53]. This suggests that complement may have the capacity to play a role in
the cell loss seen in AD. Complement factors may work synergistically to cause loss in cell via-
bility. We observed reduced cell viability when cells were exposed to the complement standard
mixture, as compared to addition of single complement factors (Table 2). However in all cases
we observed a downward trend in cell viability as complement concentration levels increased
regardless of the number of complement proteins present. The data achieved statistical signifi-
cance with exposure to as few as two complement factors (Table 2), indicating that the full
spectrum of complement proteins are not necessary for cytotoxicity. Indeed it has been found
that treatment of a transgenic mouse model with an agonist to a single complement receptor,
C5aR, decreased pathology and improved behavioural performance [54].

There is significant evidence for the involvement of inflammation in the pathogenesis of
Alzheimer’s disease. In the AD brain, damaged neurons and highly insoluble Aβ peptide de-
posits and NFTs provide stimuli for inflammation [3,14]. Various neuroinflammatory media-
tors including complement activators and inhibitors, chemokines, cytokines, radical oxygen
species and inflammatory enzymes have been shown to be altered in AD [3,14]. Another
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prominent feature of AD neuropathology is the association of activated proteins of the classical
complement pathway with the lesions. The full-range of classical pathway complement pro-
teins from C1q to C5b-9, known as the membrane attack complex, has been found highly local-
ised with Aβ deposits in neuritic plaques [55,56]. It is also present in dystrophic neurites in
AD. The fact that complement activation has progressed until the final membrane attack com-
plex stage and the observation that complement regulators have also been found in association
with the AD lesions indicates a disturbance in the regulatory mechanisms controlling comple-
ment activation in this disease [57–60].

Aβ itself can induce complement-mediated toxicity against neurons in culture, suggesting
that Aβ-induced complement activation may contribute to the neuropathogenesis of AD [56,61].
Hyperphosphorylated tau protein, the main component of NFTs, is also a potent stimulator of
the complement cascade. Purified NFTs have been shown to activate the complement system in
plasma, resulting in a significant increase in levels of membrane attack complexes [62]. Tau and
Aβ are both able to increase inflammatory responses and cytokine production. Since the comple-
ment system is strongly activated in AD, it could possibly participate either in the exacerbation
or amelioration of the pathology. Because Aβ deposits and extracellular NFTs are present during
early preclinical until terminal stages of AD, their ability to activate complement provides a
mechanism for initiating and sustaining chronic, low-level inflammatory responses that may

Fig 4. Glycolysis Pathway highlighting enzymes which were shown to be upregulated in cells treated with AD plasma.

doi:10.1371/journal.pone.0116092.g004
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accumulate over the disease course. This supports the idea that the complement system cascade
intervention might be a useful pharmacological approach to treat early stages of AD.

Proteomic analysis of MCI and AD plasma in this study revealed a number of proteins which
were significantly altered between the three groups. The majority of these proteins were acute
phase reactants, including proteins which were related to the complement system (Table 3). This
supports the results from other published studies using mainly proteomic techniques which have

Fig 5. The 27 proteins which were significantly deregulated in glia treated with AD plasma, but not deregulated in either control or MCI plasma
treated glia (shown in Table 4) were analysed in STRING v9.1.MCL clustering was used with the 2 clusters option picked and with the confidence view
selected to display the strength of evidence for protein associations (panel A). Analysis of enrichment was also performed and the most significantly enriched
biological process was glucose metabolic process (FDR p-value = 1.759x10E-8, with the 9 proteins involved in this process shown in panel B). Other distinct
biological processes which were also significantly enriched included response to hydrogen peroxide (FDR p-value = 3.559x10E-2 with 4 proteins involved;
ANXA1, PRDX1, PRDX2, CRYAB) and membrane to membrane docking (FDR p-value = 4.299x10E-2 with 2 proteins involved; MSN, EZR). Several
molecular functions were also enriched, the most significant being RNA binding (FDR p-value = 5.340x10E-9 with 17 proteins involved shown in panel C).
Another distinct and significantly enriched molecular function is thioredoxin peroxidase activity (FDR p-value = 9.220x10E-3 with 4 proteins involved; PRDX1,
PRDX2). Several cellular components were also enriched, the most significant of these being extracellular vesicle exosome (FDR p-value = 5.019x10E-9
with 17 proteins involved as shown in panel D). Multiple other significantly enriched cellular components were also observed, and all enriched protein groups
are shown in Table 5.

doi:10.1371/journal.pone.0116092.g005
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Table 5. STRING v9.1 analysis of the 27 proteins deregulated only in glia exposed to AD plasma
(shown in Table 4). for enrichment in gene ontology biological processes. Glucose metabolism was found
to be the most significant biological process, and is also highlighted in the STRING network map (Fig. 5).

Molecular Function
Enrichment GO_ID

Term Number of
Proteins

p-
value

p-value
FDR

p-value
Bonferroni

GO:0003723 RNA Binding 17 1.94E-
12

5.34E-
09

7.51E-09

GO:0044822 Poly(A) RNA Binding 16 2.75E-
12

5.34E-
09

1.07E-08

GO:0008379 Thioredoxin peroxidase
activity

2 8.88E-
06

9.22E-
03

3.45E-02

GO:0003676 Nucleic acid binding 16 9.50E-
06

9.22E-
03

3.69E-02

GO:0051920 Peroxiredoxin activity 2 2.95E-
05

2.29E-
02

1.15E-01

Biological Process
Enrichment GO_ID

Term Number of
Proteins

p-
value

p-value
FDR

p-value
Bonferroni

GO:0006006 Glucose metabolic
process

9 1.42E-
12

1.76E-
08

1.76E-08

GO:0019318 Hexose metabolic process 9 7.28E-
12

4.51E-
08

9.02E-08

GO:0005996 Monosaccharide metabolic
process

9 3.63E-
11

1.50E-
07

4.49E-07

GO:0046364 Monosaccharide
biosynthetic process

6 2.23E-
10

6.89E-
07

2.75E-06

GO:0016051 Carbohydrate biosynthetic
process

7 7.56E-
10

1.87E-
06

9.35E-06

GO:0006094 Gluconeogenesis 5 5.43E-
09

1.12E-
05

6.73E-05

GO:0019319 Hexose biosynthetic
process

5 9.29E-
09

1.64E-
05

1.15E-04

GO:0042542 Response to hydrogen
peroxide

4 2.30E-
05

3.56E-
02

2.85E-01

GO:0022614 Membrane to membrane
docking

2 3.13E-
05

4.30E-
02

3.87E-01

GO:0016584 Nucleosome positioning 2 6.56E-
05

8.12E-
02

8.12E-01

Cellular Component
Enrichment GO_ID

Term Number of
Proteins

p-
value

p-value
FDR

p-value
Bonferroni

GO:0070062 Extracellular vesicular
exosome

17 1.04E-
11

5.02E-
09

1.51E-08

GO:0044421 Extracellular region part 18 1.23E-
09

4.44E-
07

1.77E-06

GO:0005576 Extracellular region 18 1.08E-
07

3.06E-
05

1.57E-04

GO:0031988 Membrane-bounded
vesicle

15 1.27E-
07

3.06E-
05

1.84E-04

GO:0031982 Vesicle 15 1.83E-
07

3.77E-
05

2.64E-04

GO:0043233 Organelle lumen 16 2.50E-
07

4.32E-
05

3.62E-04

GO:0042470 Melanosome 5 2.98E-
07

4.32E-
05

4.32E-04

GO:0005829 Cytosol 15 1.22E-
06

1.47E-
04

1.77E-03

GO:0070013 Intracellular organelle
lumen

13 5.33E-
05

5.93E-
03

7.71E-02
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shown changes in complement protein levels and other acute phase proteins in AD plasma
[5,47,63,64]. A summary of proteins found altered in such studies is provided in Table 6 and
some of the proteins found in our study overlap with those found by other groups using larger
cohorts of patients. One study has also shown a correlation between brain hippocampal volume
changes and plasma levels of acute phase proteins, including complement [63].

Interestingly one of the complement proteins that was reduced in the AD plasma, comple-
ment 4 binding protein (C4BP) is a complement inhibitor which is detected in Aβ plaques and
on apoptotic cells in the AD brain [65]. In vitro, C4BP binds apoptotic and necrotic but not via-
ble brain cells. It also binds to Aβ(1–42) peptide directly and limits the extent of complement
activation by Aβ [65]. C4BP levels in CSF of dementia patients and controls were low com-
pared to levels in plasma and correlated with CSF levels of other inflammation-related factors
[65]. Therefore it possibly protects against excessive complement activation in AD brains.

Fibronectin is present in plaques of AD brains and may modify biosynthesis of APP in
microglia [66]. Addition of Aβ to cultured astrocytes has been shown to induce a marked in-
crease in the production of fibronectin [67]. This suggests that in vivo fibronectin accumulation
in senile plaques may be the result, at least in part, of the response of reactive astrocytes to the
presence of Aβ. Fibrinogen is associated with an increased risk of AD and vascular dementia
[68]. Our study found fibronectin and fibrinogen to be significantly increased in the AD group
compared to controls (Table 3).

Furthermore, we have also shown that treatment with AD plasma can affect cellular bioener-
getics in a microglial cell line, by increasing glycolysis to compensate for declining oxygen con-
sumption and mitochondrial respiration (Fig. 2). The reduction in cerebral glucose metabolism,
as measured by FDG-PET, is a common diagnostic tool for AD. Positron emission tomography
(PET) imaging has identified a strong correlation between the spatial distribution of increased
glycolysis, and Aβplaques in the AD brain [69]. It is estimated that aerobic glycolysis accounts
for up to 90% of glucose consumed [70]. By contrast, a recent neuroimaging study which
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correlated multimodal neuronal parameters including glucose metabolism and hippocampal vol-
ume with Aβ deposition in cognitively normal older individuals, did not find any association be-
tween the multimodal neurodegenerative biomarkers [71]. However, diminished neuronal
integrity and cognitive function correlated with an increased Aβ burden in brain regions that are
most affected by AD pathology [71]. Increased glycolysis was associated with better verbal epi-
sodic memory in individuals with elevated amyloid levels in another study [72]. The increased
shift towards glycolysis may occur in regions of the brain most vulnerable to insult, or may occur
in response to Aβ accumulation during ageing. Loss of this protective mechanism may increase
the vulnerability of certain brain regions to Aβ-induced neurotoxicity.

Table 6. Summary of previous studies showing changes in acute phase proteins in Alzheimer’s
disease.

Name Site of effect Function Modification Reference

Alpha-2-
macroglobulin

plasma Inhibitor of coagulation;
inhibitor of fibrinolysis

Increased in MCI and
AD

[5,47]

Complement
C3

plasma Most abundant protein
of the complement
system, enhances
response

Increased in AD [101–104]

Complement
C4

plasma Protein involved in the
complement system
and undergoes
cleavage

Increased in AD [5,105]

C4b-binding
protein

plasma Inhibits C4 and binds
necrotic cells

Decreased in MCI and
AD

[47]

Complement
C5

plasma Fifth component of the
complement pathway

Increased in MCI [47]

Complement
C9

mRNA and
protein levels,
vascular amyloid
deposits

Involved in MAC
formation

Increased in AD brain
areas, increased
deposition in vascular
plaques

[101,102,106]

Complement
factor H

plasma Regulation of
alternative pathway of
the complement
system, ensuring no
damage to host tissue

Increased in AD [5,107]

Fibrinogen plasma Involved in blood
clotting

Decreased in AD [47,104,108,109]

Haptogloblin Plasma, CSF Binds free
haemoglobin thereby
reducing its oxidative
activity

Increased in AD
plasma, decreased in
CSF of MCI and AD
patients. Other studies
show increase in CSF
of AD

[110,111]

Hemopexin plasma and CSF Binds heme, preserves
iron levels in the body

Increased in AD [105,112,113]

Thrombin Brain tissue,
amyloid plaques,
neurofibrillary
tangles

Coagulation protein
that converts
fibrinogen into fibrin,
also catalyses other
coagulation related
reactions

Increased in AD [114–116]

Transthyretin Plasma, CSF Carrier of the thyroid
hormone thyroxine

Decreased in AD [47,112,117,118]

doi:10.1371/journal.pone.0116092.t006
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Quantitative iTRAQ analysis of glial cells treated with human AD plasma showed the high-
est number of dysregulated proteins (Table 4). The most significantly enriched biological pro-
cess was glucose metabolism (Fig. 5 and Table 5), and a significant number of upregulated
glycolytic proteins were found (highlighted in bold in Fig. 4), which is in agreement with the
ECAR effect we found in cellular biogenetics using mitochondrial function assays (Fig. 2). In-
creased expression of glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase,
enolase, aldolase and pyruvate kinase may increase glycolytic flux leading to the accumulation
of pyruvate and thus stimulating anaerobic metabolism to lactic acid. We found an increased
level of LDH activity in the cell culture media and an increase in extracellular acidification, as
indicated by the increase in ECAR in the microglial cells exposed to human AD plasma
(Fig. 2). These findings suggest a role for mitochondrial bioenergetic deficits in AD pathogene-
sis. Our study is consistent with previous PET metabolic analyses in individuals with AD, MCI,
or incipient to late AD [73]. Our findings are also consistent with microarray analyses and ac-
tivity assays of ageing, incipient AD, and AD human samples and rodent models which indi-
cate that genes and the catalytic activity of several glycolytic enzymes are altered in AD or MCI
patients [74,75]. Similarly, increased amyloid production and nerve cell atrophy have been
shown to induce mitochondrial dysfunction [76]. Overexpression of pyruvate dehydrogenase
kinase and lactate dehydrogenase in neurons has been shown to provide resistance to Aβ toxic-
ity and reduces mitochondrial respiration and oxidative stress [77]. Previous proteomic studies
have also revealed that enzymes involved in energy metabolism show altered oxidative modifi-
cation in the AD brain [78]. A recent study has also shown a number of proteins significantly
oxidised in the Down syndrome brain with and without AD pathology [79]. A significant num-
ber of proteins involved in energy metabolism were identified including some of the glycolysis
enzymes which we found altered in our study.

We also report an increase in the protein expression of the enzyme transketolase in microglial
cells in response to human AD plasma. Transketolase is a thiamine-dependent enzyme which ca-
talyses the first reaction in the pentose phosphate pathway. Transketolase alterations have been
previously identified in (i) several probable AD patients regardless of age-of-onset and severity of
disease; (ii) all early-onset AD patients and APOE ε4/4 carriers; and (iii) nearly half of asymp-
tomatic AD relatives [80]. Increased transketolase activity has also been correlated with increased
levels of BACE1, the key rate-limiting enzyme for the production of the Aβ peptide [80].

Increased oxidative stress, mitochondrial dysfunction and alterations to energy metabolism
have all been implicated as early events in the pathogenesis of AD. Cellular models for AD have
been shown to display functional impairment of the mitochondrial respiratory chain, and a de-
crease in oxygen respiration and ATP production [81]. All functional measures highlight biogenetic
impairment of the AD cells with a correlation to the accumulation of amyloid peptides [81].

Factors which induce the upregulation of glycolysis in glial cells treated with AD plasma re-
main unclear. Apart from the acute phase proteins found altered in our study, small molecules
in plasma may also play a role in the upregulation of glycolytic enzymes. A recent study of
metabolomic profiling of plasma from an AD mouse model found significant changes to sever-
al metabolites involved in energy metabolism, linking neuroinflammation with metabolic dis-
turbance in AD [82]. Since oxidative stress is thought be an important factor in the
pathogenesis of AD, the effects of this may also be detected in the circulation in levels of mark-
ers such as isoprostanes. Isoprostanes have been shown to be elevated in the AD brain and CSF
[83], however recent evidence suggests this may not be reflected in plasma [84], consequently
additional work is warranted. Aerobic glycolysis has also been correlated spatially with amyloid
deposition in AD brains [69]. It has also been shown that elevated levels of the enzymes pyru-
vate dehydrogenase kinase and lactate dehydrogenase provide resistance to amyloid and other
neurotoxins [77]. The ability of the brain to maintain expression of these enzymes involved in
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mitochondrial energy metabolism may explain why some individuals could show high levels of
amyloid deposition without neurodegeneration [77,85–87]. In our study, the indicators of in-
creased glycolysis in microglia may be a compensatory action caused by the loss of cell viability
and mitochondrial function following exposure to AD plasma. Altered activities of key glyco-
lytic enzymes have also been found in hippocampal, frontal and temporal cortex of AD brains
and thought to possibly be related to the astrocytosis that occurs in AD [74].

Chaperone proteins are thought to be involved in the pathogenesis of several neurodegenera-
tive and amyloidogenic diseases [88,89]. A number of chaperone proteins such as protein disulfide
isomerases were found to be downregulated in cells treated with MCI and AD plasma. Protein di-
sulfide isomerases can inhibit the aggregation of misfolded proteins and are also involved in mod-
ulating apoptosis and endoplasmic reticulum redox balance [90]. It has been shown that the
proinflammatory activation of microglia suppresses mitochondrial function and increases glycoly-
sis and overexpression of mitochondrial chaperone mortalin can attenuate this effect [91]. Heat
shock proteins are chaperone proteins which have a important impact on the proteotoxic effects
of tau and Aβ accumulation. Immunohistochemical studies and expression analyses in AD brain
tissue have shown that expression levels of a number of heat shock proteins are upregulated and it
has been hypothesised that this effect may be due to a hybridisation of activated glia and dysregu-
lated/stressed neurons [92,93]. Dysregulated chaperone proteins in the cells in our study may re-
flect a homeostatic attempt to clear toxic plasma proteins and protect mitochondrial function.

Cytoskeletal proteins are another group of altered proteins identified in our iTRAQ proteo-
mics data (Table 4). Nestin expression is seen during pathological situations and is a marker of
cell proliferation and is reduced in the cells treated with AD plasma, supporting our MTT data
(Table 1 and Fig. 1). Ezrin and moesin are involved in crosslinking actin filaments with plasma
membranes and stabilising microtubules respectively [94,95] and both were found to be upre-
gulated in cells treated with AD plasma. The antioxidant proteins peroxiredoxins were also
found to be elevated in cells exposed to AD plasma which may also be another indication of a
compensatory mechanism to attempt to attenuate the toxic effects of AD plasma.

In conclusion, this study shows that plasma expression levels of acute phase proteins are al-
tered in AD and MCI, supporting a role for increased inflammatory activity in this disease
which is detectable in the plasma. Cells exposed to AD plasma show an upregulation of glycoly-
sis possibly as a compensatory mechanism in response to compromised mitochondrial function.
Together our observations lend support to an emerging body of evidence that inflammation and
metabolism are closely linked processes, which are regulated by transcriptional and protein
translation events [96,97]. In the CNS, complement proteins are synthesised by a variety of cells
including neurons, microglia, astrocytes, oliogendrocytes and endothelial cells [98]. Since dis-
ruptions in the blood-brain-barrier have been reported in AD there is a possible source of in-
creased complement levels in the AD brain from plasma. It is however likely that there may be
other thermolabile factors in disease plasma which facilitate the cytotoxic and glycolytic effects
in microglia, one example may be micro RNAs as they are emerging as important factors in neu-
rogenesis, synaptic plasticity and AD [99,100]. Other yet to be characterised substances may also
make a significant contribution. This study shows that the use of biological assays in combina-
tion with proteomic analysis may help uncover possible mechanisms of disease and may be com-
plementary techniques to validate cellular changes and effects in a range of biological samples.
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