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Plant health index as an anomaly 
detection tool for oil refinery 
processes
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Ho Joon Seo3

Early detection of significant abnormal changes is highly desirable for oil refinery processes, which 
consist of sophisticated unit operations handling hazardous and flammable inventories and operating 
at high temperature and pressure. Close monitoring and anomaly detection are vital for avoiding 
major accidents and losses and enable intervention before failure occurrence. A new big data analytics 
tool called Plant Health Index (PHI) is proposed in this work. PHI is a statistical anomaly detection 
software that trains its model using online normal plant operation, then uses statistical analytics 
to detect anomalies. For detecting the anomalies, a combined method of multivariate analysis 
of residuals and nonparametric models of the process is employed. The methodology provides a 
structured representation of the plant variables to ease the detection of problems along with the 
detection of operation changes of the system. The PHI system has been tested on a hydrotreating 
units in a refinery, which consists of catalytic reactors and separators. The current implementation 
tagged 170 process variables and proved effective in capturing the normal operational conditions of 
the plant. When placed online, PHI was able of detecting anomalies that are difficult to detect using 
the control system and before being detected by the alarm system.

Oil refineries are among the most complicated dynamical structures, requiring smooth, effective and safe opera-
tion to continuously produce high quality products at competitive costs. Extremely sophisticated surveillance 
systems are necessary, with early identification of plant malfunctions and anomalous behavior. Machine learning 
algorithms can be effectively used to discover anomalies based on online and historical data, which can lead to 
system health monitoring. When studying real-world data sets, knowing which examples stand out as being dif-
ferent from all others is a common requirement. Anomalies are these types of events, and the purpose of outlier 
detection or anomaly detection is to find all of them using online operational data1.

The petroleum sector has progressed into a highly regulated industry with operational safety and security 
as core goals. Almost all installed equipment in modern refineries has sensors that monitor their activity and 
remote-controlled actuators to operate on them in order to manage the operational profile, avoid unwanted 
events, and avoid catastrophic failures. The physical integrity of oil and gas plants are strictly protected through 
multilayers of control and alarm systems that react to unusual circumstances. Anomaly detection is important 
because anomalies in data can lead to significant actionable information in a range of application fields1. The 
capacity to execute on the environment to appropriately respond, prevent, or remedy the situations associated 
with such unique information gives the decision maker the ability to identify it correctly2.

Another important consideration in process industries, such as oil refineries, is handling of large quantities 
of hazardous and inflammable materials, which flow at high rates (tons per hour), high temperatures (hundreds 
of degrees Celsius), and power (in megawatts)3. Thousands of personnel and millions of dollars are on the line 
every second, as a single small flaw or error can cause significant harm to the entire plant and its workers, as well 
as income losses. As a result, the upmost concern of the industrial plant management is to ensure continuous 
safety, process efficiency, long-term durability, and scheduled (vs. unscheduled) downtime. Distributed control 
systems (DCS) and supervisory control and data acquisition (SCADA) systems are commonly used for continu-
ous monitoring and control of equipment and unit operations, such as pumps, compressors, separators, boilers, 
heat exchangers and catalytic reactors. Variables that are generally measured and transmitted as signals are 
temperature, flowrate, level, pressure, and vibration. With hundreds or thousands of monitoring sensors used 
throughout the process plant, keeping track of whether they are working properly or not is very time consuming 
and labor expensive4.
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Advanced computing technologies and availability of cheaper storage medium enabled process industries 
to accumulate huge amount of time-stamped data that are stored as records of all measurements for the past 
months or years. Process “historians” available in the DCS systems provide useful statistical and visualization 
tools for processing and comparing previous operational trends. However, the predictive abilities of such tools 
are very limited and operators and technicians, who are usually overworked, rely on their intuition and experi-
ence particularly when it comes to finding useful patterns in the massive data and deducing expected future 
deviations and anomalies that may result in unanticipated damages and losses. As a result, effective models for 
monitoring and identifying abnormalities or anomalies based on various sensors and historical data connected to 
plant operations are becoming increasingly important and on demand. Here, data mining and machine learning 
approaches may prove effective in solving the challenges faced by oil and gas industries.

This paper attempts to explore the utilization of Big Data analytics in oil refinery maintenance processes 
context. Maintenance of plant equipment and sensors is crucial for normal plant operation. The objective of 
maintenance support systems is to identify degradation in equipment or component and rectify or replace those 
to keep up original functions. Maintenance strategies can be categorized under reactive or proactive maintenance 
(see Fig. 1). Conventional strategies for maintenance are usually based on reactive or corrective, under which 
equipment is replaced or if and only if it has damaged or undergo severe performance degradation. This ‘‘run 
to failure” strategy, known as breakdown maintenance, is still broadly appropriated for equipment whose failure 
will not impact operations and can be quickly and easily come back to service or whose failure timing and modes 
do not exhibit a significant statistical pattern. However, the consequences of some failures may be far-reaching 
and expensive. These failures can result in serious operational difficulties or even shut down the plant causing 
serious economic losses. For such circumstances, proactive maintenance strategies (see Fig. 1) are necessary to 
avoid serious failures. A commonly used proactive strategy is preventive maintenance which is based on analyz-
ing the equipment failure history, and consequently, a maintenance program is planned and conducted to fix 
equipment before failing. However, in some cases, preventive maintenance may be costly or even wasteful. A new 
maintenance strategy was developed to reduce the maintenance expenditure. In this strategy, equipment condi-
tions are regularly monitored until equipment starts to produce evidence of developing failure or deteriorating 
performance. To prevent failures in equipment, ‘‘just-in-time” maintenance is performed, known as predictive 
maintenance or condition-based maintenance (CBM).

Condition-based maintenance (CBM) can reduce cost expenditure by reducing unnecessary and time-con-
suming maintenance activities and reducing human errors. One of the essential methodologies in CBM is to 
predict an anticipated normal state compared to a measured observation. If the difference between the expected 
state and the observed state increases, one can suspect an anomaly in the system. There are two types of models 
that are used in predicting normal states in the framework of CBM. The model is derived from basic physical 
principles for the first type, while for the second one, the model is inferred from historical observations5. This 
research focused on the latter model type, which is sometimes considered an empirical model based on statistical 
analytics. Empirical models are more practical for the following reasons6:

(a)	 Context-free applicability: This indicates that without any detailed system knowledge, the core of an empiri-
cal model can be easily employed in any form of system modeling.

(b)	 Configuration flexibility: This indicates that it can be flexibly monitored and identified the system bound-
ary.

(c)	 Customization adaptability: This indicates that ageing modeling is relatively easy to customize a reference 
or baseline performance.

While various pilot-scale models utilizing empirical models have been employed at the worksites in nuclear 
facilities, these models should not be marked as an appreciated one than conventional physical models concerning 

Figure 1.   Maintenance strategies.
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accuracy. As a result of the inspection done to recognize the bottleneck in former efforts7, we have identified 
the necessity for:

(a)	 A novel parameter grouping strategy like an empirical model can adopt physical knowledge on a system 
to some extent

(b)	 Predicting plant health status using statistical signatures for process anomalies.

This research proposes and implements an enhanced framework including the suggested strategy and pro-
viding a software system with a graphical user interface illustrating the functions of the strategy. Plant Health 
Index (PHI) Solutions have been proven in predicting the operational performance (health) of nuclear, power, 
and desalination plants. Following the implementation and assessment of PHI in these plants, the objective is to 
prove the applicability of PHI in other process industries. In the current work, the applicability of PHI in refinery 
operation is investigated. Hence, the primary objectives are:

•	 Evaluate the applicability of PHI in selected refinery operations.
•	 Assess PHI in analyzing the plant behavior and evaluate the reliability of its predictions.

The research work also aims to answer the following queries:

•	 What are data characteristics specifically for the refinery processes?
•	 What cost savings does PHI bring to the selected process?
•	 How to identify and optimize the health condition of the selected process using big data analytics and data 

mining techniques?

Background
While operating a plant, if the outputs are good and there are no warnings, it does not mean that the plant is 
healthy. It just means that the current results are decent while unrecognized problems may be developing in 
the plant. Therefore, there could be potential problems or abnormalities in the health of the plant. However, 
since there is no knowledge on the status or health of the plant, there is always a possibility of risk of failure/
trip without early alerts.

According to Heinrich’s Law (see Fig. 2), for every major accident in the workplace, there are 29 minor 
accidents and 300 near miss incidents8. Because most accidents have the same root causes, addressing more 
commonplace near-miss accidents can prevent minor and major accidents9,10. Therefore, what if we monitor 
not only 29 minor accidents but all 300 incidents? In fact, the main concept of the Plant Health Index (PHI) 
approach proposed in this study is to monitor the operation of a chemical plant, derive symptoms, and predict 
the occurrence of all incidents.

Knowing that failures, whether minor or catastrophic, are preceded by symptoms that indicate deterioration 
in equipment or process conditions (see Fig. 3), the question is: How can a failure be detected early enough to 
provide time to plan and schedule work without panic or reactivity?

The specific objective is to adapt the proposed PHI software to refinery operation. The implemented PHI 
system is expected to evaluate a health index that would reflect the operational performance of the selected 
refinery section. When displayed, the numeric value of the index could be easily interpreted by technical and 
non-technical personnel for a better understanding of the status of the plant. Technological problems that are 
expected to be solved by implementing PHI as a big data analytics tool include:

•	 Preventive and predictive maintenance policy for refinery operation.

Figure 2.   Heinrich Law (300-29-1 Model).
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•	 Reducing downtime and reducing non-operational and idle time in refinery operation.
•	 More effective logistic operations of spare parts and upgrades of a refinery’s back office.
•	 Bringing in cost benefits by implementing the solution in refineries.

The methodology that will be followed in reaching the specified objectives consists of the following steps:

1.	 Designing and installing Plant Health Index solution in a selected refinery process.
2.	 Analyzing the output and prediction performance of PHI.
3.	 Introducing new algorithms for adapting PHI to specific refinery big data anomalies.
4.	 Evaluate the practical application of the algorithm for refinery operation.
5.	 Involve experienced operators in analyzing and commenting on the diagnostic performance of PHI.
6.	 Evaluate the contribution of the system as a predictive refinery big data diagnostics solution.

The optimization of industrial processes has received a lot of attention in past few decades. Several fields of 
study in the activity tracking and fault-detection and isolation (FDI) domains have sprung up because of this. 
Model-based, data-driven, and hybrid techniques are the three types of extant methodologies. Model-based 
techniques that use first-principle models necessitate a high level of a priori information about the systems being 
studied. As a result, applying them to big structures can be difficult, especially if portions of these structures 
are unclear. Data-driven techniques classify a system’s operation based on accessible estimation of activities. In 
most cases, training set should be needed to describe the conventional functioning of the system so that defects 
can be recognized as departures from the learnt nominal process characteristics. Additional data indicating 
the process’s characteristic behavior while it is vulnerable to failures is frequently required for fault isolation 
utilizing data-driven techniques. Authentic benchmark examples are necessary to compare the performance of 
various FDI approaches. Since Downs and Vogel’s first release in 199311, the Tennessee Eastman method (TEP) 
has been widely employed for this purpose. It gives a benchmark scenario that may be utilized to look at most of 
the problems that continuous processes can cause. Reinartz et al.12 contributed a large reference dataset, which 
includes repeated simulations of normal and faulty process data, as well as supplementary observations and 
different significance levels for all process disruptions.

In recent years, multimode operation monitoring has attracted a lot of interest in academic and commercial. 
In general speaking, all the factors that may be monitored are used to supervise an operation. Insignificant fac-
tors, on the other hand, may reduce the effectiveness of monitoring due to over-fitting and significantly raise 
the online computing overhead. It is necessary to choose the right parameters to be monitored that are strongly 
linked to these problems to track the problems that may compromise safety, reliability and product quality. Wu 
et al.13 conducted a study for exploring the effects of multimode process monitoring with parameter selection. 
For selecting variables, a KLD (Kullback–Leibler divergence) based approach is given, with the goal of selecting 
the most useful variables concerning the defects in question. Variable selection aids in the development of a high-
performance model with a low risk of overfitting, as well as improving the interpretation for accurate problem 
diagnosis. In addition, they proposed and presented a new detection index named moving window-negative log 
likelihood probability (MWNLLP) for online monitoring. They employed both a numerical example and the TEP 
(Tennessee Eastman process) for demonstrating the usefulness of the suggested method13.

Technologically advanced production plants require process monitoring tools that are not only highly intel-
ligent, but also most reliable and secure. Substantial advances have been achieved in the last decades on data-
driven activity monitoring approaches, with a huge variety of parameters monitored and saved, and most of these 

Figure 3.   Equipment failure trajectory.
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have been successfully deployed to monitor diverse processes. The work conducted by Cheng et al.14 employed 
gated recurrent unit (GRU) for formulating variational recurrent autoencoder (VRAE) since its performance is 
comparable to that of LSTM (long short-term memory), but it is computationally more efficient. Furthermore, 
they introduced a monitoring metric, the negative variational score (NVS) for process industry problem identi-
fication. Whereas all previous approaches rely on reconstruction error to detect anomalies, the suggested NVS 
considers both reconstruction error and similarities among the prior and posterior probabilistic distribution. 
They evaluated the effectiveness of the proposed model in detecting the faults using standard statistical and 
artificial intelligence-based approaches on both simple nonlinear simulation and the benchmark TEP14.

Radcliffe and Reklaitis15 reported a quality control and monitoring method for a pharmaceutical produc-
tion systems. In a related study, a hierarchical Bayesian technique has been utilized to build hybrid models that 
relate inline picture capture information to outputs21. Explanatory factors arising directly from the picture data 
are given a functional shape by known physics, whilst unknown effects arising from the interaction of process 
circumstances, ink qualities, and particle features are represented in hierarchical manner. It was feasible to 
completely apply the resources included in the historical information, that comprises of many understandings 
of interchangeable datasets stratified across various levels, by simulating the interactions of these unknown 
consequences in a hierarchical regression analysis16.

The health index concept
Most systems have their own design or optimized conditions in terms of safety and efficiency. However, off-
design conditions are likely to harm operational stability. For instance, if a safety parameter starts to deviate 
from a design condition and is approaching the process limits, it means the possibility of failure is getting higher. 
Likewise, if a performance parameter is getting more deviated from a design condition, the efficiency of a plant 
will be going down17. Therefore, the deviation from a design condition can be a good reference in defining the 
system’s health status.

Process uncertainty is another metric to define health status of a system. It shows whether the behavior of a 
process component is as expected or not. As shown in Fig. 4, if the process uncertainty is narrow, the component 
is close to the expected behavior, whereas wider ranges indicate malfunctions in the component or the system. 
Process uncertainty is thus characterized by the health or illness of the process, which is related to the limits of 
the operational conditions of the process. By monitoring the process uncertainty, it is possible to detect abnormal 
behaviors even though the system is operating with enough margins to process limits. This feature, referred to 
as early detection capability, can help operators deal with abnormal procedures before failures and eventually 
support condition-based maintenance8.

Evaluation of Health Index.  The proposed health index quantifies the overall health status of a process 
plant by aggregating individual indicators calculated for each component based on a functional success tree, 
tagged with its weight of importance. The health index of a component can be obtained by combining the health 
status, representing deviations from design conditions, and process uncertainty, related to deviations from 
model estimates18. Figure 5 illustrates the concept of the health index.

As shown in Fig. 6, Process margin is defined as the difference between an alarm/trip and an operational 
condition, while process uncertainty (or healthiness) is defined as the residual between an anticipated normal 
condition and an operational condition. The main concept behind calculating the health index is providing an 
early warning by observing abnormal process uncertainty earlier than those of process margin.

The procedure used in calculating the overall health index is shown in Fig. 7. Historical data is used in devel-
oping the empirical predictive model, which is used to estimate the desired values xest (see Fig. 6), while online 
process data (x) is used in calculating the residuals needed to determine the different components of the indices.

The setpoints (xset) are defined as the trip- or alarm-setpoints for safety-related parameters. These setpoints 
are usually set as design setpoints but can be modified to other suitable values. In fact, for the current imple-
mentation, the setpoints were selected based on the historical limits. Moreover, setpoints related to performance 

Figure 4.   Definition of Process Uncertainty.
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Figure 5.   Health Index accounts for deviations of actual measurement from design and nominal conditions.

Figure 6.   Process margin and process uncertainty. Plant health: (a) less uncertain but less margin, and (b) more 
margin but more uncertain.

Figure 7.   Procedure used in calculating the plant health index 19.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14477  | https://doi.org/10.1038/s41598-022-18824-2

www.nature.com/scientificreports/

parameters are set as allowable limits derived from economic considerations. Another important monitor-
ing references are the nominal conditions (µ), which are normally defined as the design conditions of process 
components.

The upper and lower limits of the health index are set as follows; when the current operating conditions 
(x) approach the nominal conditions (µ), the health index should be 1.0, while when the operating conditions 
approach the setpoints (xset) , the health index should be 0.0. Thus, µ and xset , are the two boundaries that 
define the best and worst plant health conditions, and the health index distribution between the two boundaries 
(

HImargin

)

 can be defined as:

The process uncertainty component of the health index (HIuncertain) , defined by Eq. (2), represents the residual 
between the current condition and the estimated condition (xest) . Its value is 1.0 if the current operating condi-
tions are the same as the model estimates, which means that the residual is minimal (→ 0.0). On the other hand, 
if the actual operating condition is far from the model estimate, the residual is very large (→ ∞) and the value 
of the index approaches 0.0.

The overall health index (HIOverall) for a given component can be represented as combination of the margin and 
uncertainty health indices:

while HIOverall represents the health index of an individual component (child index), the health index at a 
system-level (or group index) can be obtained by conditional combination of the indices evaluated for individual 
components. The system under study is divided into N sub-systems (groups), which are considered as “parents”, 
and each sub-system consists of M components. Hence, the HIOverall index given by Eq. (3) will be referred to as 
HIi,j , which refers to the jth component of the ith group.

The combination method is based on the minmax algorithm, which maximizes the minimum gain. The steps 
followed in determining the group and system-level health indices are summarized as follows:

(1)	 Defined an initial Compensation Factor 
(

CompFactor
)

 in the range of 0.1 to 1.2. This factor is to offset vari-
ability in very small sample sizes.

(2)	 For each group (parent) find the top two maximum indices (HImax,1 and HImax,2) and the lowest two mini-
mum values of indices (HImin,1 and HImin,2) for all components of the group.

(3)	 Calculate the average value as:

(4)	 Calculate a new Compensation Factor:

(5)	 Calculate the average of the index values of all components of a given group:

where i indicates the group (parent) and j indicates the component (child).
(6)	 Calculate average index using the new Compensation Factor:

(7)	 Set the value of the index for parent i as:

The overall value of the health index can be customized based on the preferences of stakeholders. For instance, 
the PHI may consider safety or performance separately or combined in one index. Moreover, the health index 
calculation, the weighting factors of each term, and the combination of system-level health indexes can be 
changed depending on plant and operation situations.

(1)HImargin = 1−
(

x − µ

xset − µ

)2

(2)HIuncertain = e−(x−xest )

(3)HIOverall = HImargin ×HIuncertain

(4)MMAvg =
1

4

((

HImax,1 −HImin,1

)

+
(

HImax,1 −HImin,2

)

+
(

HImax,2 −HImin,1

)

+
(

HImax,2 −HImin,2

))

(5)NewCompFactor = CompFactor − 2

100
MMAvg

(6)IndexAvgi =
1

M

M
∑

j=1

HIi,j

(7)IndexAvgCompi = IndexAvgi × NewCompFactor

(8)

IF IndexAvgCompi < HImin,1

Indexi = HImin,1

Else

Indexi = IndexAvgCompi
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Plant health index development
This section focuses on developing a grouping technique and the framework to monitor the health status of a 
chemical plant. Each monitoring module calculates the health index and integrates it into the overall health index 
to present the plant’s health status18. This methodology will be applied to the selected section of the refinery.

Research activities carried out in this study focused on statistical learning strategies for supporting condition-
based maintenance (CBM). The proposed system is composed of a training mode and an execution mode. First, 
an empirical model is developed using the data collected from normal working conditions in the training mode. 
In contrast, execution mode involves deciding on an anomaly band by inspecting input operational data and 
studying its deviation from the modeling output from the training mode.

The Health Index can be envisioned to be developed using the following steps:

Step I: Design Condition Monitoring.
The first health index is characterized by the deviation between a design condition and an actual condition of 
process variables (HImargin, Eq. (1)). Thus, health indices are quantified for both safety- and efficiency-related 
variables.
Step II: Process Uncertainty Monitoring.
Process uncertainty is based on the outputs of the empirical model. Residual is assigned by the difference 
between the expected value that a model estimates and an actual value (HIuncertain, Eq. (2)). Based on this 
residual, a health index is obtained.
Step III: Overall Health Index.
The overall health index of a component (HIOverall, Eq. (3)) is represented by the combination of a health index 
jointly coupled with design condition and residual size.
Step VI: Software of Health Index Monitoring.
Operation supporting system is developed by using the process pattern recognition technology proposed 
in this research. The system is designed to provide a graphical user interface consisting of the main display, 
success tree display, trends display, counseling display, trainer, and runtime. Using the success tree display, 
the operators should be able to configure the tree and the weight of each node. Trends display is designed 
to include actual values and model estimates of process variables. Counseling display is provided to support 
operators in diagnosing the detected faults. Finally, operators can decide sampling methods, grouping options, 
and kernel optimization methods in the trainer and runtime module.

PHI deployment approach.  The following practical steps were followed in deploying the Plant Health 
Index (PHI) system for the selected Refinery Hydrotreating unit:

•	 Identify a suitable subsystem for system Implementation.
•	 Install PHI solution for the selected subsystem.
•	 Provide system configuration range.
•	 Define and provide the interface connected to the system, which is an industry-standard, such as OPC.
•	 Retrieve historical data for a minimum of 6 months.
•	 Assign engineers to evaluate the system performance.
•	 Analyze the output of the solution.
•	 Arrange site experts to comment on the advantages of the solutions.
•	 Evaluate the practical application of the algorithm for the selected process.
•	 Evaluate the contribution of the system as a predictive diagnostics solution.

The approach outlined above is represented in the flowchart shown in Fig. 8.

Implementation of PHI
PHI has been designed to capture and assess the condition of equipment during its life cycle. Thus, it may be 
utilized in data-driven condition-based maintenance and helps in predicting failures and malfunctions20.

Data collection and preprossing.  Data Acquisition refers to collection of historical data for a long dura-
tion for training a predictive model under normal operating conditions. It is preferable that collected data con-
tains various operating modes and may also include abnormal conditions and operational variations that result 
from, for example, aging of equipment, fouling, and catalyst deactivation.

The training datasets are collected in real-time directly from the sensors associated with the plant components. 
The datasets capture the three operational modes; i.e. startup mode, normal operating mode, and shutdown 
mode. These modes can be subdivided into more detailed modes in some circumstances.

Although the parameters possess a strong correlation, the time lag appears among them may lead to the 
inability to extract the relationship. The explanation for the time delay in parameters with physical relationships 
is that it takes time to reach a steady-state once certain changes occur and migrate from one portion to another. 
However, if the parameters have a strong association, if they change over time, the correlation coefficient may be 
modest, resulting in errors during the grouping procedure. We employed a dynamic window for sampling which 
examines the temporal lag among parameters to aid in the effective grouping of variables with a strong link.

The time lag was dealt with using cross correlation. For a delay duration of td , Eq. (9) defines the coefficient 
for cross correlation between two parameters A ( a0 , a1, . . . , aM ) and B ( b0 , b1, . . . , bM)21. The averages of A and 
B  are µA and µA , respectively.
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Grouping parameters aims to remove elements that don’t provide meaningful data and to limit the number 
of parameters needed to adequately observe a component. The correlation coefficient employed as a reference 
for this grouping procedure is calculated for each pair of variables using Eq. (10), and if it exceeds a specified 
threshold, the variable is included in the training set; otherwise, it is discarded21.

where ρAB is the correlation coefficient among A and B , and σA and σB are their standard deviations.
There are three possible ways to group the parameters: Relational grouping (tags with the same patterns are 

grouped together), Manual grouping (each group possesses all of the tags), and Success Tree based grouping. 
The cut-off value of the correlation coefficients is known as group sensitivity. The grouping will become more 
precise if the group sensitivity is larger. When data is compressed during grouping, the Group Resolution (Shrink) 
feature is employed. If a tag has 1000 samples and the compression ratio is 100, the samples will be compressed 
to 100 and the missing information will be filled in by the Grid Size. Major significance of compression includes 
reduced data storage, data transfer time, and communication bandwidth. Time-series datasets frequently grow 
to terabytes and beyond. It is necessary to compress the datasets collected for attaining most effective model 
while preserving available resources.

Preprocessing of collected data is indispensable to ensure the accuracy of the developed empirical models, 
which are sensitive to noise and outliers. The selection of the sampling rate is also crucial, mainly because for 
the oil refinery processes the sampling rate (measurement frequency) is much faster than the process dynamics. 
In the current implementation, low pass frequency filtering with Fourier analysis was used to eliminate outliers, 
a 10 min sampling rate was selected, and the compression rate (Group resolution or shrink) was set at 1000. 
Moreover, Kalman filter was applied to ensure robust noise distribution of collected data5. Another important 
preprocessing step is grouping. First, the useful information of the variables is grouped together. It helps to remove 
redundant variables that do not have useful information. It also reduces the number of variables required for 
monitoring the plant properly. Finally, the available information must be appropriately compressed via the trans-
formation of high-dimensional data sets into low-dimensional features with minimal loss of class separability21. 
The maximum tags per group is limited to 51 in this simulation and success tree-based grouping is used in most 
of the cases. The minimum value of the correlation coefficient, ρ is set to 0.20 and the group sensitivity was set 
to 0.90. Higher the group sensitivity will be more accurate the grouping.

Kernel regression.  Kernel regression is a well-known non-parametric method for estimating a random 
variable’s conditional expectation22–25. The goal is to discover a non-linear relationship of the two random vari-
ables. When dealing with data that has a skewed distribution, the kernel regression is a good choice to use. This 
model determines the value of the parameter by estimating the exemplar observation and weighted average of 
historical data. The Kernel function is considered as weights in kernel regression. It is a symmetric, continuous, 
and limited real function that integrate to 1. The kernel function can’t have a negative value. The Nardaraya–Wat-
son estimator given by Eq. (11) is the most concise way to express kernel regression estimating y with respect to 
the input x21,23,24.

(9)γAB(td) =
∑M−1

i=0 (ai − µA) ∗
(

bi−td − µB

)

√

∑M−1
i=0 (ai − µA)

2

√

∑M−1
i=0

(

bi−td − µB

)2

(10)ρAB = 1

M

M−1
∑

i=0

(
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σA

)(

bi − µB

σB

)

Figure 8.   PHI deployment approach.
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The selection of appropriate kernel for the situation is limited by practical and theoretical concerns. Reported 
Kernels are Epanechnikov, Gaussian, Quartic (biweight), Tricube (triweight), Uniform, Triangular, Cosine, Logis-
tics, and Sigmoid 25. In the current implementation of PHI, three types of the kernel regression are provided: 
Uniform, Triangular, and Gaussian, which are defined as:

•	 Uniform Kernel (Rectangular window): K(x) = 1
2
;where|x| ≤ 1

•	 Triangular Kernel (Triangular window): K(x) = 1− |x|;where|x| ≤ 1

•	 Gaussian Kernel: K(x) = 1√
2π

e−
x2

2

The default is the Gaussian kernel which proved to be the most effective kernel for the current implementation.

Simulation of PHI.  PHI monitors plant signals, derives actual values of operational variables, compares 
actual values with expected values predicted using empirical models, and quantifies deviations between actual 
and expected values. Before positioning it to monitor plant operation, PHI should be first trained to predict the 
normal operating conditions of a process. Developing the empirical predictive model is based on a statistical 
learning technique consisting of an “execution mode” and a “training mode.” Methods and algorithms used in 
both modes of the PHI system are shown in Fig. 9.

(11)ŷ =
∑n

i=1 [K(Xi − x)Yi]
∑n

i=1 K(Xi − x)

Figure 9.   Algorithms of the PHI 26.
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In the training mode, statistical methods are used to train the model using past operating data. The system 
identifies possible anomalies in operation for the execution mode by inspecting the discrepancies between values 
predicted by the empirical model and actual online measurements. For example, if a current operating condition 
approaches the normal condition, the health index is 100%. As opposed, if an operating condition approaches 
the alarm set point, the health index will be 0%. On the other hand, and in terms of process uncertainty, the 
health index is characterized by the residual deviations; the health index is 100% if a current operating condition 
is the same as the model estimate (i.e., the residual is 0.0), and is 0% if the operating conditions are far enough 
from the model estimate (i.e., residual is infinity). The overall plant index is a combination of the above two 
health indices. Details of the method are presented in21 and26 and presented as an improved statistical learning 
framework described below.

The framework of PHI is shown in Fig. 10. The sequence of actions in the training mode is as follow:

(1)	 Acquisition of historical data in the long term.
(2)	 Data preprocessing such as filtering, signal compression, and grouping.
(3)	 Development of the statistical model.

On the other hand, the sequence of actions in the execution mode is as follows:

(1)	 Acquisition of real-time data.
(2)	 Calculation of expected value from the model.
(3)	 Calculation of residuals.
(4)	 The decision of process uncertainty.
(5)	 Calculation of PHI.

In the execution phase, first step is to gather real-time data from the sensor signals and compare this informa-
tion with the model estimates. Based on the comparison, the residuals between the model estimates and the real 
time measurements are evaluated. These residuals are used to predict the abnormalities in the plant. Suppose 
that the online values are [11 12 13 9 15] and the model estimates [11 12 13 14 15], then the estimated residuals 
will be [0 0 0 5 0]. These values are used in evaluating the process uncertainty (healthiness) by applying Eq. (2). 
On the other hand, process margins refer to the differences between alarms/trips and the operational condi-
tions, which are evaluated using Eq. (1). An early warning is generated when an abnormal process uncertainty is 
observed earlier than a process margin. The process margins and process uncertainties are combined in overall 
health indices using Eq. (3).

The PHI system has been developed using MATLAB. A modular approach has been used so that modifications 
may be easily introduced, and new algorithms may be added, integrated, and tested as independent modules. 
This approach was found quite appropriate for research and development purposes. Moreover, the PHI system 
is delivered as executable MATLAB files.

Features and functionalities of PHI.  The main features and functionalities of PHI are (1) detecting the 
process uncertainty, in terms of a health index, for individual signals as well as for an entire plant, (2) warning 
anomalies in health indices, and (3) customized user interfaces and historians. Furthermore, since the PHI 
separately deals with safety-related and performance-related health indices, users can have appropriate decision-
making in terms of their situation.

System architecture.  PHI system is a client–server-based architecture, as shown in Fig. 11. The server side 
is divided into the core modules necessary to build the PHI functionality and PRISM, a real-time BNF (Break-
through and Fusion) technology database. The clients are divided into the standard client and the web-based 
client. Figure 12 shows the main display of the PHI client. All of these functions bridge the information of the 
server-side with users.

The results of the PHI can be monitored through the client computer, which has the following main features:

Figure 10.   Evaluation of Health Index.
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1.	 Index display: the default display shows the index in percent of the topmost groups, including the trend. The 
index of other subsystems can be seen and accessed as well.

2.	 Success tree display: The success tree display having a hierarchical display and the group-wise display.
3.	 Trend display: A trend display showing the actual-expected value trend.
4.	 Alarms display: A grid-based alarm display showing the latest alarm on the top display.
5.	 Reports: Reports can be generated about the health status and regular alarm.
6.	 Configuration Manager: A configuration manager, which invokes at the beginning of the PHI Client applica-

tion. The configuration manager checks for the port and the server’s IP address; if not able to connect, the 
configuration manager window will pop up at the startup.

Selected refinery process
The process section selected for the implementation of the PHI system is a Hydrotreating Unit, which consists 
of a reaction section having two catalytic reactors in series and a stripper section.

PHI system architecture is described in Fig. 13. System specifications can be summarized as follows:

Interfacing: Direct or through Open Platform Com-
munications (OPC)

Server/Client: MS Windows based

Implementation: Fleet-wise, plant-wise & component 
wise

Typical Implementation Duration: 3 ~ 4 Weeks /Unit

Data communication: Read only

Redundancy/ Hi-availability: Available

Historian: Built-in

Figure 11.   Server architecture of the PHI system 26.

Figure 12.   Example display of the PHI indicating the (a) overall plant health index and the health indices of the 
(b) reaction and (c) stripper sections.
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The hierarchical representation of the plant under study in terms of groups and tags is known as success tree, 
as shown in Fig. 14. The groups are formed with the main system and the subsystems to be observed. Modifica-
tions, deletions, and additions to the groups are all possible. There is no restriction on the count of groups, but 
the number of components (children) that can be accommodated by each group is restricted to 10 subgroups 
or tags. The success tree initializes the weights of groups and tags. It receives data about groups and tags from a 
database, acquires tag index info from a PHI image, and generates group index on a regular basis. The refinery 
hydrotreating unit was divided into two main subsystems: reactor and stripper. Furthermore, six subsystems were 
defined for the reactor system and four were defined for the stripper system. The total number of components 
(tags) that were associated to the hydrotreating unit is 170. Twelve months data records were collected for all tags.

Results and discussion
PHI has been installed, operated, and tested in the selected refinery hydrotreating unit. Besides indicating the 
healthiness of the plant, PHI provided a convenient solution for monitoring and detecting operational mal-
functions. Operators, process engineers, supervisors as well as team leaders and managers found the system a 
stress-free and flexible tool for detecting faults and avoiding alarms. In addition, it provided an environment for 
enhancing daily operational practices and understanding the root causes of detected faults. These benefits were 
observed while discussing the case studies with operators and process engineers. Based on their experience in 
operating the process, their contributions were vital in explaining the symptoms and detected deviations.

For team leaders and managers, PHI enabled them to check operational wellness at a glance. They indicated 
that the system would give them an early warning and enough time for proper diagnosis and precise decisions. 

Figure 13.   PHI System implementation architecture.
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In case a decline in the overall index is observed, PHI will enable them to identify the root cause and contact the 
proper department to interfere and get back the index to its normal value.

The main challenge faced while implementing PHI is convincing the operators to check it and explore its 
functionalities. To overcome this challenge, it was recommended that supervisors and team leaders check the 
PHI system for 15 to 30 min every morning. Communication was then established at different levels to find 
solutions to observed abnormalities and introduce corrective actions.

Another observed benefit is the detection of a number of faulty signals. Some of these signals were not sig-
nificant for the operation of the selected process, while several other signals were critical for the operation and 
were accordingly attended and corrected.

Other benefits that have been realized are as follows:

	 (1)	 Convenient and easy way to monitor the operational conditions, specifically for chief operators, process 
engineers, and managers.

	 (2)	 Reducing the time needed to identify the problem during operational abnormality or malfunction.
	 (3)	 Increased reliability and a positive learning experience for the operators.
	 (4)	 Friendly graphical user interface that both technical and non-technical staff may use.
	 (5)	 Ability to navigate through the system’s hierarchical model (success tree) to trace the exact location of 

the potential problem.
	 (6)	 Simple and convenient presentation of related plant tags.
	 (7)	 Ability to trace and visualize historical data, as well as displaying and comparing selected tags.
	 (8)	 A convenient way to monitor selected important signals.
	 (9)	 Faulty signals can be easily detected.
	(10)	 Flexibility in displaying and comparing both actual and expected values.
	(11)	 Indicates clearly that a major malfunction of any part of the plant is always proceeded by small spike-

shaped upset days before.
	(12)	 Good confidence with PHI statistical model which makes adding physical knowledge on the model 

unnecessary.

Case studies.  The performance of PHI in monitoring the selected hydrotreating unit was studied by analyz-
ing the online measurements and data for a period of five months. The index dropped many times to very low 
values but in general, the reactor sub-index was lower than the stripper sub-index, indicating that the reactor 
section is causing most of the problems in the hydrotreating unit. Indication of malfunction occurrences is 
taken more seriously when time plots of the tags take curved shapes that span longer durations than short spike 
changes.

Two case studies have been selected for demonstration purposes and will be presented and discussed in 
this section. For each case study, symptoms will be first identified, followed by deducing the main causes for 
the defined abnormality. Conclusions are then derived from the analysis of the symptoms and deviations from 
nominal conditions. Moreover, snapshots of PHI screens are presented to illustrate the practical procedure fol-
lowed in identifying and analyzing anomalies.

Figure 14.   Success tree for the Hydrotreating unit.
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Case study one.  Symptoms: For this case study, PHI indicated deviation in a tag related to steam temperature. 
For this instance, the steam temperature was reduced to 113°F below the normal expected value. A screen snap-
shot showing the actual and expected values is shown in Fig. 15. The deviation lasted for nearly two days.

As shown in Fig. 16, the abnormal conditions caused by the steam temperature resulted in dropping the 
overall plant health index to 53.7%. Moreover, the individual index value for the steam temperature tag dropped 
to 26.6%.

Cause: Normally the exhaust steam of the recycle compressor is at 150 psi, and as compared to the refinery 
header steam (IP), the temperature is high. Hence, for lowering this high temperature to the refinery header 
temperature, a de-super header is supplied with a boiler feed water injection system. Further analysis resulted 

Figure 15.   Case 1. Drop in steam temperature. Comparison of the actual and expected trends.

Figure 16.   Case 1. Drop in steam temperature caused the drop in the health index of the reaction section and 
resulted in dropping the PHI to 53.7%.
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in identifying a local temperature controller that have malfunctioned during this time. This controller failed in 
lowering the header temperature, caused model mismatch and resulted in dropping the overall plant health index.

Case Conclusion: This malfunction has been successfully detected by PHI and resulted in dropping the health 
index. Operators of the unit appreciated the ability of PHI to detect the abnormality. They considered the case as 
an important finding because malfunctioning of the local controller resulted in water hammering at the utility 
header. They stated that the present Distributed Control System (DCS) does not have the facility to monitor this 
effect. This is a significant finding by PHI and provides good evidence that monitoring the health index enables 
the operators to take early actions to prevent damages or even alarms.

CASE study two.  Symptoms: For this case study, PHI indicated deviation in a tag related to the liquid level at the 
bottom of the vaporizer. In this deviation, the liquid level in the bottom of the vaporizer was increased to as high 
as 94.5% compared to the normal expected value of 2.7%. A screen snapshot showing the actual and expected 
values is shown in Fig. 17. The deviation lasted for two hours. As shown in Fig. 18, this abnormal condition 
caused by the increase in liquid level resulted in dropping the overall plant health index to 18.6%. In addition, 
the individual index value for this tag was dropped as low as 0.0%.

Cause: During this period, the unit was under startup condition. When the feedstock is heavy, it tends to 
collect liquid in drum. However, in Normal operation, no liquid collection is expected at those operating con-
ditions. The data shows that during startup, reactor temperatures were picking up gradually; hence, the liquid 
accumulated in the drum and level went up.

Case Conclusion: The present Distributed Control System (DCS) has an adequate alarm system to observe this 
case. However, a PHI alarm would be an additional support to avoid the emergency condition due to abnormal 
level build-up in level, leading to reactor top flange leak if unattended.

At startup, so many actions are taken to get the plant at a steady state. In most cases, operators would be 
busy monitoring key tags and driving them to their desired values. Even though PHI was trained on the normal 
operation or steady-state data, it succeeded in identifying the abnormality discussed in this case study. Given 
this fact, the performance of PHI may be further enhanced to monitor the startup and shutdown procedures. In 
this case, the health index will provide better support to the operators in more difficult operational situations.

Based on the case study discussed above, a research and development study will be initiated to investigate 
the feasibility of incorporating the startup and shut down operations of process units. A pilot study will be car-
ried out in which PHI will be trained on historical data related to startup and shut down. The main difficulty is 
that this task requires intensive process-related knowledge; hence, operators and process engineers should be 
involved in the study.

Conclusions
A new technology using big data analytics to detect anomalies in process operation has been implemented and 
tested in this research work. Specifically, the Plant Health Index (PHI) applicability in identifying abnormalities in 
refinery operations has been investigated. PHI was applied on a Hydrotreating unit. The system performs online 
monitoring and compares online plant data with normal operating conditions, estimated using a nonparametric 
empirical model. The model was developed and tested.

The main benefit, which has been realized by the research team and the operators at the oil refinery, is the 
ability to use big data analytics to monitor and diagnose the performance of the unit by just watching the index 
value on screen. A considerably complex system was easily monitored, and root causes were also navigated sys-
tematically. An encouraging reason for using PHI is its ability to detect anomalies and provide early warnings 
before being detected by the Distributed Control System (DCS). The case studies demonstrated that operators 
might be alerted about possible upsets days before their occurrence.

Figure 17.   Case 2. sudden increase in liquid level of the bottom of the vaporizer.
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For the upmost benefit, the unit operators recommended incorporating additional tags for better monitoring 
of the process. For example, additional tags may include those related to rotating equipment, such as compressors, 
to detect anomalies in pressure and vibration and include them in health index evaluation.

For earlier versions of PHI, evaluation of the health index was based on design ranges of the parameters. 
Application of PHI to the refinery process verified that historical ranges rather than design ranges are more prac-
tical and provide better predictions. Design ranges are usually wide and result in less sensitivity and precision. 
Approaching the limits of the nominal historical operating range is considered an early indication of malfunction 
while reaching the limits of the design range is in itself a state of failure.

In conclusion, the big data analytics approach proposed has been useful for exploring possible faults before 
they occur. This a good demonstration of employing data analytics in the oil refinery industry and building a 
successful big data strategy.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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