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Abstract
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly 
assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, 
cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and 
neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction 
between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, 
the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits 
the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single 
canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not 
conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the 
interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural 
and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules 
that inhibit translation might provide new avenues for the treatment of several conditions.

Keywords eIF4E · Translation initiation · 4E-binding proteins (4E-BPs) · Canonical eIF4E-binding motif · Non-canonical 
eIF4E-binding motif · Therapeutic target

Introduction

Translation initiation, the rate-limiting step in protein syn-
thesis, is finely regulated by several mechanisms [1]. In the 
so-called “cap-dependent translation” the first step is repre-
sented by the assembly of the eukaryotic Initiation Factor 
4F (eIF4F) complex and its binding to the mRNA 5´-cap, 

followed by the formation of the 43S preinitiation complex 
(43S PIC). The 43S PIC consists of the small ribosomal 
subunit 40S, eukaryotic translation initiation factors eIF1, 
eIF1A, eIF3, eIF5 and the eIF2–GTP–Met-tRNAi ternary 
complex [2]. The eIF4F complex then recruits the 43S PIC 
to the mRNA, leading to the formation of the 48S translation 
initiation complex (i.e., 48S IC). The 48S complex, whose 
structure has been recently resolved [3], scans the mRNA in 
the 5´–3´ direction until a start codon is found.

eIF4F is an heterotrimeric complex composed by eIF4E, 
the DEAD-box helicase eIF4A and eIF4G [4] (Fig. 1). eIF4F 
has a peculiar assembly in which eIF4E binds the 7-meth-
ylguanosine (7-m-GTP) cap, whereas eIF4A unwinds the 
secondary structures in the 5´ untranslated regions (UTR) of 
the mRNAs. The scaffold protein eIF4G, besides its activity 
in recruiting the 43S PIC through the interaction with eIF3, 
promotes the circularization of mRNAs by interacting with 
the poly-A binding proteins (PABPs) (Fig. 1). eIF4E repre-
sents the limiting factor in the eIF4F complex, and there-
fore, it plays a pivotal role in the regulation of translation 
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initiation rates. eIF4E is, in fact, one of the least abundant 
translation factors [5, 6] and its availability is regulated at 
multiple levels: transcriptionally, post-transcriptionally, 
post-translationally and through the interaction with a group 
of molecular partners exerting an inhibitory effect, namely, 
the 4E-binding proteins (4E-BPs) [7].

4E-BPs are a family of inhibitory proteins that sequester 
eIF4E through the interaction with the same binding site 
recognized by eIF4G, therefore, preventing the assembly of 
the eIF4F complex [8–10]. 4E-BPs, in turn, are the target 
of several kinases [11–13]; their phosphorylation causes 
the release of eIF4E and, consequently, a stimulation in 
translation initiation. Based on their dependence on eIF4E, 
mRNAs have been classified as “eIF4E-sensitive mRNAs” 
or “weak mRNAs” and “strong mRNAs”. The latter are 
typically transcripts of house-keeping genes, such as glyc-
eraldehyde-3-phosphate dehydrogenase and ß-actin, char-
acterized by short and unstructured 5´-UTRs. They show 
constitutive levels of translation and are scarcely influenced 
by eIF4E variations [14–16]. “Weak mRNAs”, on the other 
hand, have long and G/C-rich 5´-UTRs, able to form stable 
secondary structures [15], or 5´UTR containing oligopyri-
midines sequences [17–19]. Translation of these mRNAs 
is strictly dependent on eIF4E. Several weak mRNAs code 
for proteins involved in cell survival and proliferation pro-
cesses, such as cyclins D1 and D3, ornithine decarboxylase 
(ODC), vascular endothelial growth factor (VEGF), MYC 
and phosphoribosyl-pyrophosphatase synthetase 2 (PRPS2) 
[15, 16]. The tight control of eIF4E offers a mechanism to 

modulate translational rates in response to stress conditions, 
oncogenic stimulation, and changes of synaptic plasticity 
[20, 21]; variations in eIF4E levels have been implicated in 
neurodevelopmental and neuropsychiatric disorders, includ-
ing ASD and FXS [22, 23], as well as in cancer; eIF4E has 
thus been defined as an oncogene [14, 15, 24].

In the last decades, the three-dimensional (3D) struc-
ture of eIF4E alone or in complex with its molecular part-
ners from different organisms has been widely character-
ized using experimental and theoretical approaches [8, 10, 
25–35].

Briefly, three main regions can be identified in the 3D 
structure of eIF4E (Fig. 2a): a ventral surface, where the 
cap-binding pocket is located, a dorsal surface and a lat-
eral surface, both responsible for the binding with eIF4G 
and 4E-BPs through the canonical and the non-canonical 
eIF4E binding motifs, respectively [8, 29]. The advances in 
the structural knowledge opened new possibilities for the 
development of inhibitors acting on the translation initiation 
complex with high specificity and efficiency.

This review provides an overview of the roles of eIF4E 
and 4E-BPs in physiological and pathological conditions. 
We focus on the structural features of the interactions 
between eIF4E and different 4E-BPs and discuss new thera-
peutic strategies targeting eIF4E.

eIF4E and 4E‑BPs in health and disease

The main function of eIF4E is to mediate ribosome recruit-
ment on the mRNA to start protein synthesis. Neverthe-
less, other roles for this protein have been described. eIF4E 
strongly enhances the helicase activity of eIF4A, indepen-
dently of its cap-binding function [36]. The nuclear localiza-
tion of eIF4E is needed for the control of nucleus-cytoplas-
matic trafficking of some mRNAs harboring 7-m-GTP and 
a 50-nucleotides sequence at the 3´-UTR, defined “eIF4E 
sensitivity element” (4E-SE) [37]. eIF4E and these types of 
RNAs form “ribonucleoparticles” (RNPs) that translocate 
from nucleus to cytoplasm. Nuclear eIF4E was found to be 
associated with U1 small nuclear RNA, which participates 
in mRNA splicing [38], therefore, suggesting other nuclear 
functions for eIF4E.

eIF4E levels and activity are regulated by distinct 
mechanisms that involve pre- and post-transcriptional fac-
tors, post-translational modifications pathways and inter-
actions with a subset of specific proteins [15]. Regulation 
at the transcriptional level is mediated by transcription 
factors, such as Myc, which activate eif4e transcription 
via binding to the E-boxes located in the eIF4E promoter 
[39]. Regulation at the post-transcriptional level is medi-
ated by the HuR RNA-binding protein, which interacts 
with eIF4E mRNA, stabilizing and protecting it from 

Fig. 1  Schematic overview of protein synthesis and cap-dependent 
translation. The cap-binding factor eIF4E is released by 4E-BP as 
a result of its phosphorylation by mTOR. After the binding to the 
mRNA 5’-cap, eIF4E associates with the DEAD-box helicase Eukar-
yotic Initiation Factor 4A (eIF4A) and the Eukaryotic Initiation Fac-
tor 4G (eIF4G) to form the eIF4F complex. The interaction between 
eIF4G with the poly(A) binding proteins PABPs forms a closed-loop 
structure between 5’-UTR and 3’UTR. The ternary complex, consists 
of eIF2/GTP and met-tRNAi, that associates with the 40S, is also 
reported
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degradation [40]. eIF4E was shown to be ubiquitinated 
at Lys 159 [41] and phosphorylated at Ser 209. The phos-
phorylation of Ser 209 is mediated by the activation of 
the MAPK/ERK pathway. The mitogen-activated protein 
kinase (MAPK)-interacting kinases (MNK1 and MNK2) 
bind the eIF4F complex, through the interaction with 
the C-terminal domain of eIF4G and phosphorylate Ser 
209 of eIF4E [15, 42]. The biological significance of this 
post-translational modification is still debated [14, 43]. 
eIF4E phosphorylation does not seem to be essential for 
its function under physiological conditions [14, 44, 45]. 
Conversely, several studies suggest that the phosphoryla-
tion of eIF4E by MNK1 and MNK2, in response to stimuli, 
such as stress or mitogens, has direct effects on cancer 
onset and progression [17, 46–50].

In human cells, the overexpression or the dysregulation 
of eIF4E is the cause of a rapid development of lung, blad-
der, colon, prostate, breast, head and neck cancer [15, 17, 
24, 49, 51].

As already mentioned, the activity and availability of 
eIF4E are regulated by the direct interaction with 4E-BPs. 
Three groups of eIF4E-interacting proteins have been iden-
tified: (i) proteins containing the Canonical eIF4E-Binding 
Motif (C:4E-BM): YXXXXLΦ, where X is any amino acid 
and Φ is a hydrophobic residue (Fig. 2b) [8]; (ii) proteins 
with the Really Interesting New Gene (RING) domain (as 
the promyelocytic leukemia protein and the arenaviral Z 
proteins) [52–55]; (iii) a small group of viral proteins that 
interact through a non-conserved motif [56–58].

These 4E-BPs compete with eIF4G for the interaction 
with eIF4E [8, 9, 31], therefore, acting as translational 
repressors by inhibiting the cap-dependent translation ini-
tiation. eIF4G and 4E-BPs share the C:4E-BM and thus the 
competition for the interaction with eIF4E is mainly due to 
a structural factor. The C:4E-BM interacts with a specific 
portion of eIF4E located on its dorsal surface, making the 
interaction with eIF4G or 4E-BPs mutually exclusive. From 
a structural point of view, the C:4E-BM folds in an α-helix 
structure interacting with several conserved hydrophobic 
amino acids on the dorsal surface of eIF4E, located at the 
opposite side with respect to the cap-binding pocket [8, 9, 
29]. It has been recently reported that additional sequences, 
located C-terminally with respect to the C:4E-BM, play a 
key role in the interaction between eIF4E and 4E-BPs. These 
sequences include: (i) a non-canonical motif (NC:4E-BM) 
that binds to the lateral surface of eIF4E; (ii) a linker region 
which connects the two binding motifs (i.e., canonical and 
non-canonical) [8, 59–61]. Despite its poor sequence conser-
vation, the NC:4E-BM motif, together with the linker region, 
increases the affinity for eIF4E and confers a competitive 
advantage compared to eIF4G [59, 62–68].

eIF4E activity is also regulated indirectly by the phos-
phorylation of the 4E-BPs as a direct response to extracel-
lular stimuli, such as growth factors, oxygen shortage, nutri-
ents availability, genotoxic stress, and inflammation [69]. 
In mammals three 4E-BPs have been identified: 4E-BP1, 
4E-BP2, 4E-BP3, which are functionally similar but with 
different cellular localization. 4E-BP1 is the predominant 

Fig. 2  Overview of the Hs eIF4E structure (PDBID: 1IPC [30]) and 
structural details of C:4E-BM. a Cap-binding pocket situated on the 
ventral surface, together with dorsal and lateral surfaces, both respon-
sible for the bipartite binding mode of 4E-BPs, are shown. The eIF4E 
residues involved in the 7  m-GTP cap binding are shown in sticks 
(see text); b top: Superimposition of the Hs eIF4G (PDBID: 5T46 

[8]) and different 4E-BPs helices in the canonical site  to highlight 
common structural features of eIF4G/4E-BPs binding mode with 
eIF4E (PDBID Hs 4E-BP1: 3U7X [178], PDBID Hs 4E-BP2: 3AM7, 
PDBID Dm THOR: 4UE8 [10], PDBID Sc P20: 6FC3 [10]); bottom: 
multiple sequence alignment of various Hs 4E-BM



6872 A. Romagnoli et al.

1 3

eIF4E binding protein expressed in the majority of tissues, 
mostly in adipose tissues and in the pancreas [70]. Dysreg-
ulation of 4E-BP1 and mTOR pathway is associated with 
pathological states. Overexpression of 4E-BP1 is a crucial 
element in a specific subset of tumors, such as lung, prostate, 
breast and leukemia [71]. However, the pattern of 4E-BP1 
expression and its role in cancer is not completely under-
stood so far. As an inhibitor of the oncoprotein eIF4E, it is 
not surprising that 4E-BP1 acts as a suppressor of tumori-
genesis; indeed, in vitro studies reported that 4E-BP1 is able 
to decrease cell invasion and migration in prostate and colon 
cancer [72, 73]. However, other studies demonstrated that 
4E-BP1 activity is correlated to the tumor stage, develop-
ment and progression, in particular in breast cancer [71]. 
Thus, 4E-BP1 and its phosphorylation might be used as a 
prognostic marker of cancer malignancy [15, 71].

4E-BP2 is the 4E binding protein preferentially expressed 
in the brain [74]. Alteration of cap-dependent protein trans-
lation has been implicated in ASD and FXS [4, 22]. As 
reported in several studies, 4E-BP2 knock-down mice dis-
play autistic-like behaviors [23, 74, 75]. More specifically, 
the deletion of 4E-BP2 in GABAergic inhibitory neurons 
resulted in altered social interaction and communication 
[75]. 4E-BP1 and 4E-BP2 are also involved in metabolic 
diseases, as double-knockout mice show the onset of obesity 
and insulin resistance [76].

The function and regulation of 4E-BP3, which is mostly 
expressed in the liver [77], is still poorly understood. 4E-BP3 
works as a negative control of the transcription of “weak 
mRNAs”, but, differentially from the paralogues 4E-BP1 
and 4E-BP2, its function is not regulated by phosphoryla-
tion [78].

The Cytoplasmatic FMRP Interacting Protein 1 
(CYFIP1), another member of the 4E-BP family, has been 
extensively characterized, showing a specific role in the cen-
tral nervous system [79]. CYFIP1 is also a binding partner 
of the Fragile X Mental Retardation Protein (FMRP), the 
protein absent or mutated in FXS [80, 81], suggesting a link 
between translational control and neurodevelopmental dis-
orders [26, 27, 79, 80, 82]. The expansion of a trinucleotide 
CGG repeat upstream of FMR1 gene leads to FXS pathol-
ogy, an X-linked inherited intellectual disability [83]. Lack 
of FMRP causes abnormal translation of specific transcripts 
at the synapse during critical stages of neurodevelopment 
[84]. CYFIP1 forms a trimeric complex with FMRP and 
eIF4E [79, 82], thereby repressing the translation of some 
key mRNAs in neurons that lead to aberrant morphology 
of dendritic spines (i.e., the molecular phenotype of FXS) 
having a direct effect on the correct synapses formation [79]. 
Furthermore, CYFIP1 is a so-called moonlighting protein, 
because it plays a central role in two separate pathways, 
thanks to its ability to acquire two distinct structural con-
formations. Indeed, CYFIP1 is a component of the WAVE 

regulatory complex (WRC), a hetero-pentameric complex 
essential for controlling actin polymerization in the cell [82, 
85]. Synaptic activation by Brain-derived neurotrophic fac-
tor (BDNF) or group I metabotropic glutamate receptors 
(mGluRs) causes the dissociation of CYFIP1 from eIF4E, 
triggering the cap-dependent translation initiation, and con-
sequent recruitment of CYFIP1 toward the WAVE complex 
[79, 82]. A correct balance between translation initiation 
complex and WAVE is crucial for spine morphogenesis in 
neurons, synapses development and neurons functionality. 
CYFIP1 is in fact involved in other neurological disorders, 
such as schizophrenia (SCZ) and autism [22]. In particular, 
CYFIP1-deficient mice display defects in the structure of 
corpus callosum, which leads to alteration in brain func-
tional connectivity, sensory perception and coordination, 
typical tracts of neuropsychiatric diseases [22, 86]. CYFIP1 
is also involved in tumorigenesis, as it is considered a tumor 
suppressor gene [87–89].

The list of proteins that specifically bind to eIF4E is 
not restricted to those mentioned so far but includes many 
other proteins, some of them share the characteristic of 
regulating a specific subset of mRNAs. Some of them are 
shared by several taxa, such as 4E-T, Maskin and Neu-
roguidin [90]. Human 4E-T was initially identified as a 
cytoplasmatic shuttle protein that translocates eIF4E to 
the nucleus but, more recently, a cytoplasmatic function 
of 4E-T in stimulating P-bodies formation [91–93] and in 
mRNA decay was also described [94], indicating that it 
modulates the expression of crucial genes involved in neu-
rogenesis and oogenesis [95, 96]. A short segment of 4E-T 
shares limited homology with the D. melanogaster CUP 
protein [91]. This 4E-BP is involved in D. melanogaster 
embryogenesis, since it impairs the eIF4F complex for-
mation and thus specifically represses the translation of 
oskar, nanos and gurken mRNAs, which are essential 
for development. CUP is able to regulate specific target 
mRNAs working as a molecular adaptor and interact-
ing with other RNA-binding proteins, able to recognize 
specific sequences or structural elements located at the 
3′UTR of these mRNAs, such as Bruno, which binds 
oskar mRNA, and Smaug, which binds nanos mRNA [63, 
97–102]. Maskin, another 4E-binding partner belonging to 
this group, blocks translation of specific mRNAs during 
X. laevis oocytes development by simultaneously binding 
to eIF4E and CPEB (cytoplasmic polyadenylation element 
binding protein). The latter, in turn, recognizes all mRNAs 
bearing a CPE (cytoplasmic polyadenylation element) in 
their 3′-UTR. Assembly of this complex, also includ-
ing other proteins, causes the shortening of the mRNAs 
polyA tails making them untranslatable. During develop-
ment, activation of their translation is triggered by spe-
cific signals which induces the complex disassembly and 
the mRNA polyA-tail elongation. [97, 98]. A 4E-BP and 
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CPEB protein that acts similarly is Neuroguidin, a trans-
lation repressor of mRNAs containing the CPE element, 
found in all eukaryotic lineages but studied in particular 
in neuronal cells during X. laevis neurogenesis [90]. Other 
proteins interacting with the initiation factor 4E are: the 
RNA helicase DDX3, that promotes survival in stressed 
cells through its interaction with eIF4E [103]; the CCR4 
deadenylase family member Angel1; the RNA-binding 
protein Gem-associated protein 5 GEMIN-5 [104–106]; 
a group of homeodomain proteins (i.e., HoxA9, Hox11, 
Emx2, Otx2 and Engrailed 2) [107–109], the 4E-BP1 
ortholog protein Thor in D. melanogaster; the unique lin-
eage-specific 4E-BPs in yeast: p20 and eIF4E-associated 
protein 1 (Eap1p); and the unusual 4E-BP Mextli [10, 
61, 68, 110–115]. Despite the different function, origin 
and sequence of all these 4E-BPs, they display common 
structural features concerning the interaction with eIF4E, 
that will be punctually described in the next chapters. An 
extensive list of the best functionally or structurally char-
acterized 4E-BPs is summarized in Table 1.

Control of protein synthesis by phosphorylation 
of 4E‑BPs

The activity of the 4E-BPs and the ability to interact with 
eIF4E, as mentioned above, is regulated by their phospho-
rylation. The main enzyme involved is the serine/threonine 
kinase mammalian target of rapamycin (mTOR) [11]. The 
mTOR pathway is activated by PI3K-Akt (protein kinase B); 
activation of the mTOR complex 1 leads to phosphorylation 
of 4E-BPs at multiple sites (Thr 37, Thr 46, Ser 65, Thr 70), 
causing the release of eIF4E (reviewed in [17]). The higher 
level of eIF4E in the cell leads to an increase of the cap-
dependent translation, thus affecting the translation of “weak 
mRNAs”, highly dependent on the eIF4E activation state 
[1, 49, 123, 124]. Notably, dysregulation of the eIF4E/4E-
BPs interaction is a common feature of numerous diseases, 
such as cancer, neuropsychiatric and neurodevelopmental 
disorders [22, 125].

4E-BPs have multiple phosphorylation sites depend-
ing on the isoform or species [13]. In 4E-BP1, seven 

Table 1  Most of the functionally or structurally characterized 4E-BPs in human and in other organisms

Name of 4E-BP UNIPROT code PDB code Organism Pathological implication

4E-BP1 Q13541 1WKW,6BCX, 3U7X
4UED, 6BCU, 6BCX

H. sapiens Tumorigenesis and metabolic 
diseases [75, 116]

4E-BP2 Q13542 2MX4, 3AM7 H. sapiens Neuropsychiatric disorders and 
metabolic syndromes [73–75]

4E-BP3 O60516 H. sapiens
CYFIP1 Q7L576 3P8C, 4N78 H. sapiens Tumorigenesis; neuropsychiatric 

and neurodevelopmental disor-
ders [78, 79, 86, 89]

4E-T Q9NRA8 5ANR, 6F9W H. sapiens
ANGEL1 Q9UNK9 H. sapiens
DDX3X O00571 6CZ5, 5E7I, 4PX9, 2JGN, 2I4I H. sapiens Tumorigenesis and neurodevel-

opmental disorders [117–119]
GEMIN-5 Q8TEQ6 5GXH, 5GXI, 5h1J, 5H1K, 5H1L, 

5H1M, 5H3S, 5H3T, 5H3U, 
5TEE, 5TEF, 5THA, 6RNQ, 
6RNS

H. sapiens

4E-T Q8IH18 4UE9 D. melanogaster
CUP Q9VMA3 4AXG D. melanogaster Development [62]
THOR Q9XZ56 4UE8 D. melanogaster Innate immunity, cell growth, 

synaptic transmission 
[120–122]

MEXTLI Q9VR35 5ABV D. melanogaster Germline stem cell maintenance 
and early embryogenesis [115]

MASKIN Q9PTG8 X. laevis Development [97, 98]
NEUROGUIDIN Q4KLC4 X. laevis Neurogenesis [90]
P20 P12962 6FC3 S. cerevisiae
EAP1P P36041 6FC2 S. cerevisiae
MEXTLI Q9XW13 5ABY C. elegans
Homeodomain proteins (BICOID, 

HoxA9, Hox11, Emx2, Otx2 and 
Engrailed 2)

1ZQ3, 1PUF, 2DMS, 3ZOB Neurogenesis [109]
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phosphorylation sites have been identified: Thr 37, Thr 
46, Ser 65, Thr 70, Ser 83, Ser 101, and Ser 112 (Hs num-
bering). The first five phosphorylation sites are conserved 
among 4E-BPs, whereas Ser 101 and Ser 112 are peculiar 
of 4E-BP1 [126, 127]; furthermore, the kinase(s) respon-
sible for Ser 101 and Ser 112 phosphorylation has(have) 
not been identified yet. Albeit conserved among mammalian 
4E-BPs, Ser 83 seems to have a minor impact in the control 
of translation initiation [10]. Moreover, two phosphorylation 
sites are situated on the linker regions of the downregulating 
4E-BP (Ser 65 and Thr 70 on Dm Thor).

Phosphorylation of 4E-BPs by mTOR follows a stepwise 
mechanism [12, 13, 126, 127]; first, T37 and T46, are phos-
phorylated, resulting in a hypo-phosphorylated 4E-BPs state 
[128]. Phosphorylation of the early sites triggers the folding 
of residues Pro 18–Arg 62 (4E-BP2, PDBID 2MX4) into a 
four-stranded ß-domain, sequestering the C:4E-BM into a 
partially covered ß-strand and consequently obstructing its 
accessibility to eIF4E. This folded and partially phosphoryl-
ated state is less stable and causes a decrease in the binding 
affinity for eIF4E by 100-fold, but still being able to inhibit 
eIF4G binding [129]. Subsequent phosphorylation of Ser 
65, Thr 70 and Ser 83, located in the C-terminal intrinsi-
cally disordered region (C-IDR) of 4E-BPs, stabilizes the 
β-folded domain conformation, which is incompatible with 
eIF4E binding [130]. Fully phosphorylated 4E-BPs show a 
4000-fold decreased affinity for eIF4E.

The interaction of 4E-BPs with mTOR is mediated by the 
adaptor protein Raptor, an essential component of mTORC1 
[131, 132]. Two short motifs are responsible for Raptor bind-
ing and 4E-BP tethering: the mTOR signalling (TOS) motif, 
which serves as a docking site for Raptor, and the RAIP 
motif (i.e., Arg-Ala-Ile-Pro) named after its sequence, which 
is located at the N-terminus of 4E-BP1 and 4E-BP2, but 
is absent in 4E-BP3 [133, 134] (Fig. 3). The tethering of 
4E-BP1 by both motifs reduces the conformational entropy 
of the protein, which is then poised for phosphorylation. 
Moreover, the interaction between 4E-BP1 and Raptor 
seems to be independent of the presence of eIF4E, which 
makes phosphorylation of the early sites (Thr 37 and Thr 
46) highly efficient [135].

Structural insights into the 4E‑BPs canonical 
binding motif

The three-dimensional structure of eIF4E from many 
organisms has been solved, allowing an accurate struc-
tural comparison among species [28–32]. The overall fold 
of eIF4E is extremely conserved, adopting a horseshoe-
like conformation characterized by the presence of a 
ß-sheet containing eight antiparallel ß-strands, three long 
α-helices (α2, α4 and α5), which cover the convex hydro-
phobic face of the ß-sheet and form the dorsal binding site 
of the protein, and three short α-helices (α1, α3 and α6), 
oriented perpendicularly to the plane of the ß-sheet, pri-
marily constituting the concave/ventral surface, opposite 
to the distal side of the protein [28, 29] (Fig. 2a). The cap-
binding site is located in the ventral surface of the pro-
tein, about 25 Å far from the distal side. The interaction 
between eIF4E and the cap is mostly determined by the 
formation of cation-п stacking interactions between the 
7-methylguanine and two conserved tryptophan residues 
in the cap-binding pocket (Trp 56 and Trp 102, PDBID: 
1IPC) (Fig. 2a). This interaction is also stabilized by a 
hydrogen bond network involving a conserved glutamate 
residue (Glu 103), the N1 and N2 atoms of the 7-meth-
ylguanine [30, 136] and positively charged residues (Arg 
157, Lys 159 and Lys 162) located in the β5–β6 loop, that 
interact with the α- and β-phosphate oxygen atoms of the 
cap (Fig. 2), a key interaction for the phosphate binding. 
The dorsal surface of eIF4E shows an invariant hydro-
phobic/acidic area and is responsible for the binding with 
protein partners, including eIF4G and the 4E-BPs [28]. 
This interaction relies on the canonical eIF4E-binding 
site motif (C:4E-BM), located in eIF4G and 4E-BPs, of 
the consensus sequence YXXXXLΦ (where X is any resi-
due and Φ is any hydrophobic amino acid) (Fig. 2b) that 
adopts a conserved α-helical fold [9, 28, 137], as shown 
in Fig. 2b. The interactions between eIF4E and the C:4E-
BM are particularly conserved among different proteins: 
the hydroxyl group of the tyrosine side chain (Hs Tyr 612 
or Dm Tyr 621) forms a hydrogen bond with the carboxyl 
oxygen of the proline within the backbone of the His-Pro-
Leu conserved motif in elF4E (Hs His 37–Pro 38–Leu 39 
or Dm His 70–Pro 71–Leu 72) and establishes van der 
Waals interactions with a valine of eIF4E (Hs Val 69 or 
Dm Val 102). Moreover, the conserved residues (Hs Val 
69, Trp 73 and Leu 131) located on the dorsal surface of 
eIF4E are in contact with the hydrophobic amino acids of 
C:4E-BM (LΦ) at the C-terminus (Fig. 2b). The majority 
of the 4E-BPs and metazoan eIF4Gs have the consen-
sus motif that includes aliphatic amino acids (R/K/Q) at 
the positions 3 and 10, bringing to an extended canoni-
cal binding sequence: YX(R/K)X2LΦX2(R/K/Q). These 

Fig. 3  Schematic illustration of the primary structures of the three 
human 4E-BPs. The Threonine (Thr) and Serine (Ser) residues that 
undergo phosphorylation are numbered for 4E-BP1 (dark orange) 
[126]. The C:4E-BM (green) and NC:4E-BM (pink), together with 
RAIP (light blue) [131] and TOS (red) [127] motifs are shown
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residues contribute to the binding with eIF4E, most prob-
ably by covering hydrophobic surface areas of eIF4E from 
the exposure to solvent [8, 10, 25, 35]. Moreover, the argi-
nine/lysine located at the position 3 stabilizes the interac-
tion of the canonical helix, making a salt bridge with the 
conserved Glu 132 in eIF4E, conserved in metazoans.

Among the 4E-BPs, CYFIP1 is atypical: it bears a 
sequence variation of the canonical C:4E-BM, with a leu-
cine instead of tyrosine at position 1, arginine instead of 
leucine at position 6, while the hydrophobic amino acid at 
position 7 of the canonical site (i.e., LDKRLRS) is absent 
[79]. The variation of the C:4E-BM of CYFIP1 brings to 
a new network of amino acids interactions with eIF4E, 
as a peptide extracted from the eIF4E-binding domain 
of CYFIP1 (i.e., CYFIP1p: residues 721–734) acquires 
a new orientation within the canonical binding site por-
tion [26], forming a peculiar “reverse L shaped” struc-
ture [79]. The crystal structure of CYFIP1/eIF4E is not 
currently available, but important structural information 
have been obtained from molecular dynamic simulations 
performed on CYFIP1, which point out to a unique bind-
ing mode with eIF4E, compared with eIF4G and 4E-BPs 
(Fig. 2b) [26]. This structural prediction is also consistent 
with in vitro experiments previously performed on several 
CYFIP1 mutants [79].

Additional sequences situated at the C-terminus of the 
C:4E-BM are involved in the association of 4E-BPs with 
eIF4E; they include a linker region and a Non-Canonical 
Binding Motif (NC:4E-BM) and increase the affinity of 
4E-BPs for eIF4E by 2 to 3 orders of magnitude [8, 10, 
59, 64–67].

Structural insights into the 4E‑BPs non‑canonical 
binding motif

Although the eIF4E C:4E-BM was reported for several 
years as the main binding region for eIF4E [137], the 
recently described NC:4E-BM plays an equally important 
role in the regulation of cap-dependent translation [62]. 
Pivotal work by the group of Elisa Izaurralde has shown 
that the competition between eIF4G and 4E-BPs is strictly 
related to the NC:4E-BM, which is, however, poorly con-
served among 4E-BPs [10]. In particular, the structural 
characterization of C:4E-BM and NC:4E-BM combined 
with several kinetic measurements has unveiled the rela-
tion between binding mechanism and affinity for eIF4E. 
Despite the high sequence variability of the NC:4E-BM, 
it recognizes the same hydrophobic pocket on the lateral 
surface of eIF4E (Fig. 4). The lateral binding site of eIF4E 
is composed of a group of well-conserved amino acids: 
Phe 47, Ile 63, and Ile 79 in Homo sapiens (Tyr 80, Ile 
96, and Ile 112 in Drosophila melanogaster (Dm) eIF4E) 
[10]. Importantly, this region is approached by various 
4E-BPs with very different backbone conformations; only 
a few have a well-defined secondary structure (Fig. 4a). 
Interestingly, the non-canonical motifs of Dm Mextli 
(PDBID: 5ABV), Caenorhabditis elegans (Ce) Mextli 
(PDBID: 5ABY), Dm CUP (PDBID: 4AXG), Saccha-
romyces cerevisiae (Sc) p20 (PDBID: 6FC3), Sc Eap1p 
(PDBID: 6FC2) and Chaetomium thermophilum (Ct) 
eIF4G (PDBID: 6FC0) display a helical structure [10, 61, 
68] (Fig. 4a). Notably, Dm Mextli (PDBID: 5ABV) con-
tains a C-terminal auxiliary helix that provides an unusual 
tripartite binding mode with eIF4E [68]. Human 4E-BP1 
(PDBID: 4UED) and its subtypes (4E-BP2, 4E-BP3) 

Fig. 4  Lateral surface of eIF4E in complex with different NC:4E-BM 
of 4E-BPs. a Superimposition of the secondary structure of eIF4E 
bound to Ct eIF4G (PDBID: 6FC0 [61]), Dm MEXTLI (PDBID: 
5ABV [68]), Sc p20 (PDBID: 6FC3 [10]), with the non-canonical 

binding motif structured in α-helix; b superimposition of the second-
ary structure of the eIF4E bound to Hs eIF4G (PDBID: 5T46 [8]), 
Dm 4E-T (PDBID: 4UE9 [10]), Dm THOR (PDBID: 4UE8 [10]), 
with the unstructured non-canonical binding motif
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regulate protein synthesis via competition with eIF4G for 
binding to eIF4E and they use for this interaction both 
canonical and non-canonical motifs, this being a crucial 
feature for the correct interaction with eIF4E and its regu-
lation. Indeed, deletion of the C-terminal non-canonical 
region of 4E-BP1, where most of the essential interacting 
residues (79 Pro-Gly-Val-Thr-Ser 83) are situated, weakens 
the binding with eIF4E by 2 orders of magnitude. Within 
the NC:4E-BM sequence, Val 81 is the most important 
residue and interacts with the lateral surface of eIF4E 
through its hydrophobic side chain [66]. In addition, the 
nitrogen of eIF4E Gln 80 stabilizes the carbonyl oxygen 
of 4E-BP1 Val 81 through a main-chain contact [10]. The 
deletion of this single valine weakens the binding between 

4E-BP1 (PDBID: 4UED) and eIF4E by an order of mag-
nitude [66]. 4E-BP2 binds eIF4E in a dynamic way and it 
uses the usual bipartite mode [67] (Fig. 5a).

The binding of D. melanogaster 4E-BPs to eIF4E has 
been extensively characterized; CUP (PDBID: 4AXG), 
4E-T (PDBID: 4UE9) and the 4E-BP1 ortholog protein 
Thor (PDBID: 4UE8) interact with eIF4E through the same 
bipartite mechanism involving both canonical and non-
canonical motifs. The non-canonical regions interact with 
the hydrophobic pocket of eIF4E in a similar way to human 
proteins, with a crucial residue that engages the lateral sur-
face of eIF4E by hydrophobic contact (Leu 79 in Thor, Phe 
41 in 4E-T and Ile 373 in CUP). The carbonyl oxygens of 
these residues, as well as Val 81 in 4E-BP1, are fixed by a 

Fig. 5  Molecular details of the non-canonical binding sites in differ-
ent eIF4E complexes. a Close-up view of the non-canonical bind-
ing site of Hs 4E-BP1 (PDBID: 1WKW [179]) and sequence align-
ment of the homologous Hs 4E-BP2 and Hs 4E-BP3; b interactions 
in the non-canonical binding site of Thor (PDBID: 4UE8 [10]), 4E-T 

(PDBID: 4UE9 [10]) and CUP (PDBID: 4AXG [63]); c, d close-up 
views of p20 (PDBID: 6FC3 [61]) (c) and Ea1p1 (PDBID: 6FC2 
[138]) (d) that form helices in the NC:4E-BM; e comparison of the 
Hs (PDBID: 5T46 [8]) and Dm (PDBID: 5T47 [8]) eIF4G complexes
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main-chain contact to the nitrogen atom of Lys 113 [Dm 
eIF4E]. Unlike 4E-BP1, these three proteins form an addi-
tional main-chain contact between the nitrogen atom of Arg 
375 [CUP] (Lys 43 in 4E-Tand Arg 81 in Thor) and the 
carbonyl oxygens of His 111 [Dm 4E] [10, 63] (Fig. 5b). In 
yeast, p20 and Eap1p are deregulators of the cap-dependent 
translation exerting their function through competition with 
eIF4G for binding to eIF4E [113, 114]. Izaurralde and col-
leagues have recently determined the crystal structures of 
these two Sc 4E-BPs in complex with Sc eIF4E, confirming 
the conserved binding mode between the non-canonical site 
and the lateral surface, despite the poor sequence conser-
vation [61]. Interestingly, p20 and Eap1p1 non-canonical 
motifs fold into an α-helix (Fig. 4a). Specifically, in p20 
(PDBID: 6FC3) residues Ala 21-Lys 41 form a long amphi-
pathic α-helix that establishes hydrophobic interactions over 
the lateral surface of eIF4E. In addition, some residues form 
salt bridges and hydrogen bonds with the lateral surface of 
eIF4E. Together, the hydrophobic and polar interactions of 
the amphipathic α-helix stabilize the overall binding between 
Sc p20 and Sc eIF4E (Fig. 5c). The α-helix formed by the 
non-canonical motif of Ea1p1 (PDBID: 6FC2) is shorter 
compared to the one of p20 (only 8 residues, Pro 130–Arg 
137) and contributes less to the interaction with eIF4E via 
hydrophobic contacts. Furthermore, Ea1p1contains an 
N-terminal auxiliary extension that folds into a ‘hairpin’-
like motif on the eIF4E dorsal surface and thus increases 
the buried surface area of the eIF4E–Eap1p interface. Nota-
bly, the resulting extensive interactions between eIF4E and 
Eap1p have not been described in any reported structure 
of 4E–BPs–eIF4E complexes [138]. However, a second 
unstructured region called FWRL motif (Phe 144–Leu 147) 
is found C-terminally to the α-helix. This motif contributes 
significantly to the interaction between Ea1p1 and the lateral 
surface of eIF4E via an extensive T-shaped π–π-stacking 
involving Trp 145 [Sc Ea1p1] at the center, Phe 144 [Sc 
Ea1p1], Tyr 47 [Sc eIF4E] and Tyr 93 [Sc eIF4E] [138]. 
Moreover, a salt bridge between the guanidinium group of 
Arg 146 [Sc Ea1p1] and the carboxyl moiety of Glu 56 [Sc 
eIF4E] contributes to the stability of the Eap1p–eIF4E inter-
action [138] (Fig. 5d).

eIF4G interacts with eIF4E in the same way as the other 
4E-BPs. Structurally, the eIF4G surface deputed to interact 
with eIF4E is composed by the same three regions found in 
4E-BPs (i.e., C:4E-BM, linker and NC:4E-BM). The linker 
region, that is located immediately after the C:4E-BM, forms 
an elbow loop that orients the NC:4E-BM towards the lateral 
surface of eIF4E and engages this area with hydrophobic 
interactions. Specifically, the Hs eIF4G (PDBID: 5T46) resi-
dues Leu 633, Ile 636, Val 639 and Val 640 interact with the 
hydrophobic residues Phe 47, Ile 63, Leu 75 and Ile 79of Hs 
eIF4E, while in Dm eIF4G (PDBID: 4UEC) the residues 
involved in the hydrophobic interaction are Val 641, Ile 646, 

Leu 647 that engage Tyr 80, Ile 96, Leu 108 and Ile 112, 
respectively, of Dm eIF4E. The linker region engages the 
surface of eIF4E through the interaction with two conserved 
eIF4E residues: Hs Asn 77 (or Dm Asn 110) and Hs His 78 
(or Dm His 111) [8] (Fig. 5e).

In 2011 Umenaga et al. [139] have discovered the Hs 
eIF4G non-canonical binding site (572Tyr-Asp-Arg-Glu-
Phe-Leu-Leu78) that, unlike the fungal Chaetomium thermo-
philum homologous protein, does not have a defined second-
ary structure (Fig. 4b) [8, 61]. This study allowed a better 
understanding of the competitive mechanism behind the 
regulation of cap-dependent translation. They have meas-
ured the kinetic parameters of the interaction between some 
4E-BPs (Hs 4E-BP2, Hs 4E-BP1, Dm Thor) and Hs eIF4G 
fragment peptides with eIF4E, establishing that eIF4G non-
canonical motif has a lower binding affinity than the non-
canonical binding motif of 4E-BP2 for the cap-binding pro-
tein [8, 61]. This discrepancy is due to the different amino 
acid composition of both the linker region and the non-
canonical binding motif. Interestingly, structure of Saccha-
romyces cerevisiae eIF4E–eIF4G complex (PDBID: 1RF8) 
[140] reveals a different interaction interface between the 
two proteins. The auxiliary flanking region of eIF4G, which 
might represent the non-canonical motif, does not interact 
with the lateral surface of eIF4E. This sequence folds into 
a bracelet-like structure that coats around the N-terminal 
region of eIF4E. Nevertheless, this discrepancy may be 
explained by the use of CHAPS, a zwitterionic detergent, 
during the preparation of the proteins for determination of 
the NMR structure [140]. CHAPS may have interfered with 
the hydrophobic interaction network present at the lateral 
surface of eIF4E. In this context, Gruner et al. support the 
theory that Sc eIF4G also binds Sc eIF4E through the con-
served bipartite mechanism, although the crystal structure of 
the complex is not available yet [138]. They have performed 
small angle X-ray scattering (SAXS), homology modeling 
and pull-down assay to study the conformation and the phys-
ical interaction of the Sc eIF4G–eIF4E demonstrating that 
the complex likely adopts a conformation very similar to Ct 
eIF4E–eIF4G [138]. The three-dimensional structure of the 
fungal (Chaetomium thermophilum) eIF4G (PDBID: 6FC0) 
shows the conserved bipartite binding mechanism described 
for metazoan 4E-BPs but with some striking differences. 
In addition to the NC:4E-BM α-helix binding to the lateral 
surface of eIF4E, in the N-terminal segment two additional 
α-helices wrap around the N-terminus region of eIF4E form-
ing a bracelet-like structure which significantly contributes 
to enlarge the Ct eIF4E–eIF4G interface, as observed only 
for Sc eIF4E–eIF4G complex [61]. In conclusion, the bind-
ing affinity of eIF4G and 4E-BPs for eIF4E is similar [8, 
62], and what significantly provides an advantage to 4E-BPs 
rather than eIF4G in the interaction with eIF4E is indeed 
the linker and the NC:4E-BM [8], highlighting the key role 
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of these regions, together with the phosphorylation sites, in 
regulating the cap-dependent translation.

Targeting eIF4E: towards possible 
pharmacological applications

One of the main features of cancer onset and progression is 
the malfunctioning of the translation machinery, resulting 
in an increase of protein synthesis due to eIF4E dysregula-
tion. eIF4E has thus been recognized as an attractive phar-
macological target in particular for anticancer therapy. To 
date, several inhibitors targeting eIF4E have been developed. 
A subgroup of these inhibitors acts directly repressing the 
translation of eIF4E mRNA; others by blocking the interac-
tion between eIF4E and its partners. Furthermore, indirect 
strategies implying the use of inhibitors that act on phos-
phorylation pathways have been also developed [14, 15]. 
Because eIF4E function is strictly dependent on its binding 
to the 7-m-GTP cap, molecules able to block or to compete 
with this interaction are becoming more and more attractive 
as drug candidates. One representative approach is the use 
of the cap-binding antagonists derived from 7-m-GTP ana-
lyzed for their ability to compete with eIF4E for the binding 
to capped mRNAs [141–143]. Several molecules extracted 
from 7-m-GTP analogues libraries have been selected for 
their favorable drug-like properties. Among them, 7-benzyl 
guanosine monophosphate (Bn7GMP) [144], and its deriva-
tive 4Ei-1 [145, 146], seem to be the most relevant one based 
on in vitro and in vivo studies [144–147]. Another direct 
strategy for targeting eIF4E overexpression is the use of spe-
cific antisense oligonucleotide (ASO) or small interference 
RNA (siRNA). ASOs are short (10–25 nucleotides) single-
stranded DNA oligonucleotides that are able to target a spe-
cific mRNA through complementary hybridization [148]. 
Some eIF4E ASOs were designed also to recruit endogenous 
RNase H, therefore, decreasing eIF4E expression; studies 
performed using eIF4E ASOs on different cancer cell lines 
show promising results [149–152]. eIF4E knock-down by 
siRNA can arrest cell cycle, suppress cell mobility and 
colony formation in MDA–MB-231 triple-negative breast 
cancer cells [153]. Moreover, an eIF4E specific siRNA has 
been shown to inhibit cell growth in squamous carcinoma 
and adenocarcinoma [154, 155].

eIF4E is also indirectly targeted by inhibitors of the 
mTOR pathway, which interrupt the upstream signals for 
the phosphorylation of 4E-BPs, consequently preventing the 
dissociation between eIF4E and 4E-BPs. The best charac-
terized compound is rapamycin (or sirolimus), a macrolide 
produced by Streptomyces hygroscopicus that is able to exert 
an allosteric inhibitory effect on mTORC1. Rapamycin has 
shown antineoplastic effects towards several cancer cell 
lines and mouse models [14]. However, several rapamycin 

analogues (rapalogues) with better pharmacological char-
acteristics are already under clinical trials, such as CCI-799 
(temsirolimus), AP23573 (deforolimus), RAD001 (everoli-
mus), SAR943 (32-Deoxorapamycin), ABT-578 (zotaroli-
mus) [14, 156–161]. Temsirolimus is FDA-approved in renal 
carcinoma [162–166], while everolimus is FDA-approved 
for neuroendocrine and breast cancers and deforolimus 
shows antitumor effects in hematologic tumors [14]. Other 
second-generation mTOR inhibitors have been developed 
and named active-site mTOR inhibitors (TORi). Among 
these, Torin 1, AZD8055, WYE-125132, INK128, PP242 
have shown antitumor properties in vivo and in vitro, with 
enhanced bioavailability and efficacy compared to rapa-
mycin [14, 15]. The administration of all these molecules, 
however, raised negative side effects, limiting their poten-
tial use [15]. Another promising pathway that can be tar-
geted is the Mitogen-Activated Protein Kinase Interacting 
Protein Kinases (MNKs). Inhibitors, such as CGP57380, 
CGP052088 and cercosporamide, reduce the phosphoryla-
tion of eIF4E Ser 209 and showed anti-neoplastic features in 
cell cultures, especially in the treatment of metastatic cells. 
Nevertheless, also in this case the molecules show off-target 
problems [167].

Structural properties play a key role in the regulation of 
cap-dependent translation; targeting eIF4E/eIF4G interac-
tion is thus another promising approach. High-throughput 
screening assays identified small-molecule inhibitors [168], 
such as 4EGI-1, 4E1RCat and 4E2RCat [169]. The X-ray 
structure of eIF4E-bound 4EGI-1 shows that 4EGI-1 blocks 
the binding of eIF4G interacting with a specific hydropho-
bic/basic pocket of eIF4E, and is thus considered an allos-
teric inhibitor [170]. Because it displays a dual activity, by 
inhibiting the eIF4G/eIF4E complex formation and enhanc-
ing the binding of 4E-BP1, 4EGI-1 is considered one of the 
most effective and promising inhibitors. Furthermore, when 
4E-BP1 is hyperphosphorylated and dissociated from eIF4E, 
4EGI-1 replaces 4E-BP1, hindering the eIF4G/eIF4E inter-
action. Thus, 4EGI-1 reinforces the translation inhibition 
function of 4E-BP1, providing an adjunctive tumor-suppres-
sive role [59]. 4EGI-1 activity is also investigated in mouse 
model of ASD with beneficial effects [23].

Peptides and peptidomimetics are an emerging class 
of molecules able to modulate and inhibit a wide range 
of protein–protein interactions (PPIs) and cell membrane 
morphology. Their stability, specificity and low toxicity 
make peptidomimetics more suitable for therapeutic appli-
cation than small compounds [171–174]. An example of 
this class is a fusion peptide containing residues 49–68 of 
4E-BP1 and an analogue of gonadotropin-releasing hor-
mone (GnRH) to target its receptor, widely overexpressed 
in ovarian and other endocrine tumors [175]. Notwith-
standing their potential, there are limitations to the use of 
peptides, such as low secondary structural conformation in 
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solution and poor permeability of the cellular membranes 
and physiological barriers (i.g. Blood–Brain Barrier). To 
overcome these limitations, chemical constraints can be 
added in specific positions of the peptides to increase the 
structural stability of the active conformation. Further-
more, peptidomimetics usually display improved meta-
bolic stability and they are less subjected to proteolytic 
degradation compared to unmodified peptides [176]. Lama 
et al. described the development of second-generation 
hydrocarbon stapled-peptides in complex with eIF4E, 
showing increased binding kinetics and improved scaf-
fold in terms of their degree of ordered helical structure 
[25, 35, 177].

Hence, peptides and peptidomimetics represent a new 
and attractive class of biomolecules, which will most likely 
play a central role in pharmacological applications for the 
development novel therapeutics.

Conclusions and remarks

The eukaryotic translation initiation factor eIF4E plays a 
critical role in promoting the first step of the translation 
process. It is clearly established that dysregulation in the 
activity of eIF4E can be the primary cause of different types 
of diseases, such as cancer and neurodevelopmental disor-
ders. Thus, it represents an attractive biological target for the 
development of drugs aimed to interfere with the interac-
tion between eIF4E and its molecular partners eIF4G and 
4E-BPs. The plethora of information accumulated in the last 
years on the structural features of these interactions, and 
their detailed analysis, is cardinal for the advancement of 
new therapeutic strategies. This structural information can 
be used in a near future to design novel and more specific 
eIF4E-targeting molecules with inhibitory potential, thus 
having an impact on the mRNA translation process.
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