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Does bisphenol-A affect alteration of gut microbiome 
after bariatric/metabolic surgery?: a comparative 
metagenomic analysis in a long-term high-fat diet 
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INTRODUCTION
The gut microbiome is a collection of microorganisms that 

live in the human digestive system in a symbiotic relationship 
with their host. The gut microbiome plays critical role in 

glucose metabolism and low-grade inflammation associated 
with obesity and related metabolic disorders by the transport 
of lipopolysaccharide-induced extracellular vesicles (EVs) [1]. 
Gut microbial communities are also associated with obesity. 
The composition of the microbial diversity differs between 
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Purpose: Bisphenol A (BPA) is a widely used environmental contaminant that is associated with type 2 diabetes mellitus 
and a shift of gut microbial community. However, little is known about the influence of BPA on gut microbial changes 
related to bariatric surgery. We investigated whether long-term exposure to dietary BPA causing alterations of gut 
microbiome occurred after bariatric surgery. 
Methods: Six-week-old male Wistar rats were fed either a high- fat diet (HFD) or HFD + BPA for 40 weeks. Then sleeve 
gastrectomy (SG) or Roux-en Y gastric bypass (RYGB) was performed in each diet group and observed for 12 weeks 
postoperatively. Fecal samples were collected at the 40th weeks and 12th postoperative weeks. Using 16S ribosomal RNA 
gene sequencing analysis on fecal samples, a comparative metagenomic analysis on gut microbiome composition was 
performed. 
Results: Long-term exposure to HFD with BPA showed higher body weight change and higher level of fasting blood 
sugar after 40 weeks-diet challenge than those of the HFD only group. After bariatric surgeries, mean body weight of the 
HFD with BPA group was significantly higher than the HFD only group, but there was no difference between the SG and 
RYGB groups. The metagenomic analyses demonstrated that long-term exposure to dietary BPA did not affect significant 
alterations of gut microbiome before and after bariatric surgery, compared with the HFD groups. 
Conclusion: Our results highlighted that BPA was a risk factor for obesity and may contribute to glucose intolerance, but 
it did not affect alterations of gut microbiome after bariatric/metabolic surgery.
[Ann Surg Treat Res 2022;102(6):342-352]
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lean subjects and obese subjects. In overweight and obese 
subjects, the abundance of organisms belonging to the phylum 
Firmicutes is significantly increased, while that of organisms 
belonging to the genus Bifidobacterium and the phylum 
Bacteroidetes is significantly decreased; thereby, the ratio of 
Firmicutes to Bacteroidetes is changed [2]. The composition of 
the gut microbial community mainly depends on the host, but 
it can also be altered by exogenous and endogenous factors, 
including changes in dietary habits, health conditions, and 
surgery [3]. Bariatric/metabolic surgery for treating simple 
obesity or morbid obesity with type 2 diabetes mellitus (T2DM) 
is the representative example. It can cause physiological 
changes in food choices and preferences, reduced food intake, 
and malabsorption, which results in significant alterations 
in the gut microbial community of the alimentary tract [4,5]. 
However, recent data have reported that the gut microbiome is 
not fully restored even after bariatric surgery, and the specific 
mechanism underlying gut microbiome modifications by 
bariatric/metabolic surgery has not been elucidated. 

Bisphenol A (BPA) is an organic synthetic compound 
that is popularly used for manufacturing polymers such as 
polycarbonate (PC), epoxy resins, and polyvinyl chloride (PVC) 
[6]. Many food items are contaminated with BPA, and this is 
true especially in canned foods or beverage bottles because 
foods are inevitably in contact with internal coating materials of 
food packages containing PC, epoxy resins, or PVC to store food 
which have a waterproof effect [7]. When the BPA-contaminated 
food is digested, BPA is first rapidly metabolized and absorbed 
from the gastrointestinal tract then gets trapped in adipose 
tissue due to its lipophilic nature [8]. BPA accumulation in the 
body has been recently deemed as an environmental obesogen 
[9]. The results from the Canadian Health measure survey 
showed that urinary BPA was positively associated with body 
mass index (BMI)-defined obesity, with an odds ratio of 1.54 
[10]. In addition, several epidemiological studies showed that 
long-term BPA exposure is positively related to increased T2DM 
risk [11,12]. Provvisiero et al. [13] reported that even exposure to 
low doses of BPA may increase T2DM by inducing impairment 
of insulin and glucagon secretion by affecting muscle, hepatic, 
and adipose cell function, and by triggering an insulin-resistant 
state. 

Recently, the influence of environmental contaminants such 
as BPA on the gut microbial community has been suggested [14]. 
Dietary BPA causes significant reduction in the class Clostridia, 
which is often observed in diabetic patients. However, studies 
on the effects of BPA on gut microbial changes after bariatric/
metabolic surgery have not been reported. In an attempt 
to investigate the influence of BPA on changes in the gut 
microbiome composition following bariatric/metabolic surgery, 
the present study adopted a next-generation sequencing 
approach to characterize the gut bacteria by analyzing the 

bacterial 16S ribosomal RNA (rRNA) sequences from fecal 
samples of rats subjected to 2 different diets and 2 surgical 
procedures; namely, a high-fat diet (HFD) or HFD mixed with 
BPA, and sleeve gastrectomy (SG) or Roux-en Y gastric bypass 
(RYGB). 

METHODS
This study was approached by the Institutional Animal Care 

and Ethical Use Committee of the laboratory animal research 
center of Ajou University Medical Center (No. 2015-0051) and all 
experiments were conducted in accordance with the Guide for 
the Care and Use of Laboratory Animals.

Animals
Twenty-four 6-week-old male Wistar rats (160–200 g) were 

purchased from Orient (Seongnam, Korea) and were housed 
in polypropylene cages with sterile bedding, standard rodent 
chow, and glass water bottles. The rats were acclimatized to 
the laboratory environment for 1 week before the experiment 
commenced. Rats were then randomly assigned to 2 groups: 
the HFD group and the BPA group (fed HFD mixed with BPA). 
The HFD was purchased from Harlan Korea Laboratories, Ltd., 
(Seoul, Korea) which comprise 4.6 kcal/g, with 19.0% protein, 
44.8% fat, and 36.2% carbohydrates. BPA (>99% purity BPA) was 
purchased from Sigma-Aldrich Chemical Industries (St. Louis, 
MO, USA). In the BPA group, BPA was blended into the HFD at a 
concentration of 50 µg/kg, then a pellet was formed again. 

Each group (n = 12) was housed individually in single cages 
at an ambient temperature of 22ºC ± 1ºC, the humidity of 60% 
± 10%, and a 12-hour light:12-hour darkness cycle. The rats 
were allowed to eat and drink ad libitum with the assigned 
diet. After 40 weeks of feeding, the rats in each group were 
divided into 2 groups and underwent SG and RYGB (Fig. 1A). 
After 12 weeks from surgery, the rats were sacrificed after 16-
hour overnight fasting. Fresh fecal samples were collected at 
weeks 40 (before the surgery) and postoperative weeks 12 (after 
the surgery) and stored at –80ºC until use. 

Body weight and glucose level measurements, 
glucose tolerance test 
Body weight and food consumption were measured weekly 

during the experiments. A drop of blood was obtained from the 
tail vein, and fasting blood sugar (FBS) after 16-hour overnight 
fasting was measured every 2 weeks using a glucometer (Accu-
Chek Performa, Roche, Basel, Switzerland). To assess glucose 
homeostasis, an intraperitoneal glucose tolerance test (IPGTT) 
was performed at weeks 40 before the surgery and end of the 
experiment. After overnight fasting, the rats were injected 
intraperitoneally with 2 g/kg glucose per body weight (D-(+)-
glucose solution, 45% in H2O, sterile filtered, BioXtra Sigma 
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G8769; Sigma-Aldrich); blood glucose level was determined at 
the indicated time points of 0, 30, 60, 120 minutes.

Surgical techniques
After an overnight fast with freely available water, the rats 

were anesthetized by respiratory anesthesia using isoflurane. 
With the rats in a supine position, a 4-cm midline incision 
was made below the xiphoid. For the SG procedure, after the 
greater curvature including entire fundus of the stomach 
(approximately 70%–80% of the gastric volume) was removed 
using a linear stapler (ECHELON FLEX ENDOPATH stapler, 60-
mm white cartilage; Ethicon, Raritan, NJ, USA). Short gastric 
vessels were then ligated with 4-0 silk (Fig. 1B). For the RYGB 
procedure, a small gastric pouch was created by transecting 
the stomach above the limiting ridge after identification 
of the esophagogastric junction. The Treitz ligament was 
identified and measured approximately 10 cm distant from 
where the duodenum and jejunum were transected. After 
approximately 20-cm length of Roux limb was formed, end-to-
side gastrojejunostomy and jejunojejunostomy were made by 
6-0 PDS*II (Ethicon) sutures in an interrupt manner (Fig. 1C). 
The abdominal wall was closed layer by layer using continuous 
3-0 silk and 3-0 nylon sutures. Three days after the surgery, all 
the surgical rats were provided with the assigned diet and water 
ad libitum.

Extracellular vesicles isolation and DNA extraction 
from stool samples, processing, and analysis
The stool sample was mixed with phosphate-buffered saline 

and diluted at a 1:10 ratio (1 g:10 mL) and maintained at 4°C for 
24 hours. After dilution, the sample was centrifuged (10,000 ×g, 
10 minutes, 4°C) to remove bacterial fraction and the EV portion 
was isolated. The supernatants containing EVs were sterilized 
by filtering through a 0.22-µm filter and 100°C boiling. The 
remaining particles and waste were removed by centrifugation 
at 13,000 rpm for 30 minutes at 4°C. Bacterial DNA was 
extracted using a DNA isolation kit (DNeasy PowerSoil Kit, 
QIAGEN, Hilden, Germany) and quantified using a QIAxpert 
system (QIAGEN).

For microbiome analysis, 16S rRNA gene amplicon meta-
genomic analysis was performed. The prepared bacterial DNA 
was used for polymerase chain reaction (PCR) amplification of 
the 16S rRNA gene using a primer set of 16S_V3_F (5’-TCGGCGA 
TCGATGAGAGACCCT). The PCR product was used to construct 
the 16S rRNA gene library according to the MiSeq System 
guidelines (Illumina, San Diego, CA, USA). The 16S rRNA gene 
library for each sample was quantified using QIAxpert, was 
pooled isotropically and used for pyrosequencing with the 
MiSeq System according to the manufacturer’s recommen-
dations. 

Paired-end reads that matched the adapter sequences 
were trimmed via Cutadapt version 1.1.6 [15]. The resulting 
FASTQ files containing paired-end reads were merged with 
CASPER and then quality filtered based on the Phred (Q) score-
based criteria [16,17]. Any reads shorter than 350 bp or longer 
than 550 bp after merging were also discarded. To identify 
chimeric sequences, a reference-based chimera detection 
step was conducted with VSEARCH against the SILVA gold 
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Fig. 1. Experimental design and surgical procedures. (A) Schematic representation of the experimental groups depending 
on type of diet and surgical procedures. (B) Schematic diagram illustrating sleeve gastrectomy (SG). (C) Schematic diagram 
illustrating Roux-en Y gastric bypass (RYGB). HFD, high-fat diet; BPA, bisphenol A. 
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database [18,19]. Next, the sequence reads were clustered into 
operational taxonomic units (OTUs) using VSEARCH with a de 
novo clustering algorithm under a threshold of 97% sequence 
similarity. Finally, representative sequences of the OTUs were 
classified using the Greengenes database (ver. 13_8) with 
UCLUST (parallel_assign_taxonomy_uclust.py script on QIIME 
version 1.9.1) under the default parameters [20]. The Chao 
indices, an estimator of taxa richness per individual, were 
estimated to measure the diversity in each sample.

Statistical analysis
All data are expressed as the mean ± standard deviation. 

Statistical analyses were performed using GraphPad Prism 
8.0.1 software and the “phyloseq” package of R software ver. 
3.4.1 (R Foundation for Statistical Computing, Vienna, Austria). 
Intergroup comparisons were evaluated with unpaired t-tests 
for continuous variables, and multiple t-tests (1 per row) were 
used to compare the microbial compositions. P-values less than 
0.05 (2-sided significance testing) were considered statistically 
significant. 

RESULTS

Impact of bisphenol A on body weight changes
Before the bariatric/metabolic surgery, 1 rat in the BPA group 

died of unclear causes in the 38th week and was excluded from 
the analyses. The body weight changes showed a similar trend, 

increased from about 200 to 800 g, regardless of BPA exposure. 
However, the rats in the BPA group gained more body weight 
than those in the HFD group (624.3 ± 172.0 g vs. 610.6 ± 167.1 g, 
P < 0.001) (Fig. 2A). 

After surgery, 13 rats survived until 12 weeks postoperatively, 
though fecal samples were collected from 10 rats; 2 each were in 
the HFD-SG and BPA-SG subgroups and 3 each were in the HFD-
RYGB and BPA-RYGB subgroups. Subgroup analyses according to 
the different diets and types of bariatric surgery showed that 
the body weights in the BPA group were significantly higher 
than those in the HFD group (781.1 ± 37.3 g vs. 738.6 ± 16.0 g, 
P = 0.028); however, there was no difference between the SG 
and RYGB subgroups (P = 0.896) (Fig. 2B, C). 

Long-term exposure to bisphenol A may induce 
glucose intolerance
At week 40, after a 16-hour overnight fast, FBS was 

significantly higher in the BPA group than that in the HFD 
group (90.5 ± 5.4 mg/dL vs. 87.2 ± 4.2 mg/dL, P = 0.033) (Fig. 
3A). After the surgery, the FBS of the BPA group was relatively 
higher than that of the other groups although there was no 
statistical significance between the HFD and BPA groups or 
between the SG and RYGB groups (Fig. 3B, C). In the IPGTT 
measured in week 40, the peak blood sugar levels were higher 
in the BPA group, especially at 30 and 60 minutes (Fig. 3D) than 
those in the HFD group; however, the difference did not reach 
statistical significance. This trend was also observed in the 
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Fig. 2. Body weight changes of 
rats before and after the surgery. 
(A, B) Body weight changes 
between the high-fat diet (HFD) 
and bisphenol-A (BPA) groups 
before (A) and after (B) the surgery. 
(C) Body weight changes between 
the sleeve gastrectomy (SG) and 
Roux-en Y gastric bypass (RYGB) 
subgroups after the surgery. 
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IPGTT measured in week 12 after surgery (Fig. 3E). As shown 
in Fig. 3F, there were similar blood sugar trends in the SG and 
RYGB groups, although the difference was not statistically 
significant. 

Changes in the microbial communities in stool 
bacteria
A comparative analysis of the microbial communities before 

and after surgery among the different subgroups was conducted. 
A distribution-stacked map of the taxonomic compositions of 
each rat from the respective groups was constructed at the phyla 
level (Fig. 4A). The Shannon index showed a gradual decreasing 
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tendency in microbial diversity after surgery; however, there 
were no remarkable differences (Fig. 4B). Before surgery, there 
were no significant differences between the proportions of 
the microbial community compositions in the HFD and BPA 
groups (Fig. 4C), and the most abundant phyla were Firmicutes, 
Verrucomicrobia, Bacteroidetes, and Proteobacteria. After 
surgery, the compositional proportions resembled that from 
before surgery (Fig. 4D). There were no statistically significant 
differences in the results from the animals who received the 
same surgical procedure but different diets (HFD-SG vs. BPA-SG 
and HFD-RYGB vs. BPA-RYGB) (Fig. 4E, F). The abundance of the 
phylum Actinobacteria was significantly lower in the HFD-RYGB 
subgroup relative to that in the HFD-SG subgroup (P < 0.001) 

(Fig. 4G), and the abundance of the phylum Tenericutes was 
significantly lower in the BPA-RYGB subgroup relative to that in 
the BPA-SG group (P < 0.001) (Fig. 4H). 

Changes in the microbial communities in stool 
extracellular vesicles  
The same method was used to analyze the composition of 

the microbial communities in stool EVs. A distribution-stacked 
map of the taxonomic compositions was constructed at the 
phyla level (Fig. 5A). The Shannon index showed a decreasing 
tendency in microbial diversity after surgery, especially in the 
HFD-RYGB and BPA-RYGB subgroups; however, there were no 
remarkable differences (Fig. 5B). Before surgery, there were 
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no statistically significant differences in the compositional 
proportions of the microbial communities of the HFD and 
BPA groups (Fig. 5C), and the most abundant phyla in the gut 
microbiome were Firmicutes, Verrucomicrobia, Bacteroidetes, 
and Proteobacteria. After surgery, there was also no statistically 
significant difference between the HFD and BPA groups 
(Fig. 5D); furthermore, there were no statistically significant 
differences among the animals that received the same 
surgical procedure but different diets (HFD-SG vs. BPA-SG 
and HFD-RYGB vs. BPA-RYGB) (Fig. 5E, F). The abundances of 
Actinobacteria and Firmicutes were significantly lower in the 
HFD-RYGB subgroup than in the HFD-SG subgroup (P = 0.005 
and P = 0.002, respectively) (Fig. 5G), and the abundance of 
Tenericutes was significantly lower in the BPA-RYGB subgroup 
than in the BPA-SG subgroup (P = 0.003) (Fig. 5H). 

DISCUSSION
The present study illustrates that BPA may encourage weight 

gain, thus limiting the weight loss resulting from bariatric 
surgery. In addition, BPA negatively affected glucose tolerance 

and increased the overnight FBS level. However, BPA did not 
influence the compositional proportions or the diversity in the 
microbial communities after bariatric/metabolic surgery.

BPA has been at least partially linked to obesity, and it is 
commonly regarded as a putative environmental obesogen 
based on some evidence from animal studies and human 
epidemiologic studies [21]. BPA might stimulate adipocyte 
differentiation and proliferation and induce adipocyte 
hypertrophy, thus facilitating weight gain [22]. In the present 
study, the rats in the BPA group gained significantly more body 
weight compared with those in the HFD group. This result is 
consistent with other reports. Rubin and Soto [23] reported 
that relative to the animals in the control group, the animals 
perinatally exposed to BPA showed increased body weight. A 
cross-sectional study of school children revealed that higher 
urine BPA concentrations were significantly associated with 
increasing BMI values in all of the subjects; thus, BPA exposure 
increased BMI in school children [24].

In our study, long-term exposure to dietary BPA led to 
increased overnight FBS levels, even after bariatric/metabolic 
surgery. In addition, IPGTT showed decreased glucose tolerance 
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Fig. 4. Continued.
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both before and after surgery in the BPA group, although it was 
not statistically significant due to small sample size. These 
findings might be due to the fact that BPA exposure alters 
glucose metabolism. Alonso-Magdalena et al. [25] reported that 
BPA exposure aggravated insulin resistance and was associated 
with decreased glucose tolerance. Furthermore, perinatal BPA 
exposure resulted in either increased β-cell mass or changes in 
insulin secretion and insulin sensitivity [26]. Meanwhile, the 
subanalysis between the SG and RYGB procedures showed that 
blood glucose levels remained similar in both groups (Fig. 3F); 
this implies that bariatric surgery was beneficial in improving 
glucose tolerance, increasing insulin sensitivity, or hepatic 
glycogen deposition, regardless of BPA exposure [27].

Evidence shows that dietary habits can alter microbial 
communities. In this study, we aimed to investigate the 

effect of BPA on microbial communities change that occur 
after bariatric/metabolic surgery. A previous study reported 
that a standard diet with BPA can induce a similar shift in 
the structure of microbial communities as HFD; significant 
decreases in the phylum Firmicutes, of which most of the 16S 
rRNA belong to the class Clostridia [14]. However, we failed 
to find any difference in microbial communities between the 
HFD group and the BPA group, before and after surgery. This 
discrepancy might be due to differences in feeding method 
and BPA concentrations. In a previous study [14], the rats were 
exposed to BPA via their water supply at a concentration of 120 
µg/mL, whereas BPA was blended with HFD at a concentration 
of 50 µg/kg (≒5 × 10–5 µg/mg). 

The compositions of the microbial communities in the stool 
bacteria and EVs differed in animals undergoing either the 
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Fig. 5. Changes in the proportions and diversity of the microbial communities in stool extracellular vesicles. (A) Relative 
phyla abundances in the microbial communities of the different groups before and after the surgery. (B) Shannon’s diversity 
changes among the different groups. (C) Comparison of the microbial community compositions in the high-fat diet (HFD) and 
bisphenol-A (BPA) groups before the surgery. (D) Comparison of the microbial community compositions in the HFD and BPA 
groups after the surgery. (E) Comparison of the microbial community compositions in the HFD-sleeve gastrectomy (SG) and 
BPA-SG subgroups after the surgery. (F) Comparison of the microbial community compositions in the HFD-Roux-en Y gastric 
bypass (RYGB) and BPA-RYGB subgroups after the surgery. (G) Comparison of the microbial community compositions in the 
HFD-SG and HFD-RYGB subgroups after the surgery. (H) Comparison of the microbial community compositions in the BPA-
SG and BPA-RYGB subgroups after the surgery.
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SG or the RYGB procedure. We found that the compositions of 
the microbial communities following RYGB were typified by a 
markedly lower proportion of Actinobacteria in the HFD group 
and a significantly lower proportion of Tenericutes in the stool 
bacteria and EVs in the BPA group, compared with their levels 
in the SG group, and the phylum Firmicutes was significantly 
lower in the stool EVs in the HFD-RYGB subgroup compared 
with that in the HFD-SG subgroup. Interestingly, in the stool 
bacteria, the phylum Firmicutes did not markedly decrease 
in the HFD-RYGB group compared with that in the HFD-SG 
group. It might be due to the fact that EVs can be formed from 
both active and dead stool bacteria; therefore, it did show a 
decreasing trend, which might explain this observation.

This was the first pilot study to investigate the effects of 
BPA on body weight and microbiota after bariatric surgery. 
The strength of the present study includes the long duration 
(40 weeks of dietary challenge before the bariatric/metabolic 
surgery and 12 weeks after the surgery), the route of BPA 
exposure (oral), and induction of glucose intolerance using a low 
intake dose of BPA (50 µg/kg). There are several limitations in 
the present study. Firstly, the numbers of rats monitored after 
the surgery were relatively small due to the death of animals 
from postoperative complications such as anastomotic leak. We 
developed a standardized protocol for surgical procedures, but 
survival rate was lower than expected, especially in RYGB (37.5%). 

Fortunately, although several results were not statistically 
significant, we did succeed in detecting some trends. Secondly, 
the present study aimed to evaluate whether exposure to BPA 
affect alterations of gut microbial communities before and 
after bariatric/metabolic surgery; thereby, changes in insulin 
or related hormone levels, insulin signaling pathway, and islet 
cell morphology of the pancreas were not investigated in the 
present study. The impact of BPA on metabolic disease such as 
T2DM would be elucidated in further study. Lastly, the surgical 
procedures differ slightly from those in humans due to the 
anatomical differences. For instance, we made a small pouch in 
the RYGB procedure where possible, yet the gastric fundus was 
preserved for the anastomosis. This might affect the study’s 
outcomes whereby the results would be interpreted carefully.

Taken together, our results highlight that BPA is a risk factor 
for obesity and may contribute to glucose intolerance, but it 
did not affect alterations of gut microbiome after bariatric/
metabolic surgery. Further studies to determine the influence 
of environmental contaminants on the gut microbiome in 
relation to metabolic disease would be needed.
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