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Immunobiology of mesenchymal stem cells

S Ma1, N Xie1, W Li1, B Yuan2, Y Shi*,1,3 and Y Wang*,1

Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true
in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess
potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular
homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various
origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases.
As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue
sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating
inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on
the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory
diseases.
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Facts

� The immunoregulatory properties and the tissue reparative
functions of mesenchymal stem cells (MSCs) are induced
by inflammatory cytokines.

� MSCs express immunosuppressive molecules and various
growth factors that facilitate tissue repair and maintain
immune homeostasis.

� The plasticity of immunoregulatory roles of MSCs is relied
on the inflammatory status.

Open Questions

� How do MSCs benefit patients suffering from inflammatory
diseases?

� Do MSCs always possess the immunosuppressive
properties?

� Does the efficiency of MSC engraftment at the injured
tissue sites determine the therapeutic effects of MSCs?

Properties of Mesenchymal Stem Cells

MSCs exist in almost all tissues, and have the capacity of
self-renewal and the potential to differentiate into multiple

cell types. Under certain physiological and experimental
conditions, MSCs differentiate into specialized cells,1

although to a lesser extent than embryonic stem cells (ES)
and induced pluripotent stem cells (iPS). Nevertheless, their
differentiation capacity has encouraged scientists and clin-
icians to seek suitable protocols to apply these cells to treat
various diseases. Recently, several studies have demon-
strated that MSCs can be activated and recruited to sites of
tissue damage where they regenerate new tissues and repair
the defects.

Stem cells bring new hope for the treatment of many
diseases. The clinical use of ES or iPS cells, however, is
hampered by their tendency to form teratomas, by allogeneic
rejection problems and by ethical issues. In comparison with
ES cells and iPS cells, MSCs are devoid of the ethical,
teratomas-formation and histocompatibility issues. MSCs can
be isolated from nervous tissue, adipose tissue, bone marrow,
amniotic fluid, umbilical cord, placenta, menstrual blood
and even dental pulps.2–5 Morphologically, MSCs have the
appearance of fibroblasts. Although there is no specific
marker that identifies MSCs, these cells do express certain
patterns of surface markers. Because of their potent self-
renewal capacity, MSCs can be passaged many times without
significant alteration of their major properties.6 MSCs have the
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potential to differentiate into several different cell types, such
as adipocytes, chondrocytes, osteoblasts, myocytes and
neurons (Figure 1).7–11 These criteria are used to define
cultured MSCs, however, the exact anatomical locations
of these cells in situ remain unclear. Experiments to track
MSCs in vivo have revealed that these cells reside mostly
close to blood vessels,12,13 a trait that is similar to pericytes.
Pericytes in culture are similar to cultured MSCs in term of
their morphological features, cell surface markers as wells as
differentiation potential into osteoblasts, chondrocytes and
adipocytes.12,13 However, not all pericytes have the unique
properties of MSCs and not all MSCs are equivalent to
pericytes. The key distinction is that pericytes locate strictly in
the basement membrane of capillary and post capillary,
whereas MSCs can be isolated from interstitial tissues
and tissues surrounding arteries and veins.14–16 In addition,
the proposed functions of pericytes are heterogenous and
varied from regulating vessel stabilization to vascular integrity
and tone, which are different from the functions of MSCs.14

MSCs are involved in many physiological and pathological
processes, including cellular homeostasis maintenance,
aging, tissue damage and inflammatory diseases.1,17,18

Although their differentiation potential is less broad than that
of ES cells and iPS, MSCs, nevertheless, hold great promise
for clinical applications. The most prominent therapeutic
effect of MSCs is exerted through their immunoregulatory
functions. The aim of this review is to elucidate the bidirectional
regulatory interactions between MSCs and immune responses.
We specifically emphasize recent reports of in vitro investiga-
tions and in vivo preclinical studies that reveal the mechanisms
of this MSC-immune response interaction. We also discuss
their implications for the clinical uses.

Communication between MSCs and Damaged Tissues

Because of their broad tissue distribution, multipotent
differentiation capacity and well-established effects in

preclinical and clinical studies, MSCs are believed to have
critical roles in repairing damaged tissues.18 Tissue injury is
always associated with the activation of immune/inflammatory
cells, not only macrophages and neutrophils but also adaptive
immune cells, including CD4þ T cells, CD8þ T cells and B
cells, which are recruited by factors from apoptotic cells,
necrotic cells, damaged microvasculature and stroma.19,20

Meanwhile, inflammatory mediators, such as TNF-a, IL-1b,
free radicals, chemokines and leukotrienes, are often
produced by phagocytes in response to damaged cells and
spilled cell contents.21 Thus, these inflammatory molecules
and immune cells, together with endothelial cells and
fibroblasts, orchestrate changes in the microenvironment that
result in the mobilization and differentiation of MSCs into
stromal and/or replacement of damaged tissue cells. These
MSCs can be tissue-resident or be recruited from the bone
marrow. However, the mechanisms by which MSCs are
mobilized and recruited to damaged sites are not known.
In addition, how they survive and differentiate into distinct
cell types is still not clear. Once MSCs have entered the
microenvironment of injured tissues, many factors, including
cytokines such as TNF-a, IL-1, IFN-g, toxins of infectious
agents and hypoxia can stimulate the release of many growth
factors by MSCs, including epidermal growth factor (EGF),
fibroblast growth factor (FGF), platelet-derived growth factor
(PDGF), transforming growth factor-b (TGF-b), vascular
endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), insulin growth factor-1 (IGF-1), angiopoietin-1
(Ang-1), keratinocyte growth factor (KGF) and stromal cell-
derived factor-1 (SDF-1).22–25 These growth factors, in turn,
promote the development of fibroblasts, endothelial cells and
tissue progenitor cells, which carried out tissue regeneration
and repair (Figure 2, Table 1).

The barrier function of the endothelial monolayer in the
capillary bed is often broken down in damaged tissues,
allowing the release of protein-rich plasma and some
leukocytes from the blood. MSCs produce various factors,
like Ang-1, VEGF, HGF, EGF, PDGF, FGF, KGF and TGF-b,
which directly affect endothelial cells. These paracrine trophic
factors are potentially important in maintaining endothelial
integrity and promoting angiogenesis through their ability to
regulate endothelial cell proliferation and extracellular matrix
production, reduce endothelial permeability or prevent
interactions between leukocytes and endothelial cells.26,27

Apart from angiogenesis mediated by endothelial cells, in
response to such trophic factors, fibroblasts also have
essential functions in maintaining tissue integrity and promot-
ing wound healing through their secretion of extracellular
matrix and matrix metalloproteinase. Some in vivo studies
have suggested that growth factors secreted by MSCs can be
applied to improve wound healing and recovery from
myocardial infarction.28–30

The long-term functional recovery of damaged tissue and
organs is likely to depend on the differentiation of tissue-
intrinsic progenitors or stem cells. Although engrafted stem
cells can differentiate into tissue cells, they also produce
growth factors, including stem cell factor (SCF), macrophage
colony-stimulating factor (M-CSF), SDF-1, leukemia inhibitory
factor (LIF), Ang-1 and many chemokines, that intrinsically
trigger tissue repair.22,31–33 HGF, a well-demonstrated growth

Figure 1 The properties of MSCs. MSCs can be isolated from various tissues
including adipose, bone marrow, umbilical cord, muscle and tooth root. After in vitro
expansion, MSCs can be defined by several characteristics. Morphologically, MSCs
are fibroblast like. They also express a panel of markers: positive for Sca-1, CD105,
CD73, CD29 and CD90, and negative for CD31, CD34, CD45 and CD11b. In
addition, MSCs have the potential to differentiate into adipocytes, chondrocytes,
osteoblasts and other cell types
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factor in MSC-based tissue repair, was recently shown to be
effective in modulating endogenous neural cell remyelination
for the enhancement of functional recovery in both experi-
mental autoimmune encephalomyelitis (EAE) and spinal cord
demyelination.34 Taken together, these observations demon-
strate complex interactions that exist between MSCs and the
damaged tissue during the tissue repair process. The multi-
tude of paracrine factors produced by MSCs, which provoke

tissue-resident progenitor cells or other relevant cells to
initiate tissue repair, may explain the dramatic beneficial
effects of MSCs on tissue repair, even in the absence of local
MSC engraftment.34,35

Some tissue injuries, including those induced by chemical
toxicity and trauma, are considered not immune cell-related;
however, strong inflammation still occurs in these damaged
tissues.36,37 Thus, better elucidation of the detailed mechan-
isms underlying the inflammation-modulated production of
growth factors by MSCs will provide a better perspective for
the clinical application of MSCs or their paracrine factors in
tissue regeneration.

MSCs and Inflammation Niches

Besides the reparative functions of MSCs in inflammatory
niches, the increasing evidences demonstrate that MSCs
have potent immunomodulatory properties. For example,
MSCs retain dendritic cells (DCs) in an immature state by
inhibiting the expression of MHC class II, CD1-a, CD40, CD80
and CD86, and by suppressing proinflammatory cytokine
production.38 TNF-a-stimulated MSCs can recruit more
monocytes/macrophages to tumor site to formulate the
immunosuppressive microenvironments, thereby enhancing
tumor growth.39 Moreover, MSCs induce IL-10-secreting
macrophages in both in vitro and in vivo study.40 Besides
DCs and macrophages, NK cells can also be suppressed by
MSCs through soluble factors, such as TGF-b and prosta-
glandin E2 (PGE2).41 Similar results are observed with human
cells that MSCs inhibit IL-2- or IL-15-driven NK cell prolifera-
tion.42 In adaptive immune responses, MSCs have been
already known to inhibit T-cell proliferation triggered by many

Figure 2 Tissue reparative properties of MSCs. Under the stimulation of different inflammatory cytokines at the damaged tissue sites, the newly immigrated MSCs release
a plethora of growth factors, including EGF, FGF, PDGF, TGF-b, VEGF, HGF, Ang-1, KGF, SDF-1, IGF-1 and others. These growth factors orchestrate endothelial cells,
fibroblasts as well as stem cells to promote tissue regeneration and repair through enhancing angiogenesis, inhibiting leukocyte transmigration and eliciting intrinsic progenitor
cell/stem cell differentiation

Table 1 Summary of growth factors critical for MSC-mediated tissue repair

Growth
factors

Roles in MSC-mediated tissue repair

EGF Wound healing,114 tissue regeneration,115,116

neurogenesis117

PDGF Tissue repair118

FGF Tissue repair,114 intrinsic stem cell survival and
regeneration119

TGF-b Wound healing120,121

VEGF Angiogenesis, wound healing121–123

HGF Vasculogenesis,124 intrinsic neural cell regeneration34

IGF-1 Wound healing,114 neurogenesis125

KGF Wound healing126

Ang-1 Angiogenesis, tissue repair123

EPO Angiogenesis127

GDNF Neuroprotective effect128

SDF-1 Neuroprotective effect,129 wound healing130,131

IL-8 Wound healing114

Abbreviations: Ang-1, angiopoietin-1; EGF, epidermal growth factor;
EPO, erythropoietin; FGF, fibroblast growth factor; GDNF, glial cell line-derived
neurotrophic factor; HGF, hepatocyte growth factor; IGF, insulin growth factor-1;
IL-8, interleukin-8; KGF, keratinocyte growth factor; MSC, mesenchymal stem
cell; PDGF, platelet-derived growth factor; SDF-1, stem cell-derived factor-1;
TGF-b, transforming growth factor b, VEGF, vascular endothelial growth
factor
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types of stimuli, to downregulate IFN-g production and to
induce Tr1 cells and Foxp3þ regulatory T cells.43–45 In
addition, they can decrease B-cell proliferation by cell–cell
contact and secreted soluble factor, although the effects
change dramatically according to culture conditions.46

Recently, it has been suggested that immunosuppressive
functions of MSCs are triggered by the surrounding
microenvironment, where abundant inflammatory factors are
released from immune cells.47,48 Initially, studies of the
mechanism of immune modulation by MSCs were conflicting.
Some studies of graft versus host disease (GvHD) and
systemic lupus erythematosus (SLE) showed the benefits of
MSCs in inhibiting vigorous immune responses in vivo.48–50 In
other studies, although suppression of lymphocyte prolifera-
tion by MSCs could be observed in vitro, prolongation of graft
survival and rescue from GvHD in vivo were not achieved.51,52

These investigations show that the immunosuppressive
property of MSCs could be affected by specific disease-
related tissue microenvironments. It has been reported that
although allogeneic MSCs are rejected by the host immune
system in MHC class I- and II-mismatched recipient mice,
they exhibited similar therapeutic effect on EAE as that of
autologous MSCs.53,54 That is, even though MSCs have the
ability to downregulate immune responses, these cells may
not be immune privileged. In MSC-based therapy, the dosage
of cells is also important. Using a rat brain injury model,
researchers recently have found that there is an efficacy
plateau, above which additional delivered MSCs could not
further improve the outcome.55 Moreover, MSCs with high
passage number showed diminished stem cell activation and
myocardial protection.56 Hence, immunosuppression by

MSCs can be influenced by conditions, such as the source
from which MSCs are isolated, the number of passages in
culture before they are used, the dosages of MSCs
administered and the specific pathological conditions of the
recipients. Nevertheless, the immunomodulatory roles of
MSCs have attracted great interest from basic and clinical
researchers.

Immunosuppressive Properties of MSCs

Recently, our studies have found that the ability of MSCs to
inhibit immune cell activity is licensed by inflammatory
environment. IFN-g in combination with one of the proin-
flammatory cytokines, TNF-a, IL-1a or IL-1b, can stimulate
MSCs to elicit very high levels of immunosuppressive factors,
as well as a burst of chemokine and adhesion molecule
expression, including CXCR3 ligands, CCR5 ligands, inter-
cellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1).48,57 Their concerted action
leads to an accumulation of immune cells in close proximity to
MSCs, thus fabricating a microenvironment in which the
effects of the locally acting factors produced by MSCs are
amplified and leading to potent immunosuppression
(Figure 3).

Surprisingly, the molecules that mediate MSC-induced
immunosuppression are not the same in different species.
We have found that murine MSCs use inducible nitric oxide
synthase (iNOS) produced nitric oxide (NO), which is highly
immunosuppressive at high concentrations through largely
undefined mechanisms.58–60 In murine models of
delayed-type hypersensitivity (DTH) and GvHD, when iNOS

Figure 3 Immunosuppressive properties of MSCs. Damaged tissues are always accompanied by infiltration of immune cells and MSCs. Inflammation triggers
the production of high levels of chemokines and adhesion molecules in MSCs, including CXCR3 ligands, CCR5 ligands, ICAM-1 and VCAM-1. These molecules induce the
accumulation of immune cells in close association with MSCs, whereby high concentrations of NO (in murine MSCs) or depletion of tryptophan (in human MSCs) leads to the
inhibition of immune cells. Other immunosuppressive factors such as IL-10, TSG6, IL-6, LIF, PGE2, HO-1 and truncated CCL2 could also affect immune cell activation,
proliferation and functions
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activity was abolished in MSCs by either chemical inhibition or
genetic ablation, the therapeutic effects disappeared.46,61,62

Meanwhile, iNOS-deficient MSCs also showed less thera-
peutic effects on autoimmune arthritis in mouse.63 These
findings suggest that NO is a major player in mediating the
immunosuppressive function of murine MSCs. Interestingly,
metalloproteinase-mediated paracrine proteolysis of CCL2
was also found to be important in murine MSC-based therapy
on EAE.64

Of note, although murine MSCs use NO to exert their
immunosuppressive function, human MSCs harness indolea-
mine 2,3-dioxygenase (IDO) instead.47,65,66 IDO is an enzyme
that catalyzes the degradation of tryptophan, an essential
amino acid, along the metabolic pathway to kynurenine.
Immunosuppression is believed to result from the depletion of
tryptophan and the accumulation of tryptophan metabolites
locally,67 but their related mechanisms have not been fully
investigated. Besides IDO, tumor necrosis factor-inducible
gene-6 (TSG6), a supposedly anti-inflammatory protein, can
be induced in human MSCs by TNF-a. Deletion of TSG6 in
human MSCs reverses their ability to repair myocardial
infarct, corneal damage and fails to prolong the corneal
allograft survival.68–70 In addition, TSG6 production by human
MSCs can ameliorate zymosan-induced mouse peritonitis by
modulating the toll-like receptor 2 (TLR2)/nuclear factor kB
(NF-kB) signaling pathway in resident macrophages.71 How-
ever, the exact role of TSG6 in human MSC-mediated
immunoregulation merits further investigations. Other factors,
such as HLA-G, LIF and some others, are also documented
to mediate the immunosuppression by human MSCs
in vitro32,72,73 (Table 2). LIF was found to be secreted
by mouse ES cell-derived neuron progenitors and exerts
the therapeutic benefit to EAE,35 yet the role of this molecule
in murine MSC-mediated immunoregulatory effects in
remains elusive.

Studies implicated that, except above mentioned immuno-
suppressive factors in murine or human MSCs, some

molecules are shared in murine MSC- and human MSC-
mediated immunosuppression, such as PGE2, IL-10,
hemeoxygenase-1 (HO-1), programmed cell death 1 ligand
1 (PD-L1) and IL-640,61,74–77 (Figure 3, Table 2). Particularly,
PGE2 has been shown to be produced by inflammatory factor-
stimulated murine and human MSCs. PGE2 released by
mouse or human MSCs alone can reprogram macrophages to
produce more IL-10, inhibit DC maturation as well as shift the
balance between Th1 and Th2.40,74,75 Meanwhile, it is worth
noting that, in presence of PGE2, the effects of IDO in MSC-
mediated immunoregulation of T-cell proliferation and NK cell
activation can also be enhanced.78,79 Additional studies of the
mechanism of PGE2 expression in MSCs and its role in
immunoregulation will be helpful for better clinical applications
of MSCs. Soon after the discovery of the immunosuppressive
function of MSCs, it was found that there was a clear
relationship between IL-10 and the immunosuppressive
behavior of MSCs. IL-10 production was found in vivo by
MSC administration or in vitro when MSCs cocultured with
splenocytes. However, the role of IL-10 is still controversial.
Some studies indicate that MSCs alone or with LPS/IL-3
stimulation do not secret IL-10, whereas other studies
suggested that MSCs could produce high levels of IL-10
when they are cocultured with activated lymphocytes.80–82

Thus, it is obscure that the increased IL-10 production is
actually from MSCs or from immune cells cocultured with
MSCs. However, it has been shown that IL-10 blockade did
not affect MSC-mediated immunosuppression on lympho-
cytes.83 Clearly, further studies should illustrate detailed
mechanisms of these inhibitory factors in MSC-based
immunosuppressive functions, orchestrate the network
of when, where and how MSCs implement its beneficial roles
in clinical applications.

The immunosuppressive property is just one facet of MSC-
mediated immunomodulation, however, the emerging evidence
points out that MSCs can promote immune responses in the
presence of low levels of inflammation,84 indicating the plasticity

Table 2 Summary of factors critical for MSC-mediated immunosuppression

Immunomodulatory
factors

Species Roles in MSC-mediated immunosuppression

iNOS Murine MSCs Inhibits T-cell proliferation48,61,62

CCL2 Murine MSCs Inhibits CD4þ Th17 cells64

IDO Human MSCs Inhibits T-cell proliferation;47 promotes type II macrophage differentiation;132

impair NK cell activity79

Semaphorin-3A Human MSCs Inhibits T-cell proliferation133

B7-H4 Human MSCs Inhibits T-cell activation and proliferation134

HLA-G Human MSCs Inhibits PBMC response72,135

LIF Human MSCs Inhibits T-cell proliferation32

TSG6 Human MSCs Regulates macrophages,71 inhibits inflammation136

Galectin(s) Human MSCs Inhibits T-cell proliferation73,133

HO-1 Murine MSCs, human MSCs Inhibits T-cell response;61 induces IL-10þ Tr1 and TGF-betaþ Tregs43

IL-6 Murine MSCs, human MSCs Inhibit the differentiation of dendritic cells;137 inhibit T-cell proliferation138

TGF-b Murine MSCs, human MSCs Induces Tregs;139–141 inhibits NK cell activation and function41

IL-10 Murine MSCs, human MSCs Inhibits T-cell responses, decreases Th17 cell differentiation80,82,142

PGE2 Murine MSCs, human MSCs Induces Foxp3þ Tregs;143 inhibits NK cell function;41,79 induces type II
macrophages;40,144 inhibit DC maturation75

PD-L1/2 Murine MSCs, human MSCs Inhibits Th17 cells;145 inhibits T-cell proliferation146,147

FasL Murine MSCs, human MSCs Induces T-cell apoptosis76,148

Abbreviations: CCL2, chemokine ligand 2; DC, dendritic cells; FasL, Fas ligand; HLA-G, human leukocyte antigen G; HO-1, heme oxygenase-1; IDO, indoleamine
2,3-dioxygenase; iNOS, inducible nitric oxide synthase; LIF, leukemia inhibitory factor; MSCs, mesenchymal stem cells; PGE2, prostaglandin E2; PD-L1/2,
programmed cell death 1 ligand1/2; PBMC, peripheral blood mononuclear cells; TSG6, TNF-a stimulated gene/protein 6

Immunobiology of mesenchymal stem cells
S Ma et al

220

Cell Death and Differentiation



of the immunoregulatory functions of MSCs. When inflammation
is low or the expression of the above mentioned immuno-
suppressive factors is inhibited, MSCs could dramatically
promote immune responses (Figure 4). This conceptual change
has significant implications for proper clinical application of MSCs.

Immune Enhancing Properties of MSCs

One of the early clinical studies of MSCs is to treat GvHD
patients.85 However, the therapeutic effects are not always
achieved. In some clinical trials, MSCs were ineffective in
GvHD patients. In some cases, MSCs accelerated
graft rejection, even coadministrated with cyclosporine A
(CsA).51,86 The question is why the immunosuppressive
function of MSCs is not always achieved. Under certain
conditions, indeed, the immunosuppressive function of MSCs
does not occur, instead, an enhanced immune response is
observed. For example, under inflammatory conditions
rendered by high dose of concanavalin A (ConA) or
proinflammatory cytokines, MSCs exerted strong immuno-
suppressive effect. However, with low dose of ConA or the
addition of IL-10, the suppressive effect of MSCs was
abrogated.87 This can also happen when the levels of
inflammatory cytokines are insufficient to stimulate MSCs to
secret enough NO, although still produced chemokines.84

Previous experiment also indicated that vigorous inflamma-
tion is important in eliciting the immunosuppressive function of
MSCs in vivo. Less protection to GvHD was observed if MSCs
were administrated at the day of bone marrow transfer.52

Good therapeutic effect can be achieved when MSCs
were infused after disease development.48 Therefore, the
inflammation status determines the immunomodulatory
tendency of MSCs. Notably, with low dose of IFN-g, the
antigen presentation ability could be induced in MSCs. In fact,
IFN-g-stimulated MSCs can be regarded as conditional antigen
presenting cells.88 Antigen-pulsed IFN-g-treated MSCs can
induce antigen-specific cytotoxic CD8þ T cells in vivo and
thereby making MSCs candidates for the treatment of cancer or
infectious diseases.89 Thus, except immunosuppressive roles,
MSCs could also upregulate immune responses. Further
studies on the molecular mechanisms regulating the immu-
noregulatory property of MSCs could have dramatic impact on
the clinical application of these unique cells.

Engraftment of MSCs at Sites of Injury or Inflammation

It has been reported that trophic factors produced by MSCs
can be used to implement therapeutic effects to inflammatory
diseases, whereas in damaged tissue engrafted MSCs can
exert concerted action, orchestrating with immune cells,

Figure 4 A proposed model of the interaction between MSCs and immune responses during tissue repair. Once tissue injury occurs, MSCs are mobilized. Vigorous
inflammation licenses MSCs to possess the abilities to downregulate immune responses, a process mediated by high levels of chemokines and immune inhibitory factors. In
addition, growth factors are also released by MSCs, which promote endothelial cells and mesenchymal stem/stromal cells to repair injury. Insufficient inflammatory cytokines
during chronic inflammatory sites, however, could stimulate MSCs to produce chemokines and tropic factors in absence of sufficient immune inhibitory factors. As such,
chronic inflammation may lead MSCs to protract the disease recovery, or even worsen the disease course
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stromal cells, endothelial cells and tissue progenitor cells to
promote tissue repair.34,48 Hence, the successful engraftment
of MSCs to inflammatory niches and sites of injury are
important considerations when analyzing the beneficial
effects of MSCs. Unlike the well-characterized phenomenon
of leukocyte homing, the mechanism of MSC homing,
by de novo or exogenously delivered MSCs, is still unclear.
However, MSCs expressing sialyl Lewis(x), a molecule
capable of promoting leukocyte migration in the inflamed
tissue, exhibit higher efficiency in homing to inflamed
tissues.90 It is important to note that the peripheral blood of
vascular injured mice yields more MSCs than that of control
mice, a finding that is likely due to enhanced levels of
granulocyte colony-stimulating factor (G-CSF) following
injury.91,92 Further studies are needed to lend support to
the concept that injury stimulates the appearance of MSCs in
the circulating blood. In addition to host MSC mobilization,
more and more studies have focused on evaluating the
engraftment capability and beneficial effects of exogenously
delivered MSCs in animal disease models, including infla-
mmatory bowel diseases (IBD), EAE, collagen-induced
arthritis, type I diabetes and GvHD, and in clinical trials with
patients suffering from GvHD, acute myocardial infarction,
multiple sclerosis and Crohn’s diseases.48,93–97

The therapeutic efficacy can be influenced by culture
conditions, which are now known to significantly influence
MSC function, because exogenously administrated MSCs
always have to be expanded and passaged in vitro. It has
been reported previously that extensive passages of MSCs
adversely affected MSC activation and protection in ischemia/
reperfusion, a phenomenon attributed to reduced growth
factor production by MSCs with high passage numbers.56

Besides, MSCs can acquire or lose certain surface receptors
during culture, which might affect their chemotaxis ability.98

Indeed, compared with freshly isolated MSCs, cells main-
tained in culture display impaired homing ability.98,99 Related
to this, CXCR4, a receptor for SDF-1that presents at high
levels in the bone marrow and ischemic tissues, always
disappears from the surface of MSCs after culture. However,
hypoxic culture condition can promote MSC engraftment
through enhancing CXCR4 and CX3CR1 expression.100 In
addition, when cultured MSCs are treated with a panel of
cytokines, CXCR4 level can also be recovered. This effect
helps to promote the bone marrow engraftment of MSCs in
irradiated NOD/SCID mice and allows easier hematological
recovery of transplanted MSCs.101 Moreover, TNF-a, TGF-b
and IL-1b can stimulate MSCs to secret high levels of matrix
metalloproteinase, which can endow these cells the ability
to migrate through extracellular matrix in response to
chemokines.102 Furthermore, in in vivo study, pretreating
MSCs with TNF-a/or a cocktail of cytokines resulted in
enhanced MSC engraftment efficiency and improvement in
acute pyelonephritis.103 Thus, many factors can influence
MSC mobilization and engraftment. Therefore, it is critical to
accurately assess and tightly control the properties of cultured
MSCs for clinical application; otherwise, the physiological
microenvironments they encounter may cause them
to behave in unexpected ways.

Still other factors, such as injection site, timing and cell
number administered, may also affect the engraftment and

therapeutic effects of MSCs that are depending on the specific
disease status. The various routes of injection that have been
tried, including intravenous, intraperitoneal, intra-arterial and
in situ, each affects the efficiency of MSC homing or localization
to target organs.98 Among them, intravenous delivery is
convenient and successful in treating certain type of diseases,
but better engraftment efficiency can sometimes be obtained
by intra-arterial and in situ injections, such as myocardial
infarction, kidney transplantation and brain injury.104–107

Administration of MSCs in situ, although highly sometimes
effective in both engraftment and therapy, is less clinically
applicable as it is so invasive and introduces cells in a
microenvironment that could be unsuitable for survival.108

In another study, in spinocerebellar ataxia, intravenous
transplantation was more effective in promoting the survival
of cerebellar Purkinje cells and MSC engraftment than that of
intracranial injection.109 The intraperitoneal injection route has
been rarely used, but some recent studies used it to treat
muscular dystrophy and IBD in the mouse model, resulting in
effective engraftment and therapeutic effects.110–112 There-
fore, when MSCs are used to treat distinct diseases, their
administration routes should be well-selected. Another influ-
ence on MSC effectiveness is the stage of disease: delivery of
MSCs at an early stage following an event causing ischemia or
EAE has shown enhanced engraftment rates or therapeutic
effects, whereas administrated at the relapse stage of EAE,
their beneficial effects are reduced.64,93,113 Finally, the dose of
MSC administration should also be considered, because more
MSC administration does not show a better therapeutic effect in
the brain injury animal model.55 Taken together, these studies
clearly demonstrate that when MSC-based therapies are used
in preclinical experiments and clinical trials, the source of
MSCs, the dose, route and timing of MSC administration
should all be carefully considered.

Conclusions

We have highlighted the current understanding of the
interaction between MSCs and immune responses. The
differences, between murine MSCs and human MSCs, in
the mechanisms mediating immunosuppression were dis-
cussed. As IDO is so central to the immunoregulatory function
of human MSCs, the precise roles of tryptophan depletion and
tryptophan metabolites in orchestrating such immuno-
suppression merit further investigation. Although MSCs
disappear quickly after administration, their immunosuppres-
sive effects linger for considerably longer. Considering that
MSC supernatant alone can be effective in treating some
diseases, it is possible that MSCs themselves may not be
indispensable in mediating the therapeutic effect. In other
words, is MSC differentiation-based repair sufficient for
disease treatment, or do MSC-produced factors that modify
the tissue microenvironment and lead to recovery intrinsically.
Efforts of scientists in the coming years are anticipated to
elucidate the precise roles of MSCs, both their reparative and
immunoregulatory functions, and the mechanisms that impart
and govern their clinical efficacy in the treatment of disease.
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