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Metabolic and proteomic signatures of type
2 diabetes subtypes in an Arab population
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Type 2 diabetes (T2D) has a heterogeneous etiology influencing its progres-
sion, treatment, and complications. A data driven cluster analysis in European
individuals with T2D previously identified four subtypes: severe insulin defi-
cient (SIDD), severe insulin resistant (SIRD), mild obesity-related (MOD), and
mild age-related (MARD) diabetes. Here, the clustering approach was applied
to individuals with T2D from the Qatar Biobank and validated in an indepen-
dent set. Cluster-specific signatures of circulating metabolites and proteins
were established, revealing subtype-specificmolecularmechanisms, including
activation of the complement system with features of autoimmune diabetes
and reduced 1,5-anhydroglucitol in SIDD, impaired insulin signaling in SIRD,
and elevated leptin and fatty acid binding protein levels in MOD. The MARD
cluster was the healthiest with metabolomic and proteomic profiles most
similar to the controls. We have translated the T2D subtypes to an Arab
population and identified distinct molecular signatures to further our under-
standing of the etiology of these subtypes.

Type 2 diabetes (T2D) is a complex metabolic disorder defined by
dysregulated glucose homeostasis, driven by imbalanced energy
intake and expenditure, dysfunction of insulin signaling, and chronic
inflammation1–3. Multiple therapies are now available to improve gly-
cemic control4 and provide additional benefits in relation to
complications5–7. Indeed, individualized therapies targeting the
underlying pathophysiology and complications should be amajor goal
in the treatment of patients with T2D1.

Diabetes is presently classified into type 1 and type 2 diabetes.
Ahlqvist et al.8 used data on age at diagnosis, BMI, HbA1c, home-
ostasis model assessment (HOMA) estimates of beta-cell function
(HOMA2-B), insulin resistance (HOMA2-IR), and glutamic acid dec-
arboxylase antibodies (GADA) to stratify subjects into four clusters
representing T2D subtypes (SIDD, SIRD, MOD, and MARD) and one

cluster with severe autoimmune diabetes (SAID), which represents
type 1 diabetes. We follow the same stratification for those with type
2 diabetes, however, for those with type 1 diabetes we use C-peptide
levels rather than GADA8. The four T2D clusters were named in
reference to their characterizing phenotypic signatures as Severe
Insulin Deficient Diabetes (SIDD), Severe Insulin Resistant Diabetes
(SIRD), Mild Obesity-related Diabetes (MOD), and Mild Age-related
Diabetes (MARD). Since its publication in 2018, the paper has been
cited over 1300 times and discussed in multiple reviews1,9–13. The
clusters have been replicated in British14, German15,16, Mexican
American and Chinese17–19, Japanese20, Asian Indian21, Mexican22, and
Icelandic23 cohorts, suggesting generalizability to other ethnicities.
In the original analysis, predisposition to retinopathy and nephro-
pathy were identified in different clusters, and more recently a
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German cohort cluster analysis has revealed predisposition to non-
alcoholic fatty liver disease and diabetic neuropathy15. A study
clustering genetic risk loci for T2D-associated traits observed some
overlap with the clusters of Ahlqvist et al.24. More recently, evidence
for distinct genetic backgrounds of the subtypes has been found25.
Schüssler-Fiorenza Rose et al.26 used multi-omics measurements in
a longitudinal study to develop prediction models for insulin
resistance and the German Diabetes Study (GDS) showed differ-
ences in protein biomarkers of inflammation between subgroups16.
These studies suggest that deep molecular phenotyping may pro-
vide key insights into the underlying pathophysiology of glucose
dysregulation and the development and progression of comorbid-
ities in patients with T2D.

Whilst a mechanistic link has been suggested between
increased fat storage and compromised glucose homeostasis27,
body mass index (BMI) alone does not explain the difference
between normal and dysfunctional glucose metabolism. Specific
metabolic and proteomic processes may help to characterize the
broader spectrum of physiological perturbations associated with
impaired glucose metabolism to enable subtype-specific individua-
lization of therapies. We hypothesized that there are distinctive
alterations in metabolic and proteomic components of signaling
pathways underlying the different T2D clusters.

We have analyzed data from the Qatar Biobank (QBB) popu-
lation and translated the Ahlqvist et al. clustering approach to an
Arab population. Further, applying broad non-targeted metabo-
lomics and affinity proteomics profiling we have identified cluster-
specific physiological and biochemical processes in relation to
their predominant treatment regimens. The complete study design
is presented in Fig. 1.

Results
The T2D subtype clustering scheme defined for Caucasians can
be translated to an Arab population
Following the approach of Ahlqvist et al., we used k-means clustering
of age at diagnosis, BMI, HbA1c, HOMA2-B, and HOMA2-IR and iden-
tified four clusterswith clinical properties similar to those in theANDIS
study (Fig. 2A). The SIDD cluster was characterized by young age at
onset, low BMI, low insulin secretion (HOMA2-B) and poor glycemic
control (high HbA1c); the SIRD cluster had the highest level of insulin
resistance (HOMA2-IR) and high BMI; the MOD cluster had a high BMI
with low insulin resistance; and the MARD cluster, like the MOD clus-
ters, had low insulin resistance, but a much lower age of onset of T2D.
The relative cluster sizes inQBBwerecomparable to those found in the
ANDIS study, except for SIRD, whichmade up only 4% of the T2D cases
in QBB compared to 15% in ANDIS.

We performed several sensitivity tests on the way the clusters
were derived. First, we replicated the clustering in an independent
testing set within QBB. We obtained very similar results compared
to using cluster coordinates from the training set (Fig. 2B) and
found that cluster assignments were identical for 98% of the study
participants. We then repeated the clustering allowing for a varying
number of clusters (Supplementary Fig. 1A). Consistent with the
observations of Ahlqvist et al., four clusters were identified in QBB.
Allowing for a fifth cluster led to a split of the MARD cluster into
one cluster with a lower and one with a higher age of T2D onset
(Supplementary Fig. 1A). Repeating the cluster analysis separately
for females and males showed that most individuals (93%) were
assigned to the same cluster as in the initial analysis (Supplemen-
tary Fig. 1B). Although there was a slight imbalance between males
and females in the clusters (51 vs. 42 in SIDD, 11 vs. 6 in SIRD, 23 vs.

Fig. 1 | Study design. The study includes two main parts. The first part consists of
the identification of T2D subtypes in an Arab population by applying a clustering
scheme from the ANDIS study, comparing the Arab clusters to the European
clusters, and testing for various confounding factors. The second part includes the
omics (proteins and metabolites) and medication analysis in both the case/control

setting and the T2D subtype-specific setting. T2D type 2 diabetes, ANDIS All New
Diabetics in Scania, SAID severe autoimmune diabetes, SIDD severe insulin-
deficient diabetes, SIRD severe insulin-resistant diabetes,MODmildobesity-related
diabetes, MARD mild age-related diabetes.
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66 in MOD, and 102 vs. 75 in MARD), clustering the males and
females separately (Supplementary Fig. 2) resulted in little differ-
ence in the eventual cluster membership. The 26 (7%) individuals
on the borderline of the different clusters included 11 males and 15
females. Due to such small numbers, it is difficult to judge whether
the individuals on the borderline of the different cluster groups
were more likely to be one sex.

HOMA2-IR and HOMA2-B estimates are based on plasma glu-
cose and C-peptide (Cpep) levels and are sensitive to the fasting
state. Other studies have reported on clustering using non-fasting
values by using HDL-cholesterol and C-peptide, which is a proxy for
insulin resistance28. As QBB participants were not all in a fully fasting
state (77% of the individuals had fasted for over two hours at the
time of enrollment and 50.7% had fasted for over 8 h), we tested the

Fig. 2 | Cluster characteristics and cluster distribution in QBB. K-means clusters
were derived using theQBB training set and classificationwas applied to the testing
set using the training set cluster coordinates. A Distributions of HbA1c, BMI, age,
HOMA2-B, and HOMA2-IR are shown for each cluster in QBB (N = 420 individuals)
and ANDIS (N = 8980 individuals). HbA1c, BMI, HOMA2-B, and HOMA2-IR all fol-
lowed the same trend in QBB and ANDIS, but individuals in the MOD cluster were
younger than the other clusters in QBB. Data in boxplots are presented as follows:
lower and upper whiskers represent the minima and maxima respectively, box
centers represent the median values, bounds of boxes represent the first and third
quartiles, notches represent the 95% confidence interval of the median, and circles
represent outliers.BThe testing set clusterswere similar to the training set clusters,
regardless of whether they were assigned based on the training set coordinate
centers or derived de novo for the testing set using K-means clustering. Minor

changes in the cluster assignments (2%) were observed when clustering the data
using the training set coordinates versus the testing set coordinates. C The ANDIS
coordinates were used instead of the QBB coordinates to classify QBB patients.
Gender-specific type 2 diabetes cluster centers (SIDD, SIRD,MOD, andMARD) from
Ahlqvist et al.8 were obtained. After computing the Euclidean distance between the
four clusters and each individual inQBB, each individualwas assigned to the cluster
with the shortest distance. When comparing the cluster assignment that was based
on the QBB coordinates vs. ANDIS coordinates, a 35% change in the cluster
assignmentswasobserved.QBB:QatarBiobank, ANDIS:All NewDiabetics in Scania,
SAID: severe autoimmune diabetes, SIDD: Severe Insulin Deficient Diabetes, SIRD:
Severe InsulinResistant Diabetes,MOD:MildObesity-relatedDiabetes,MARD:Mild
Age-related Diabetes.
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sensitivity of the cluster assignments to self-reported time-since-
last-meal. Using linear regression, we estimated fasting HOMA2-IR
and HOMA2-B and used the corrected values for clustering. 98% of
the cluster assignments remained unchanged, indicating that the
clustering is robust to fasting state (Supplementary Fig. 1C).

Finally, we tested whether ANDIS-derived cluster centers could
be used directly to classify QBB participants into T2D subtype
clusters. We observed consistent cluster assignments for 65% of the
individuals when using the ANDIS-derived cluster centers instead of
the QBB-derived cluster centers for classification (Fig. 2C). In
addition, we noted a gender bias in the misclassification with 23% of
misclassified males compared to 46% of females. A comparison of
the cohort-specific cluster centers (standardized values centered to
mean = 0 and SD = 1) is presented in Supplementary Data 3. Apart,
from the age variable, gender-specific variables for the different
clusters were directionally consistent between ANDIS and QBB
(Supplementary Fig. 3). Although the trends of four out of five
cluster variables were consistent across the T2D subtypes in both
cohorts, the limited overall agreement between T2D subtype clas-
sifications obtained using ANDIS versus QBB coordinates suggests
that population specific coordinates should be used. We therefore
used sex-independent coordinates derived from the QBB training
set to classify the QBB training set in the following metabolomics
and proteomics analyses.

Metabolomics and proteomics associations with T2D replicate
in other populations
Diabetes-specific alterations of protein and metabolite levels have
been previously described in different populations29–32. To validate
the metabolomic and proteomic data in QBB and its ability to
characterize T2D participants, we investigated omics associations
with T2D. Deep molecular phenotyping data was available for 420
QBB participants with T2D and 1735 controls and covered semi-
quantitative measures of 1159 blood circulating metabolites and
1305 plasma proteins. We compared the protein levels of the T2D
cases (N = 420) to those of the controls (N = 1735) in a linear model
with covariates as described in the methods. We identified 214
proteins associated with T2D at a Bonferroni level of significance
(p < 0.05/1305 = 3.83 × 10−5) (Fig. 3A and Supplementary Data 4).
We checked the associations for replication in the independent
European AGES population (N = 5457) with SOMAscan protein
measurements. Of 214 proteins associated with T2D in QBB, 107
were also reported as associated with T2D in AGES at a study-wide
significance threshold (p < 0.05/4,782 = 1.04 × 10−5)23. One hundred
and four (97.2%) of these proteins replicated at a Bonferroni-
corrected significance level (p < 0.05/107 = 4.67 × 10−4). All repli-
cated associations were directionally concordant (Fig. 3B). Vari-
able transformations were chosen to be compatible with the
replication cohorts (Box-Cox for AGES, log for QMDiab). We ver-
ified that using a log transformation did not substantially change
the results.

We further identified 194metabolites that were associated with
T2D (p < 0.05/1159 = 4.31 × 10−5) (Fig. 3C & Supplementary Data 5).
We confirmed previous T2D associations with sugars (glucose,
mannose, 1,5-anhydroglucitol (1,5-AG), etc.), with branched-chain
amino acids (BCAAs) (incl. isoleucine, leucine, valine), and various
lipids and markers of kidney function. We attempted replication of
these T2D-metabolite associations in the multi-ethnic Qatar Meta-
bolomics Study of Diabetes (QMDiab) cohort (Supplementary
Data 6). From the 194 T2D-associatedmetabolites identified in QBB,
175 were also measured in QMDiab. All associations were direc-
tionally concordant. Despite being less powered, 41 (23%) of these
associations were statistically significant at a Bonferroni level
(p < 0.05/175 = 2.85 × 10−4) in the QMDiab study (Fig. 3D).

Cluster-specific metabolomics and proteomics associations
reveal diabetes subtype-specific processes
We identified all proteins and metabolites that were differentially
expressed in one of the four T2D subtype clusters. We required (1) that
theirmeanswere different from those of all other clusters combined at
a Bonferroni significance level and (2) that their means were different
from all other clusters in a pair-wise comparison at a nominal level of
significance (see methods). Based on this criterion, 47 proteins and 42
metabolites were specific to a given T2D subtype. Figures 4 and 5
represent an overview of the central findings (data in Supplementary
Data 7 and Supplementary Data 8, Fig. 6, and Supplementary Data 1
and Supplementary Data 2 have detailed boxplots). In the following,
we report highlights of these associations and possible rationalizations
for the observed subtype specificities. We start with proteins, followed
by metabolites, and address which are—in our view—the most inter-
esting findings, always following the same order, that is, SIDD, SIRD,
MOD, and then MARD.

We observed subtype-specific elevated levels of Complement C2
(C2) in the SIDD cluster. Type 1 diabetes has a well-established asso-
ciation with HLA antigens33 and C2 has been linked to HLA in type 1
diabetes34. SIDD is most similar to SAID in terms of being the most
severe insulin deficient, but is not auto-antibody positive, which is the
primary diagnostic feature in SAID. Complement activation extends
beyond microbial defense and can be involved in obesity, insulin
resistance, diabetes, and dyslipidemia, indicating an inflammatory
component35–39. Studies have shown that metabolic inflammatory sig-
naling can affect pathways that lead to insulin resistance40,41. Accumu-
lating evidence supports the activation of the complement systemwith
the development of insulin resistance42. The SIRD cluster had the
highest levels of insulin (INS) and the lowest levels of insulin-like
growth factor-binding protein-1 (IGFBP1). Individuals could develop
insulin resistance due to low IGFBP1 which directly affects insulin
sensitivity through its RGD domain43. Proteins (C59 glycoprotein,
inhibin beta A chain, osteomodulin, Follistatin-related protein 3, C27
antigen) specifically dysregulated in SIDDwere often also dysregulated
in SAID, possibly reflecting shared underlying processes. The MOD
cluster had the highest leptin (LEP) levels and enzymes involved in lipid
metabolism, such as phospholipase A2 (PLA2G2A) and fatty acid-
binding protein (FABP3). The MARD cluster had the highest levels of
APOM, APOB, UNC5D, NCAM1, Cystatin-M, and the lowest levels of
Plexin-B2 (PLXNB2). All protein levels specific toMARDwere closer (or
comparable) to those of the controls when compared to the other
subtypes, suggesting thatMARD individuals were the healthiest among
the T2D subtypes, and that the proteins associated with MARD were
more strongly dysregulated in the other subtypes.

In relation to plasma metabolites, individuals in the SIDD cluster
had the lowest 1,5-AG levels of all groups. 1,5-AG is a marker of short-
term glycemic control and is implemented as a clinical test in the
GlycoMarkTM assay44. The blood sugars mannose, glucose, fructose,
mannonate, and gluconate were considerably higher in the SIDD
cluster, indicating a greater level of hyperglycemia. Individuals in the
SIDD cluster also exhibited elevated levels of cortisone and cortisol,
which are stress markers associated with dysregulated glucose
metabolism45 and a number of chronic complications of T2D46. We also
observed a decrease in the level of dimethylglycine (DMG) in SIDD, a
product of betaine catabolism and low betaine and DMG levels, which
has been associatedwith higher glucose levels and the development of
T2D47. Furthermore, the SIDD cluster had decreased levels of gamma-
glutamyl amino acids (gamma-glutamylphenylalanine and gamma-
glutamyltyrosine), indicating perturbed glutathione metabolism. The
levels of two sphingomyelin species (sphingomyelin (d18:2/14:0, d18:1/
14:1) and sphingomyelin (d18:2/24:2)) were also lower in the SIDD
cluster. Downregulated sphingolipid metabolism can affect insulin
sensitivity and lead to β cell dysfunction48.
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The SIRD cluster had elevated levels of lipokine-related metabo-
lites, including 12,13-DiHOME, a linoleic acid metabolite, and 2-
hydroxyarachidate, an arachidic acid metabolite. 12,13-DiHOME was
previously recognized as an important lipidmediator stimulating fatty
acid uptake by skeletal muscles49, which could serve as an alternative
energy source for SIRD subjects given their potentially limited access
to glucose, due to insulin resistance. The plasma level of phosphate
was lower in the SIRD cluster compared to other clusters, and could
potentially be linked to hypophosphatemia which is frequently
observed in conditions of diabetic ketoacidosis driven by
hyperglycemia-induced osmotic diuresis50. Although diabetic ketoa-
cidosis is rare in SIRD, it has been previously reported51.

The MOD cluster had high levels of hydroxyasparagine,
5−(galactosylhydroxy)−L−lysine, and 7-alpha-hydroxy-3-oxo-4-choles-
tenoate (7−Hoca), which play a role in lipid metabolism and obesity52.
The elevated levels of 5−(galactosylhydroxy)−L−lysine, an important
post-translationally modified amino acid present in collagen-like pro-
teins, such as adiponectin53, may be the result of adipogenic collagen
turnover54,55. Metalloproteinase, MT1-MMP, a pericellular collagenase
and a member of the matrix metalloproteinase (MMP) gene family,
directs interactions that control adipogenesis54 and is critical to white
adipose tissue development by remodeling the 3-D type I collagen
scaffolding that dominates primordial white fat deposits. Hence, its
absence leads to disruption of transcription factor cascades required
for adipocytematuration andwouldbroadly occur in individuals in the
MOD cluster with high BMI. Adiponectin is an important target in
obesity treatment, is a key regulator of fatty acid oxidation and lipid
synthesis, and is well known to decrease triglyceride concentrations

and increase insulin sensitivity56. Oxysterols play a signaling role in
lipid and glucose metabolism which may be implicated in obesity
through the control of lipogenesis57,58. They alsoplay an important role
in cholesterol uptake, transport, excretion, and gene regulation59–61.
The elevated levels of oxysterol, 7-Hoca, may be a result of dysregu-
lated fatty acid metabolism and lipid homeostasis.

As in the case of proteins, the metabolic profiles of individuals in
the MARD cluster were closest to the controls. Blood carbohydrates
levels (glucose and fructose) were higher than normal but were the
lowest among the T2D clusters. The levels of glycine, glutamine, his-
tidine, and gamma-glutamyl amino acids (gamma-glutamylglycine,
gamma-glutamylglutamine, and gamma-glutamylthreonine) were the
lowest in MARD and comparable to individuals without diabetes.
Glycine and glutamine are both implicated in insulin secretion62,63.
Glycine acts on the pancreas through glycine receptors and as a co-
ligand for N-methyl-d-aspartate glutamate receptors to control insulin
secretion and glutamine regulates beta-cell gene expression, signaling,
and insulin secretion. In addition, histidine and gamma-glutamyl
amino acids play a role in anti-inflammatory and antioxidative
responses64,65. Histidine supplementation has been shown to improve
insulin resistance by suppressing pro-inflammatory cytokine expres-
sion, possibly through the nuclear factor kappa-B (NF-κB) pathway64.
Serum gamma-glutamyltransferase is strongly linked to obesity and
non-alcoholic fatty liver disease, which may lead to systemic and
hepatic insulin resistance, respectively66. Overall, the MARD patients
had the least metabolic dysregulation among the T2D subtypes.

We computed the explained variance of all proteomic and meta-
bolomic principal components (PCs), by cluster membership, using a

Fig. 3 | Associations of proteomics andmetabolomics levelswith T2D. AUsing a
linear model, 214 proteins were significantly associated at a Bonferroni level of
significance (p <0.05/1305 = 3.83 × 10−5) with T2D inQBBafter adjusting for age and
sex.B Comparison of effect sizes betweenQBB and AGES. The replication status of
107 common proteins is shown red: Bonferroni significant (p <0.05/
107 = 4.67 × 10−4) in both studies, black: significant only in QBB. C Using a linear

model, 194 metabolites were significantly associated at a Bonferroni level of sig-
nificance (p <0.05/1159 = 4.31 × 10−5) with T2D after adjusting for age, sex, and BMI.
D Comparison between QBB and QMDiab. The replication status of the 175 com-
mon metabolites is shown in red/black–Bonferroni significant (p <0.05/
175 = 2.86× 10−4) or significant only in QBB. T2D: Type 2 Diabetes, QBB: Qatar
Biobank, QMDiab: Qatar Metabolomics Study of Diabetes.
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Fig. 4 | Proteins that distinguish individual diabetes subtypes (N = 420 indivi-
duals). The dots and bars represent the mean protein values and the 95% con-
fidence intervals of the means for proteins that are different in one of the four T2D
subtypes compared to all others. Values are normalized by the mean of the

respective reference subtype. In addition, data for SAID and the control group are
shown for reference. T2D type 2 diabetes, SAID severe autoimmune diabetes, SIDD
severe insulin-deficient diabetes, SIRD severe insulin-resistant diabetes, MOD mild
obesity-related diabetes, MARD mild age-related diabetes.
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linear regression model. Proteomics PC2, PC7, and PC4 yielded the
highest R2 of 15.5%, 14.3%, and 10.0%, respectively. Similarly, the
cluster membership explained 18.2%, 7.5%, and 7.5% of the variance in
metabolomics PC3, PC7, and PC9, respectively. However, as the
interpretation of PCA analysis is challenging, we did not seek further
explanations in this study.

To combine the results from the metabolomics and proteomics
datasets, we conducted a correlation analysis between the cluster-
specific proteins and metabolites (Supplementary Figs. 4–6). Some
correlation can be observed between the proteins and metabolites,
some of which are within the same subtype, particularly in the MOD
subtype,while others are betweendifferent subtypes.These results are

Fig. 5 | Metabolites that distinguish individual diabetes subtypes (N = 420
individuals). The dots and bars represent the meanmetabolite values and the 95%
confidence intervals of the means for metabolites that are different in one of the
four T2D subtypes compared to all others. Values are normalized by the mean of

the respective reference cluster. In addition, SAID and the control group is shown
for reference. T2D type 2 diabetes, SAID severe autoimmune diabetes, SIDD severe
insulin-deficient diabetes, SIRD severe insulin resistant diabetes,MODmildobesity-
related diabetes, MARD mild age-related diabetes.
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Fig. 6 | Boxplots of the significantly altered proteins or metabolites in specific
diabetes subtypes. A Complement C2 (C2), B insulin (INS), C leptin (LEP), and
D Apolipoprotein M (APOM) are significantly higher in SIDD, SIRD, MOD, and
MARD, respectively, while E 1,5-AG is significantly lower in SIDD. The complete set
of boxplots for all protein and metabolite levels for each cluster are in Supple-
mentary Data 1 and Supplementary Data 2. Contr Controls, T2D type 2 diabetes,

SAID severe autoimmune diabetes, SIDD severe insulin-deficient diabetes, SIRD
severe insulin-resistant diabetes, MOD mild obesity-related diabetes, MARD mild
age-related diabetes. Data in boxplots are presented as follows: lower and upper
whiskers represent theminima andmaxima respectively, box centers represent the
median values, bounds of boxes represent the first and third quartiles, notches
represent the 95% confidence interval of themedian, and circles represent outliers.
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not easy to interpret due to confounding factors such as sex, age, etc.
which may be driving some of these cross-subtype associations. Fur-
ther analysis is beyond the scope of this study.

Assessment of the effect of confounding on clustermembership
and individual metabolites and proteins
We tested for the association of the following confounding factors:
sex, time-since diagnosis, fasting time, medication (lipid lowering,
diabetes, and hypertension drugs), and T2D polygenic risk score with
the cluster assignment. The score for T2D was computed using var-
iants and weights from a previous study67 based on summary statistics
from a recent GWAS in patients with type 2 diabetes. After correcting
the five clustering variables for the significant confounders (sex, time-
since diagnosis, diabetes drugs, and hypertension drugs) all associa-
tions remained significant (p <0.05). We further independently
reported potential confounding of the various factors with the iden-
tified cluster-specific proteins andmetabolites (Supplementary Data 9
and Supplementary Data 10). It appears that the time-since disease
diagnosis is higher in SIDD compared to the other subtypes, suggest-
ing that themore severe subtypes of T2Dmay possibly be the result of
disease progression. However, it is also reasonable that the more
severe subtypes have been diagnosed for a longer period.

We further tested for the effects of diet and microbiome on
cluster outcomes. Using data from a previous study68 which identified
335metabolites thatwere significantly explainedbydiet and 182by the
microbiome. We extracted the explained variance of diet and micro-
biome (R2) by our cluster-specific metabolites (Supplementary
Data 11). However, we found no strong correlation between these
metabolites and microbiome (R2 < 0.15) nor diet (R2 < 0.35).

Replication of T2D subtype-specific protein associations in a
different population using the same proteomics platform
We attempted replication of T2D subtype-specific protein associations
in a different population using the sameproteomics platform. Thiswas
attempted for all 47 subtype-specific protein associations (Supple-
mentary Data 12; Supplementary Fig. 7) using proteomics measure-
ments from the Somalogic platform in the AGES study23. Data was
available for 588 individuals (SIDD= 61, SIRD = 84, MOD= 120,
MARD= 212). Here, 18 protein associations were replicated after
accounting for multiple testing (p <0.05/47 = 0.00106). Additionally,
16 protein associations were nominally significant (p < 0.05) and
directionally consistent in AGES. Furthermore, 96% of the associations
were directionally consistent between the two cohorts (Supplemen-
tary Fig. 8).

Slieker et al.69 also analyzed the molecular signatures of the dia-
betes subtypes after obtainingmetabolomic, lipidomic, andproteomic
data fromplasma.Molecularmeasuresweremeasuredusing ultrahigh-
performance liquid chromatography-tandem mass spectrometry
(UHLPC-MS/MS) for metabolomics (N = 15 metabolites), and the
SomaLogic somascan platform for proteomics (N = 1195 proteins).
We tested inQBB the906proteinmeasures reportedby Slieker et al. to
be specific for the SIDD, SIRD, MOD, and MARD clusters, and found
that 38%, 2%, 19%, and 33% of the proteins replicated respectively,
while 75%, 50%, 57%, 66% of the proteins had consistent directionality,
respectively (Supplementary Data 13).

Replication of T2D subtype-specific molecular associations in a
different population using a different platform
We attempted replication of 30 out of 47 subtype-specific protein
associations (Supplementary Data 14) using proteomics measure-
ments from the Olink platform in ANDIS. Data were available for 43
individuals in each of the four T2D subgroups (N = 172). Four protein
associations were replicated after accounting for multiple testing
(p < 0.05/30 =0.00167). These were Follistatin-related protein 3
(FSTL3) with the SIDD cluster, Plexin-B2 (PLXNB2) and Cathepsin D

(CTSD) with the MARD cluster, and leptin (LEP) with the MOD cluster.
Five additional proteins showed concordant directionality at a nominal
significance level (p < 0.05), that is, CD59 glycoprotein (CD59), Com-
plement C2 (C2), and 72 kDa type IV collagenase (MMP-2) with SIDD,
Leukemia inhibitory factor receptor (LIF-4) with MOD, and NT-3
growth factor receptor (NTRK-3) with MARD.

We further attempted to replicate 14 of the 15measuredmetabolic
associations reported in Slieker et al.69 (measured using UHLPC-MS/
MS). Here, 50%, 25%, 0%, and 67% of the metabolites replicated in the
SIDD, SIRD, MOD, and MARD clusters respectively, while 100%, 88%,
0%, and 100% of the metabolites had consistent directionality,
respectively (Supplementary Data 15).

Medication patterns are cluster specific
Self-reported drug usage was annotated using unique active molecule
identifiers obtained from the Drugbank repository70 and their corre-
sponding ATC codes. We compared difference in medication usage
from all ATC anatomical groups between T2D cases and controls using
a fisher test (Supplementary Data 16). The most common drugs used
by patients with T2D were in the ATC anatomical main groups A (Ali-
mentary tract and metabolism) and C (Cardiovascular system). In
descending order, the most frequently administered drug subgroups
by T2D subjects were A10: Drugs used in diabetes (p = 8.70 × 10−220),
C10: lipid modifying agents (p = 1.04 × 10−64), B01: anti-thrombotic
agents (p = 2.43 × 10−52), C07: beta blocking agents (p = 1.74 × 10−51),
A01: stomatological preparations (p = 7.51 × 10−41), N02: analgesics
(p = 1.17 × 10−39), M01: anti-inflammatory and anti-rheumatic products
(p = 9.40× 10−32), and C09: agents acting on the renin-angiotensin
system (p = 3.40 × 10−30) (Supplementary Data 17).

The medication patterns were also compared across the diabetes
subtype clusters in QBB (Supplementary Data 18). Patients in the SIDD
cluster were more frequently using insulin (p value = 2.62 × 10−4), or
Metformin (p = 1.12 × 10−3), and Pioglitazone (3.56 × 10−3). SIDDpatients
were also more frequently prescribed sulfonylureas (p = 5.34 × 10−4)
which increase insulin release, and Sitagliptin (p = 6.02 × 10−3), a DPP-4
inhibitor which increases glucose-dependent insulin release. Patients
in the SIRD cluster most frequently took anti-depressant medications
(p = 5.63 × 10−3), medication for diabetic kidney disease e.g. Losartan
(p = 2.60 × 10−2), and medication for rheumatoid arthritis (4.52 × 10−2).
In theMOD cluster, medications used to treat high blood pressure and
heart failure, such as Lisinopril (8.71 × 10−4) and esomeprazole
(p = 3.31 × 10−3) were used. The MARD cluster also had the lowest per-
centage of individuals on insulin treatment (p = 2.62 × 10−4), whilst
perindopril usage was more frequent (4.82 × 10−2).

Discussion
The T2D subtype classification schemeproposed by Ahlqvist et al.8 has
been replicated in many populations14–17,19–22,71 (Supplementary Fig. 9),
but it may not be generalized to all as shown in an Asian Indian
population21. T2D has a huge prevalence in the Middle East and North
Africa region, with some of the highest rates and predicted increases
over the next decade, especially in Qatar (IDF Diabetes Atlas 202172).
No previous study has examined the generalizability of the diabetes
cluster classification scheme to Arab populations or characterized it
using the latest high-throughput proteomics and metabolomics plat-
forms. All protein and metabolite associations with T2D subtypes are
made available as a resource in the Figures and Supplementary Data.

Our study shows that the T2D subtypes identified in the Scandi-
navian population are present in individuals of Arab/Middle Eastern
descent. However, the age of diabetes onset in theQBBpopulationwas
lower compared to ANDIS, especially in the MOD cluster, which could
be attributed to the high incidence of obesity in younger Arab indivi-
duals. Leptin (LEP) and Follistatin-related protein 3 (FLSTL3) were
significantly higher in the MOD cluster and of course increased leptin
levels in obesity reflects resistance to leptin action. Also, increased
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FLSTL3 levels are associated with insulin resistance and have been
shown to regulate body composition and glucose homeostasis in
human population studies73,74. Interestingly, an FLSTL3 knockout
mouse has been shown to improve glucose metabolism and increase
beta-cell mass74.

Our cluster sizes are comparable between QBB and ANDIS for the
most part. The difference in the SIRD group size could be due to the
younger age of diabetes onset in the QBB cohort, which reflects upon
the centers of clusters and ultimately the distance of samples from
cluster centers. The mean age in the SIRD cluster in ANDIS is between
50–75 compared to between 30–40 in QBB. Another difference
between the studies, is that most patients with T2D in ANDIS were
above 50 years old at the time of diagnosis, while most patients with
T2D in QBB were between 30–50 years of age at diagnosis. However,
the BMI trends between ANDIS and QBB were similar, irrespective of
the younger age of the QBB patients.

Among the diabetes subtypes, the MARD subtype appeared to be
the healthiest group and their HbA1c, BMI, HOMA2-B, and HOMA-IR
were closest to the control group. In contrast, proteins and metabo-
lites that were specific to SIDD were often most similar to those found
in the autoimmune (SAID) group. Plexin-B2 (PLXNB2) was the most
differentially regulated protein in T2D and this association was further
validated in the AGES study23. Previous Mendelian randomization
studies have suggested that PLXNB2 may have a causal effect on the
development of T2D23. In the present study, PLXNB2 was lowest in the
relatively healthier MARD subtype and closest to levels observed in
controls. This could make PLXNB2 a potential drug target in indivi-
duals with subtypes other than MARD.

Cluster membership has been shown to be associated with indi-
viduals who may be more or less prone to the development of long-
term complications15,21 such as nephropathy8,15,20 and fatty liver in
SIRD8,15, and neuropathy20,22 and retinopathy8,20 in SIDD. Alterations in
protein biomarkers of retinopathy such as antileukoproteinase have
been previously reported in the SIDD cluster75. We have observed an
association between complement factors like Complement C2 (C2),
immune-regulatory proteins like C-Cmotif chemokine 23 (CCL23), and
other proteins of the immune system (CD59 glycoprotein (CD59),
CD27 antigen (CD27), and Inhibin beta A chain (INHBA), with the SIDD
subtype, suggesting that these proteins may play an important feed-
back role in the resolution of inflammation. A recent review high-
lighted a paradigm where targeting complement factors may be a
possible therapeutic avenue in slowing down diabetic complications42.
Chemokines also link obesity to inflammation and the subsequent
development of insulin resistance76. The effects of immunomodula-
tory proteins on the immune system can be associated with different
chronic inflammatory diseases such as diabetes, obesity, cardiovas-
cular diseases, and cancer. For example, elevations in C2 indicate
upregulation of the complement pathway in T2D, which could be a
response to hypoglycemia. Hypoglycemia induces pro-inflammatory
proteins such as interleukins77.This upregulation of the complement
pathway suggests that both intrinsic and alternative pathway activa-
tion may be driven by the underlying inflammation in T2D. An
inflammatory response can be rapidly induced in response to hypo-
glycemia and would likely drive other acute response pathways, such
as the complement cascade, with significant crosstalk between the
two78. Interestingly, 72 kDa type IV collagenase (MMP-2) was sig-
nificantly lower in the SIDD subtype.MMP-2 activity has been shown to
be lower in ratmesangial cells cultured in high glucose and is believed
to contribute to matrix accumulation leading to the development of
diabetic nephropathy79. Therefore, MMP-2 could potentially be
developed into a protein biomarker for nephropathy in SIDD. Plexins
are also receptors for semaphorins, a large family of proteins involved
in various physiological processes80. Semaphorins are involved in a
number of diabetic complications including diabetic retinopathy,
nephropathy, neuropathy, osteoporosis, and wound healing81.

Interestingly, we observed significantly higher levels of CD72 in the
SIDD subtype and as CD72 appears to mediate the function of sema-
phorins in some immune cells82, it may provide a potential functional
link to PLXNB2. Cathepsin D (CTSD) was significantly lower in the
MARD subtype and is an aspartic endopeptidase implicated in cell
growth, apoptosis, and collagen biosynthesis in wounded skin of rats
with diabetes and has been correlated with retinopathy and foot
ulcers17, suggesting that MARD individuals are less likely to develop
such complications compared to other subtypes. CTSD also correlates
significantly with HOMA-IR and the Tei index, ameasure ofmyocardial
performance83 and may paradoxically constitute a marker for cardiac
dysfunction in the more severe subtypes. However, a biomarker does
not implicate causality and there may be a bidirectional relationship
that requires further analysis.

Metabolic associations observed with T2D were consistent in
magnitude and directionality to previously reported T2D and pre-
diabetes associations84. Although elevated blood glucose levels are the
defining feature of diabetes mellitus, multiple biochemicals alter the
metabolism of fats and amino acids and are associated with impaired
insulin action, obesity, and BCAA catabolic enzymatic activity85. BCAAs
have been consistently linked to T2D development86 and we observed
alterations in BCAAs and major glucogenic amino acids. Previous
studies have shown that cortisol and its metabolite cortisone, were
both higher in individuals with diabetes compared to controls and
altered cortisol metabolism is specifically characteristic of T2D
patients requiring insulin87. Consistent with this observation, we
observed higher cortisol in the SIDD cluster. Many amino acids have
been associated with insulin resistance and decreased insulin secre-
tion, including phenylalanine88 and here, in SIRD, we observed sig-
nificantly higher phenylalanine and 1-carboxyethylphenylalanine.
Previous studies have shown that certain lipokines can affect glucose
metabolism in adipose, liver, and skeletalmuscle tissue89. For instance,
a lipokine, 12,13-diHOME increases fatty acid uptake and oxidation49

and here we show significantly higher 12,13-diHOME in the SIRD clus-
ter. Furthermore, a significant association has been shown between
7-HOCA and asparagine and body mass index90. We also observed
significantly higher levels of 7-HOCA and hydroxyasparagine in MOD.

The majority of proteins and metabolites which were subtype-
specific were also discriminative in previous protein23 and
metabolite29 T2D case-control studies. However, some molecules
only distinguished specific subtypes but not cases from controls.
This was especially true for the MARD subtype which showed levels
similar to the controls. Inhibin beta A chain (INHBA), SPARC-like
protein-1 (SPARCL1), and Fibronectin Fragment 4 (FN1) were sig-
nificantly lower in SIDD compared to other subtypes but were not
significantly different between T2D cases and controls. Also, pro-
teins including Leptin (LEP), Phospholipase A2; membrane-
associated (PLA2G2A), Follistatin-related protein 3 (FSTL3), and
EGF-containing fibulin-like extracellular matrix protein-1 (EFEMP1)
were significantly higher in the MOD subtype as they all associate
strongly with obesity but did not differentiate between T2D cases
and controls when adjusted for BMI.

Studies showing differences in protein biomarkers amongst T2D
clusters are limitedwith theChineseREACTION study showing that the
Angiopoietin-related protein 8 (ANGPTL8) levels were significantly
higher in the MARD, SIRD, and SIDD clusters compared to the MOD
cluster91. We have found a similar trend for both ANGPTL4 and the cell-
surface receptor for ANGPTL4 (TEK), two proteins that interact closely
with ANGPTL892. The GDS study16, examined 77 protein biomarkers
from theOlink inflammationpanel and reported lower levels of Protein
S100-A12 (EN-RAGE) and IL6 in SIDD compared to the other subtypes.
Similarly, we also observed lower mean EN-RAGE, Interleukin-6 (IL6),
and Interleukin-6 receptor subunit alpha (IL6R) levels in SIDD.

The efficacy of different diabetes drugs would be expected to
differ between different subtypes according to the underlying
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pathophysiology. Hence, we assessedwhether ongoing treatmentmay
reflect the clustering of individuals with T2D. Dennis et al.14, reported
differences in glycemic response among clusters in ADOPT and sug-
gested a benefit in using thiazolidinediones for the SIRD individuals
and sulfonylureas for the MARD individuals. However, in this cohort
we found that sulfonylurea usage was highest in the SIDD and MOD
clusters (Supplementary Data 18) whilst thiazolidinedione utilization
was infrequent, reflecting reduced prescription of this class in clinical
practice, and being paradoxically higher in the SIDD cluster. A current
ongoing phase 2 clinical trial is investigating whether the effect of
Semaglutide and Dapagliflozin differ between SIDD and SIRD indivi-
duals (ClinicalTrials.gov number, NCT04451837). The outcomeof such
trials may provide insight into tailored treatment plans and pave the
way for personalized medicine in specific subgroups.

By identifying pathways involved in the development and
progression of T2D complications, these results can be taken for-
ward by carrying out Mendelian randomization studies of the
association of cluster-specific metabolites and proteins with dia-
betes. This type of analysis has the potential to distinguish between
potentially actionable therapeutic targets from those that are
downstream of the disease and that could therefore serve as
diagnostic biomarkers. This is a preliminary step to carrying out
randomized control trials for drug testing. Our associations can
also be used to generate hypotheses for follow-up studies on the
processes that might lead to these associations.

We acknowledge some limitations of our current study. The
cohort size was relatively small compared to other population-based
studies and phenotyping of diabetes complications was limited to
population-study-level questionnaires and biochemical measure-
ments. The deep molecular phenotyping using the SOMAscan and
Metabolon technologies provided only relative abundances of protein
and metabolite levels respectively, not absolute concentrations.
However, this is not a concern as the association statistics we use, i.e.,
linearmodels and t-tests, are invariant under scaling and translation of
thedata. The subtype-specificproteins reportedhere are limited to the
specific protein set targeted by the SOMAscan panel, and to protein
associations that are detectable in blood. Therefore, the list of
subtype-specific proteins we report here is not comprehensive, and
future studies using other technologies and other biological sample
types may reveal further associations. Concordance and specificity of
the Olink and Somalogic platforms is also an ongoing matter of
discussion93. Some of the proteins that were not replicated on the
Olink platform (ANDIS) could be a result of differences in aptamer and
antibody binding. Another limitation is that since GADA was not
measured, the SIDD subtype could include some individuals with
autoimmune diabetes and may explain the observation of auto-
immune features in this group.

In addition, outliers observed for some of the untargeted
metabolomics data in the control group such as 1,5−AG, 2−hydro-
xybutyrate/2−hydroxyisobutyrate, and methylsuccinoylcarnitine
etc. may be a result of the observed discrepancy between self-
reported medication and non-targeted metabolomics as described
in our previous study94. However, the effect of such outliers in the
control group does not impact the statistical analyses amongst the
subtypes, where the controls are not used. Furthermore, in the
case-control analyses, numbers are large enough so that the effect
of isolated outliers can be neglected.

In summary, we have identified a wealth of diabetes subtype-
specific metabolite and protein signatures which have the potential to
identify pathways involved in thedevelopment andprogressionof T2D
complications, improve risk prediction, and enable more personalized
treatment approaches. Our study adds further support to the medical
relevance and clinical applicability of the Ahlvist et al. diabetes sub-
typing approach.

Methods
Study population
QBB includes a population of Qatar nationals or long-term residents
(≥15 years living in Qatar), aged 18 years and older in the State of
Qatar95. Extensive baseline socio-demographic data, clinical and
behavioral phenotypic data, and serum concentrations of HbA1c, tri-
glycerides, glucose, C-peptide, creatinine, total cholesterol, LDL-C, and
HDL-C, and multiple other clinical biochemistry parameters96 have
been measured at the central laboratory of Hamad Medical Corpora-
tion (HMC), accredited by the College of American Pathologists.

All QBB participants signed an informed consent form prior to
their participation. The study was approved by HMC ethics committee
and the QBB institutional review board under reference Ex -2019-RES-
ACC-0160-0083. No compensation was given to the participants. Data
collection by the Qatar Biobank was done using MS SQL Server 2008
R2. At the time of analysis, QBB data was available for 6218 partici-
pants. Over 96% of the participants reported having grandparents that
were Qatari nationals. Samples selected for metabolomics and pro-
teomics measurements correspond to the first ~3000 participants of
the Qatar Biobank. No specific selection criterion was applied. 429
participants with incomplete records and 894 individuals with HbA1c

ranging between 5.7 and 6.4whodid notmatch our diabetes definition
(see below) were excluded, leaving 4895 samples for analysis. Blood
samples were collected more than 2 h after their last meal or calorie-
containing drink in 77% of participants. 50.7% of the participants
(52.8% of the T2D cases and 40.6% of the controls) hadbeen fasting for
over 8 h. This dataset was split into two groups, using the samples
without omics data as a training set for the clustering (N = 2740), and
the samples with omics data as a testing set for validation, and to
further evaluate the associations of the metabolite and protein levels
with T2D in a case-control setting and with T2D subtypes (N = 2155).

The group without omics data included 631 individuals with T2D
andwere used to define the cluster coordinates. The groupwith omics
data included 420 individuals with T2D and was used for cluster vali-
dation, and then further for metabolomics and proteomics associa-
tions analyses (Fig. 1). The study demographics for the two groups are
shown in Table 1. Both groups of data were similar, ie. clinical variables
had comparable mean values and percentages in both the T2D cases
and controls (Supplementary Data 19).

Definition of T2D and controls
Subjects were defined as controls if all the following four conditions
were satisfied: first, no self-reported physician diagnosis of diabetes;
second, no self-reported treatment with any diabetes-specific medi-
cation; third, HbA1c < 5.7%; and fourth, random glucose level
<200mg/dL. T2D was defined if any one of the following four con-
ditions was satisfied: first, having a physician diagnosis of diabetes
based on the questionnaire (13.3% of all participants), second, being
treated for diabetes based on the QBB questionnaire (11.6%), third,
having an HbA1c > 6.5% (10.5%), or fourth, having random glucose
>200mg/dL (3.3%). Based on this definition, 15.4% of individuals were
defined as having T2D. Most individuals with a physician diagnosis of
diabetes were on oral anti-diabetic treatment (73.7%), insulin treat-
ment (23.9%), diet treatment (38.3%), and/or physical activity treat-
ment (16.2%) (see Supplementary Fig. 10 for a Venn diagram).
Individuals with HbA1c between 5.7% and 6.4% (N = 894) or self-
reported gestational diabetes (N = 4) were excluded. Ahlqvist et al.
used glutamic acid decarboxylase antibodies (GADA) to define an
additional subtype of SAID. As GADA measurements were not avail-
able in QBB, individuals with self-reported type 1 diabetes (T1D) or
C-peptide concentrations below 0.5 nmol/L and on insulin treatment
were classified as SAID (N = 109). These individuals were excluded
from the statistical analysis, but the proteomic and metabolic levels
of this subgroup are shown where appropriate.
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Training and testing sets
The cohort was split into two sets, a training set (N = 2740) and a
testing set (N = 2155). The latter was chosen to overlap with available
proteomics,metabolomics, andmedication usage data. Therewere no
substantial differences in demographics between the training and the
testing set (Supplementary Data 19). The training set included 631

individuals with T2D, and the testing set included 420 individuals
with T2D.

Medication
QBB study participants provided information on their regular usage of
over-the-counter and prescription medication as free text, which
required annotation and homogenization. The questionnaire included
the following question: “Are you taking any over-the-counter medica-
tion or prescription medicines regularly? For example, daily, weekly,
monthly, or every fewmonths - such as depot injections?” and allowed
participants to provide up to 30 free text entries. Anatomical Ther-
apeutic Chemical (ATC)97 annotation was retrieved from theDrugBank
annotation file. We annotated all entries from the questionnaire with a
unique active molecule from the DrugBank repository, molecular
class, indication, and its corresponding ATC code where available. The
medication data covered 394 unique molecules, 529 ATC codes, 218
molecular classes, and 117 indications.

Proteomics
Levels of 1305 blood circulating proteins (Supplementary Data 20)
were measured for 2935 samples using the aptamer-based SOMAscan
platform (kit version 1.3, Somalogic, Boulder, CO)98 implemented at
Weill Cornell Medicine – Qatar, as previously described99. A detailed
description of the platform can be found in the “SOMAmer Reagent
Specificity Technical White Paper SM-500–102015”, which was origin-
ally available on Somalogic’swebsite http://info.somalogic.com/hubfs/
January_2016/SSM-002-Rev-3-SOMAscan-Technical-White-Paper.pdf
(accessed November 26, 2016) and is now archived and available
at https://studyres.com/doc/7837606/technical-white-paper. Briefly,
EDTA-plasma was incubated with bead-coupled epitope-specific
aptamers (SOMAmers). Bead-bound proteins were then biotinylated
and complexes comprising biotinylated target proteins and
fluorescence-labeled SOMAmers were photocleaved and recaptured
on streptavidin beads. SOMAmers were then eluted and quantified by
hybridization to custom arrays of SOMAmer-complementary oligo-
nucleotides. Data was used as provided by Somalogic and includes
their in-house batch normalization steps. The resulting raw intensities
were processed using different standards as a reference, including
hybridization normalization, median signal normalization, and signal
calibration to control for inter-plate differences. No samples or data
points were excluded. Overlapping phenotype data were obtained for
2155 of the 2935 samples and proteomics data for these samples were
used. Quality control was performed using repeated measures of two
QC samples. Themedian coefficient of variance (CV) was 7.3% for both
QC samples, based on 51 and 54 repeated measures, respectively. 95%
of the aptamers had a CV below 17.2% and 17.6%, respectively, and 5%
had a CV below 4.6% and 4.1%, respectively.

Metabolomics
1159 metabolites (937 named compounds and 222 compounds of
unknown structural identity) were quantified using Metabolon HD4
technology (Metabolon Inc., Durham,NC) (Supplementary Data 21) for
3000 samples as previously described100,101. All measurements were
performed on a Metabolon HD4 platform implemented at the Anti-
Doping Laboratory in Qatar (ADLQ) under a joint laboratory agree-
ment with Metabolon and support from Weill Cornell Medicine –

Qatar, the Qatar Biomedical Research Institute, and the interim
Translational Research Institute (iTRI) of HMC94. For 2155 of the
3000 samples, we obtainedoverlappingphenotypedata for this study.
Metabolomics data for these samples were used. Data was used as
provided by Metabolon and includes their in-house batch normal-
ization steps. No additional QC was applied that led to exclusion of
samples. Metabolites with more than 90%missingness were excluded.
Instrument variability, based on measurement of internal standards,

Table 1 | Demographics of the QBB diabetes and
control groups

Trait Diabetes Controls p value

Sample size (N = 4895) 1051 3844 —

Sex (male) 444 (42.2%) 1635 (34.5%) 0.895

Age (years) 51.2 (11.3) 34.8 (10.4) 5.96 × 10−261

BMI (kg/m2) 32.2 (5.9) 28.2 (5.8) 7.66 × 10−78

Systolic BP (mmHg) 125.3 (16.5) 110.9 (13.1) 2.28 × 10−101

Diastolic BP (mmHg) 71.2.3 (11.3) 67.4 (10.2) 2.63 × 10−18

HbA1c (%) 7.5 (1.8) 5.2 (0.3) 2.47 × 10−223

Triglycerides (mmol/L) 1.7 (1.1) 1.1 (0.7) 2.89 × 10−54

LDL-C (mmol/L) 2.9 (1.0) 2.9 (0.9) 2.32 × 10−2

HDL-C (mmol/L) 1.3 (0.3) 1.4 (0.4) 7.68 × 10−33

Total cholesterol
(mmol/L)

4.9 (1.0) 4.9 (0.9) 0.463

HOMA2-IR * 2.1 (1.9) 1.2 (0.7) 3.47 × 10−23

HOMA2-IR (all data) 2.8 (3.1) 1.6 (1.6) 1.06 × 10−34

HOMA2-B (%) * 66.6 (54.1) 104.9 (35.9) 1.15 × 10−46

HOMA2-B (%) (all data) 76.4 (64.5) 120.9 (62.4) 4.27 × 10−77

CPEP (nmol/L) 1.0 (0.6) 0.8 (0.5) 2.04 × 10−30

Random Glucose
(mg/dL)

161.1 (72.3) 90.2 (10.3) 1.59 × 10−155

Fasting Glucose
(mg/dL) *

154.1 (62.7) 90.8 (8.7) 2.91 × 10−86

Fasting Insulin (pmol/L) * 120.7 (270.1) 65.8 (41.4) 2.75 × 10−6

Insulin (pmol/L) (all data) 146.9 (266.1) 86.0 (100.7) 1.08 × 10−12

Fasting time >8h 555 (52.8%) 1925 (40.6%) 0.095

Family history of
diabetes

796 (75.7%) 2491 (64.8%) 1.86 × 10−10

Creatinine (μmol/l) 63.2 (18.3) 67.6 (34.4) 2.83 × 10−7

eGFR (mL/min/1.73m2) 99.4 (17.7) 112.9 (14.1) 1.29 × 10−98

Smoking

MQ: Current smoker
(cigarettes, cigar, pipe)

107 (10.2%) 687 (14.5%) 2.69 × 10−9

MQ: Current smoker
(water pipe)

65 (15.5%) 477 (21.1%) 2.99 × 10−2

MQ: Second-
hand smoker

273 (26.0%) 1274 (26.9%) 1.21 × 10−5

MQ:Second-handwater
pipe smoker

191 (18.2%) 1079 (22.8%) 3.86 × 10−11

Physical activity

MQ: Exercise – (>3 hr/
week moderate or >1 hr/
week heavy)

82 (7.8%) 805 (17.0%) 1.76 × 10−22

MQ: Exercise – (>0 hr/
week moderate or >0hr/
week heavy)

136 (12.9%) 1177 (24.8%) 3.15 × 10−30

*These clinical traits were computed for individuals who fasted for eight or more hours at the
time of blood drawing.
HOMA2-IR: homeostasis model of assessment of insulin resistance. HOMA2-B: homeostasis
model assessment of beta-cell function. Family history is defined as either parent having a
history record of diabetes. MQ represents a question from the “main questionnaire”. The second
physical activity question is cumulative and includes the individuals from the first physical
activity question. Thedata arenumber (%) ormeans (SD), as appropriate,p values are fromFisher
or two-sided student t tests for categorical or continuous variables, respectively.

Article https://doi.org/10.1038/s41467-022-34754-z

Nature Communications |         (2022) 13:7121 12

http://info.somalogic.com/hubfs/January_2016/SSM-002-Rev-3-SOMAscan-Technical-White-Paper.pdf
http://info.somalogic.com/hubfs/January_2016/SSM-002-Rev-3-SOMAscan-Technical-White-Paper.pdf
https://studyres.com/doc/7837606/technical-white-paper


was 12% and total process variability, based on endogenous bio-
chemicals measured in repeated reference samples, was 16%.

Statistical analysis
Statistical analysis was conducted using R (version 4.0.5) and RStudio
(version 1.4.1106). T tests, Fisher exact tests, and linear and logistic
regression models with covariates as indicated were conducted as
appropriate based on the respective variable types, using subroutines
implemented in base R. Multiple testing was accounted for using con-
servative Bonferroni correction at a significance level of 0.05 divided by
the number of tests conducted in the specific cases (number of meta-
bolites, proteins, traits taken forward for replication, etc. as indicated).

Cluster analysis
Model parameters were selected based on five commonly measured
variables as in Ahlqvist et al.8. We used BMI, age at onset of diabetes,
and homeostasis model assessment HOMA2 estimates of ß-cell func-
tion (HOMA2-B) and insulin resistance (HOMA2-IR) basedonC-peptide
concentrations calculated with the HOMA calculator (University of
Oxford, Oxford, UK)102. Patients defined as SAID (see above) were
excluded from the clustering and assigned to their own subtype, and
clustering was carried out on the patients with T2D only. Cluster ana-
lysis was carried out on standardized values centered to mean= 0 and
s.d. = 1. The optimal number of clusters was determined from the
training set using the Mclust function in the “mclust” R library v.5.4.5.
Clusters coordinates were identified in the training set of QBB indivi-
duals (N = 631) and applied to a separate QBB set which was deeply
phenotyped (N = 420). We determined the optimal number of clusters
using the Bayesian Information Criterion (BIC) for expectation-max-
imization, initialized by hierarchical clustering for parameterized
Gaussian mixture models. We computed the BIC for various cluster
sizes (two to 15). Using k-means cluster analysis on standardized vari-
ables, we derived cluster center coordinates for different values of k
(Supplementary Fig. 11). Using a voting scheme103, we determined the
optimal number of clusters to be k = 4 (Supplementary Fig. 12). This
finding was consistent with that observed by Ahlqvist et al. Cluster
stability was assessed by Jaccard similarity104 using 2000 re-runs of the
k-means procedure. The Jaccard similarity to the original clusters was
greater than 0.75, which is generally considered an acceptable
threshold for cluster stability104. The cluster variables in QBB followed
a similar trend to the Swedish All New Diabetics in Scania cohort
(ANDIS). We, therefore, assigned cluster labels based on the five clin-
ical variable averages that were characteristic of each T2D subtype
following Ahlqvist et al.

Robustness and reproducibility analysis
To ensure robustness and reproducibility of our results, we undertook
a number of sensitivity tests on the cluster analysis. First, we replicated
the clustering in the testing set and compared that to using cluster
coordinates from the training set. In the case of clustering in the
testing set, the assigned clusters from the k-means algorithm were
used directly. However, when using the training set coordinates,
cluster membership was determined by assigning every individual in
the testing set to the cluster with the minimum Euclidean distance to
the training coordinates. We then repeated the clustering with varying
numbers of clusters. We also repeated the cluster analysis separately
for females andmales. AsQBBparticipantswerenot all in a fully fasting
state, we further tested the sensitivity of the cluster assignments to
self-reported time-since-last-meal. Finally, we tested whether ANDIS
cluster centers could be used directly to classify QBB participants into
T2D subtype clusters.

Identification of T2D-associated proteins and metabolites
For proteins, logistic regression models (glm) were used to test for
association with the T2D state, including age, sex, and technical

covariates into the model. Technical covariates include log(HSP90)
which is a measure of cell lysis, week of sample collection, fasting
minutes, and SomaLogic tube number. For metabolites, linear
regression models (lm) were used to test for association with T2D
using age, sex, BMI, and technical covariates into the model. Different
types of models (glm for proteins and lm for metabolites) were used
for consistency with previously published work23,29. Protein and
metabolite levels were log-scaled, z scored, and outliers were winsor-
ized to 5 s.d. before computing the association.

Replication of association of T2D with proteomics
Association data for the replication of the T2D protein association was
obtained from the published AGES-Reykjavik study23. The AGES-
Reykjavik study was approved by the National Bioethics Committee
in Iceland (approval number VSN-00-063), the National Institute on
Aging Intramural Institutional Review Board (U.S.), and the Data Pro-
tection Authority in Iceland. All participants provided written
informed consent. In that study, serum levels of 4137 proteins, tar-
getedby 4782 SOMAmers, weremeasured at SomaLogic (Boulder, CO)
in samples from 5457 AGES-Reykjavik participants, as previously
described105. The AGES-Reykjavik cohort included 654 individuals with
T2D and 4784 controls. After applying a Box-Cox transformation on
the protein data, associations between serum protein levels and pre-
valent or incident T2D were determined using a logistic regression
adjusted for age and sex. After following the samepreprocessing steps
and statistical methods, we replicated the associations for proteins
that were shared between QBB and AGES (N = 107).

Replication of association of T2D with metabolomics
Metabolomics associations with Type 2 Diabetes (T2D) have been
previously reported for the QMDiab study using the Metabolon HD2
platform29,106. However, here we are using data that has been recently
remeasured on the more recent Metabolon HD4 platform in Durham
(NC), which is compatible with the QBB metabolomics data annota-
tion. The QMDiab was approved by the Institutional Review Boards of
HMC and Weill Cornell Medicine, Qatar (WCM-Q) under research
protocol #11131/11. Written informed consent was obtained from all
participants. Data for 1104 metabolites from 309 samples of QMDiab
were used. From 194 metabolites that associated with T2D in QBB at a
Bonferroni level (p <0.05/1159 = 4.31 × 10−5), data was also available for
175metabolites inQMDiab. For the replication, the same processing of
the metabolomics data was performed, including log-scaling, z scor-
ing, and outlier winsorization to 5 s.d., before computing the
association.

T2D subtype cluster omics and medication analysis
Cluster-specific proteins and metabolites were identified using linear
models without covariates and following two criteria. First, the omics
levels for a given cluster were compared to all others combined,
requiring Bonferroni significance levels (p <0.05/Nmetabolites and
p <0.05/Nproteins). Second, the omics levels for a given cluster were
compared to all other clusters individually, requiring nominal sig-
nificance (p < 0.05). Cluster-specific drug usage was identified using a
Fisher test comparing usage of a given drug in a given cluster to all
other clusters combined, requiring nominal significance (p < 0.05).

ANDIS study
The ANDIS study included patients with newly diagnosed diabetes
(n = 8980) from the Swedish All New Diabetics in Scania cohort. The
ANDIS study protocol was approved by the regional ethics review
committee in Lund (ANDIS:584/2006 and 2012/676). All participants
provided written informed consent. This cohort was used in the ori-
ginal study that first defined the T2D subtypes8. Data-driven k-means
cluster analysis using six variables (glutamate decarboxylases anti-
bodies, age at diagnosis, BMI, HbA1c, and HOMA2-B, and HOMA2-IR,
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was carried out on these patients. Five distinct clusters of diabetes
subtypes with significantly different patient characteristics and risk of
complications were identified. These subtypes included one auto-
immune or SAID, and four subtypes of type 2 diabetes, namely SIDD,
SIRD, MOD, MARD.

Replication of associations of T2D subtypes with proteomics
Replication of the subgroup-specific proteins was attempted in the
AGES-Reykjavik study23 and the ANDIS study8 using a linear regression
model for each cluster versus all other clusters, while adjusting for sex.
The protein data and T2D subgroup definition in AGES has been pre-
viously described23. Protein levels were measured in the ANDIS study
for N = 176 individuals (44 individuals per subtype) using the Olink
platform (Olink Proteomics, Uppsala, Sweden). Equal numbers of men
and women were selected based on Euclidean distance to the cluster
centers to be representative of their subtype. All selected individuals
were between age 38.1 and 75.2 years, of European decent, and had
their blood samples taken within 3 months of diabetes diagnosis. The
following 13 Olink panels were used: Olink CARDIOMETABOLIC, Olink
CARDIOVASCULAR II, Olink CARDIOVASCULAR III, Olink CELL REG-
ULATION, Olink DEVELOPMENT, Olink IMMUNE RESPONSE, Olink
INFLAMMATION, Olink METABOLISM, Olink NEURO EXPLORATORY,
Olink NEUROLOGY, Olink ONCOLOGY II, Olink ONCOLOGY III, and
Olink ORGANDAMAGE, covering a total of 1161 distinct protein assays.
The biomarker expression was measured using logarithm of the rela-
tive biomarker/protein concentration in each panel, expressed as
normalized protein expression values. Outlier analysis was performed
using an unsupervised clustering algorithm using a One Class Support
VectorMachine. Four samples, one from each subtype, were identified
as outliers and excluded from the analysis, leaving N = 172 individuals
(43 individuals per subtype). Data was available for 30 of the 47
subtype-specific proteins (matched by Uniprot identifiers) that were
shared between the Olink data in ANDIS and the Somalogic data
in QBB.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The QBB data are available under restricted access for the informed
consent given by the study participants does not cover posting of
participant-level phenotype data in public databases, access can be
obtained in the form of an MS SQL Server 2008 R2 database, upon
request from QBB (https://www.qatarbiobank.org.qa/research/how-
to-apply). Requests are submitted online and are subject to approval
by the QBB board. The custom-design Novartis SOMAscan is available
through a collaboration agreement with the Novartis Institutes for
BioMedical Research (lori.jennings@novartis.com). Data from the
AGES Reykjavik study are available through collaboration (AGES_da-
ta_request@hjarta.is) under a data usage agreement with the Icelandic
Heart Association. The QMDiab data are available under restricted
access for the informed consent given by the study participants does
not cover posting of participant-level phenotype data in public data-
bases. Access can be obtained in the form of an R data file, upon
request from the corresponding author. Data from the ANDIS study
are available upon request from the ANDIS steering committee
(emma.ahlqvist@med.lu.se). All data supporting the findings descri-
bed in this manuscript are available in the article and in the Supple-
mentary Information and from the corresponding author.

Code availability
Standard statistical analysis was carried out using functions imple-
mented in R Studio version 4.0.5 and version 1.4.1106. Documentation

on how to use the standard built-in R functions can be found at https://
www.rstudio.com/products/rpackages/.
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