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Abstract

Several functional and morphological brain measures are partly under genetic control. The identification of direct links between
neuroimaging signals and corresponding genetic factors can reveal cellular-level mechanisms behind the measured macroscopic
signals and contribute to the use of imaging signals as probes of genetic function. To uncover possible genetic determinants of
the most prominent brain signal oscillation, the parieto-occipital 10-Hz alpha rhythm, we measured spontaneous brain activity with
magnetoencephalography in 210 healthy siblings while the subjects were resting, with eyes closed and open. The reactivity of the
alpha rhythm was quantified from the difference spectra between the two conditions. We focused on three measures: peak fre-
quency, peak amplitude and the width of the main spectral peak. In accordance with earlier electroencephalography studies,
spectral peak amplitude was highly heritable (h2 > 0.75). Variance component-based analysis of 28 000 single-nucleotide poly-
morphism markers revealed linkage for both the width and the amplitude of the spectral peak. The strongest linkage was detected
for the width of the spectral peak over the left parieto-occipital cortex on chromosome 10 (LOD = 2.814, nominal P < 0.03). This
genomic region contains several functionally plausible genes, including GRID1 and ATAD1 that regulate glutamate receptor chan-
nels mediating synaptic transmission, NRG3 with functions in brain development and HRT7 involved in the serotonergic system
and circadian rhythm. Our data suggest that the alpha oscillation is in part genetically regulated, and that it may be possible to
identify its regulators by genetic analyses on a realistically modest number of samples.

Introduction

The constitution of individuals is under strict genetic control, readily
illustrated by the morphological similarity of monozygotic twins,
and such similarities extend to several functional properties regu-
lated by polymorphic genes. Genetic-functional correlations are
expected also in system-level functional measures with large varia-
tion between – but relatively constant appearance within – individu-
als. Measures of many neural processes are known to fulfill these
criteria, and they can be quantified with brain imaging (van Beijster-
veldt et al., 1996; Smit et al., 2006; Renvall et al., 2012). Such

results suggest that it is feasible to search for genetic influences on
neuronal processes and to attribute their genetic regulation to speci-
fic loci in the genome by combining neuroimaging and genetic map-
ping techniques.
The human cerebral cortex shows several intrinsic rhythms that

can be characterized with non-invasive neuroimaging methods such
as magnetoencephalography (MEG) and electroencephalography
(EEG). The most prominent of them is the ~ 10-Hz ‘alpha’ rhythm
recorded over the parieto-occipital cortices (Berger, 1929; Adrian &
Matthews, 1934; Adrian, 1944). In humans, the cortical sources of
alpha activity have been located at the bilateral visual cortices and
the parieto-occipital sulcus (Salmelin & Hari, 1994; Manshanden
et al., 2002). Intracortical recordings in dogs (Lopes da Silva et al.,
1980) and monkeys (Bollimunta et al., 2011) have revealed
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simultaneous activity in the thalamic nuclei, suggesting involvement
of both brain regions in the rhythm generation. Indeed, human
patients with thalamic infarction show abnormal spectral spreading
of alpha activity to a wide frequency range (M€akel€a et al., 1998).
The alpha rhythm is strongly attenuated by opening of the eyes,

and it is modulated by tasks requiring visual attention (Worden
et al., 2000; Jensen et al., 2002; Palva & Palva, 2007; Kelly et al.,
2009; Saalmann et al., 2012; Gray et al., 2015), visual imagery
(Salenius et al., 1995) and working memory also outside of the
visual modality (Jensen et al., 2002; Jokisch & Jensen, 2007; Tulad-
har et al., 2007; Haegens et al., 2010; Poch et al., 2014). Recent
electrocortical recordings in monkeys have demonstrated that corti-
cal alpha oscillations depend on the attentional state of the animal
(Saalmann et al., 2012). In addition, alpha oscillations have been
suggested to modulate the thalamo-cortical (Amzica & Lopes da
Silva, 2011) and cortico-cortical information transfer (Klimesch
et al., 2007; Jensen & Mazaheri, 2010), and to facilitate sensory
perception (Klimesch et al., 2007). The alpha rhythm thus most
likely does not reflect mere cortical idling, but seems to have impor-
tant functional roles (for a review, see e.g., Lopes da Silva, 2013).
The reactivity of the alpha rhythm has also been used to probe corti-
cal functions in several neuropsychiatric diseases (for review, see
e.g., Yener & Bas�ar, 2013).
EEG studies (van Beijsterveldt et al., 1996; van Beijsterveldt &

van Baal, 2002; Smit et al., 2006; Zietsch et al., 2007) have demon-
strated high heritability of the alpha rhythm, but little is known
about its underlying genetic determinants. Here, we adopted a sib-
pair design that allowed us to estimate the heritability of 10-Hz pari-
eto-occipital rhythmic activity and attempt genetic mapping of neu-
ral features to specific genetic loci.

Materials and methods

Subjects

Altogether 210 Finnish-speaking adults participated in the study.
The subject group consisted of 91 full-sibling pairs, eight families
with three siblings and one family with four siblings (mean � SEM
age 30 � 1 years; 148 females, 62 males; 206 right-handed, three
ambidextrous and one left-handed; no monozygotic twins). None of
the subjects had a history of neurological, psychiatric, or hearing
disorders. All participants gave their written informed consent. The
study conforms with the Declaration of Helsinki, and it had a prior
approval from the Ethics Committee of the Hospital District of
Helsinki and Uusimaa.

MEG experiment

Spontaneous cortical activity was recorded in a magnetically
shielded room while the subject was seated with the head supported
against the helmet-shaped bottom of the 306-channel VectorviewTM

(Elekta Oy, Helsinki, Finland) neuromagnetometer. The device con-
tains 102 identical triple sensors, with two orthogonal planar first-
order gradiometers that measure the tangential derivatives @Bz=@x
and @Bz=@y of the magnetic field component normal to the helmet
surface at the sensor location, and one magnetometer, each of them
coupled to a SQUID (Superconducting QUantum Interference
Device). The planar gradiometers detect the maximum signal
directly above the active cortical area. Four head-position-indicator
coils were attached to the scalp, and their positions were measured
with a three-dimensional digitizer; the head coordinate frame was
anchored to the two periauricular points and the nasion. The head

position with respect to the sensor array was determined by briefly
feeding current to the marker coils before the actual measurement.
Three minutes of resting-state data in both eyes-closed and eyes-

open conditions were recorded. The MEG signals were band-pass
filtered to 0.03–200 Hz and sampled at 600 Hz. For external artifact
suppression, the signal space separation method (Taulu & Kajola,
2005) was applied, and each individual MEG measurement was
transferred to the same head position using a signal space separation
-based head transformation algorithm (Taulu et al., 2004), imple-
mented in MaxFilterTM software (Elekta Oy).
The power spectra in both eyes-closed and eyes-open conditions

were estimated using Welch’s method, with 4096-point Fast Fourier
Transformation resulting in frequency resolution of 0.15 Hz, eight
data segments overlapping by 50% and Hamming windowing. We
focused on the spectral peak at ~ 10 Hz. The relevant measures
were its maximum amplitude, the frequency at which the maximum
amplitude was reached, and the spectral width (full-width at half
maximum, determined based on the first frequency bin where the
ascending slope reached 50% point of the maximum and the last bin
where the descending slope remained above the 50% of the
maximum; see Fig. 1B). Given that the sources of alpha activity are
spatially distributed with typical source clusters bilaterally at the
visuo-occipital cortices and at the parieto-occipital sulcus (Salmelin
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Fig. 1. MEG signals. (A) Difference spectra between eyes-closed and eyes-
open conditions were measured at the maximum channels over three sensor
regions (marked with light gray, dark gray and white over the helmet). (B)
Example responses from one subject at a representative channel in the eyes-
closed (solid line) and eyes-open (dotted line) conditions. (C) Vector sum of
each channel pair was used for estimating (i) the amplitude of the ~ 10-Hz
spectral peak, (ii) the exact frequency at which the maximum amplitude was
reached, and (iii) the spectral width (difference between the 50% point of the
ascending and descending slopes).
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& Hari, 1994; Hari & Salmelin, 1997; M€akel€a et al., 1998;
Manshanden et al., 2002), three separate subsets of planar gradiome-
ters covering the parieto-occipital cortex were selected for the analy-
ses (left, middle, right; see Fig. 1A). In each of the three regions, at
the channel pair showing the maximum ~ 10-Hz amplitude, the
spectral peak was quantified from the difference waveform (eyes

closed – eyes open) as vector sum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@Bz=@xÞ2 þ ð@Bz=@yÞ2

q
of the

power spectra at the two gradiometer channels. Such sensor-level
measurements are well replicable and in accordance with results
obtained by source modeling approaches (Virtanen et al., 1998).
Importantly, these measures can be obtained with minimal subjective
decisions on the data. Subsequently, the measured values were
submitted to statistical testing, including heritability and linkage
analyses (see below).

Genotyping

Deoxyribonucleic acid (DNA) was extracted from blood samples
with FlexiGene DNA Kit (Qiagen, Hilden, Germany) and genotyped
on Affymetrix 250K StyI Single-Nucleotide Polymorphism (SNP)
arrays (Affymetrix, Santa Clara, CA, USA). For all samples with an
initial success rate > 92.9%, genotypes were called with Affymetrix
Genotyping Console software using the BRLLM algorithm. Addi-
tional quality control filtering was done using Plink version 1.07
(Purcell et al., 2007; http://pngu.mgh.harvard.edu/purcell/plink/).
The exclusion criteria for SNPs were as follows: (i) genotyping suc-
cess rate < 98%; (ii) minor allele frequency < 5% and (iii) deviation
from Hardy–Weinberg equilibrium with P < 0.0001 in two subsets
of 98 unrelated samples. Individuals with genotyping success rate
< 95% were excluded. The relatedness of siblings and the unrelated-
ness of other pairs of individuals was then checked based on levels
of allele sharing. In addition, individuals with no remaining siblings
were removed, resulting in a dataset of 203 individuals and 153 640
SNPs. For linkage analysis, SNPs were further pruned based on
linkage disequilibrium (LD; r2 > 0.1) to eliminate the inflation of
linkage measures. After the pruning, 203 individuals and 28 184
autosomal SNPs remained (average distance between
SNPs � 0.1 cm). The lowest genotyping success per individual was
97.9% in the pruned and 98.1% in the non-pruned dataset, and the
overall genotyping success rate in each dataset was 99.8%.

Heritability, linkage and association analyses and phenotypic
correlations

Phenotype heritabilities were calculated based on all successfully
phenotyped and genotyped individuals (n = 203) using the variance
component option of Merlin 1.1.2 (Abecasis et al., 2002). The geno-
types were checked using the error detection and correction option
of Merlin, and the likely erroneous genotypes were coded as miss-
ing. A linkage analysis (n = 203) was conducted with the variance
component option in Merlin, using the built-in LD correction feature
to account for the density of SNPs (Abecasis & Wigginton, 2005)
and the built-in normality correction feature (InverseNormal),
because most of the phenotypes were not normally distributed and
did not yield well to standard normality corrections.
The genome-wide empirical significance of the observed loga-

rithm of odds (LOD) scores was determined by simulations. Data-
sets (n = 1001) without any genetic linkages but with phenotypes,
relatedness between individuals, and missing genotype patterns iden-
tical to the real data were simulated in Merlin. For each simulation
and phenotype, the highest simulated LOD score per chromosome

was recorded, resulting in an empirical distribution of LOD scores.
The significance of the observed LOD scores was evaluated by
counting from the distribution of simulated LODs the expected num-
ber of linkage peaks (nexp) with a LOD score equal to or higher than
the observed LOD score. Thus, we estimated how many times per
simulation, on average, a LOD score exceeding the observed one
was detected. The lower the nexp, the less likely it is to obtain as
high a LOD score by chance, without the involvement of any genes.
According to the standard guidelines by Lander & Kruglyak (1995),
observed LOD scores with nexp < 0.05 were declared significant and
those with nexp < 1 suggestive.
Because linkage scans were performed for several phenotypes, the

overall significance level was corrected for multiple comparisons.
First, the best simulated LOD scores per chromosome and across sim-
ulations (i.e., n = 22*1001 LOD scores) were ranked for a given phe-
notype. Then the observed LOD scores for that phenotype were
compared to the simulated ones, and the rank(s) of the observed
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Fig. 2. Examples of the difference spectra (eyes closed vs. eyes open) over
the middle parieto-occipital region in one subject at two measurements sepa-
rated by 16 months (A), in two siblings (B) and in two unrelated subjects (C).

Table 1. Phenotype distributions and heritabilities

Phenotype h2 value Median Q1 Q3 rho P value

L peak amplitude 0.83 126.96 41.15 254.00 0.40 0.000030
M peak amplitude 0.87 143.42 46.30 289.24 0.42 0.000010
R peak amplitude 0.75 59.30 20.87 118.75 0.36 0.00018
L peak width 0.36 0.88 0.44 1.25 0.17 0.046
M peak width 0.12 0.73 0.44 1.32 0.055 0.30
R peak width 0.36 0.88 0.59 1.54 0.14 0.091
L peak frequency 0.17 10.03 9.30 10.55 0.073 0.24
M peak frequency 0.48 10.11 9.67 10.62 0.23 0.011
R peak frequency 0.44 9.96 9.38 10.55 0.23 0.011

The heritability estimates (h2) of the measured 10-Hz spectral peak pheno-
types (from Merlin; n = 203), their median, first quartile (Q1) and third quar-
tile (Q3) values calculated from 100 unrelated subjects, and their Spearman
correlation between siblings (rho, P value). L, left; M, middle; R, right.
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nominally significant/suggestive LOD(s) were recorded. The ranks for
the k observed significant or suggestive linkage peaks were then com-
pared to the k best ranks (across phenotypes) obtained on each simula-
tion round. The probability of having observed the k significant or
suggestive LODs by chance was calculated as the proportion of the
simulation rounds where the observed LODs were exceeded, so that
the best simulated LOD exceeded the best observed LOD in rank, the
second-best simulated LOD exceeded the second-best observed LOD
in rank, etc., to the ranks of the kth simulated vs. observed LOD.
Association analysis was performed with R package GENABEL (Aul-

chenko et al., 2007), using a specific mixed linear model called
GRAMMAR-gamma (Svischeva et al., 2012). This method pro-
duces a correct distribution of the test statistics and unbiased esti-
mates of regression coefficients. It corrects for the relatedness of the
individuals by estimating a relatedness matrix from the genetic data
and using this as a random effect in the mixed model.
Phenotype correlations between siblings were calculated using

Spearman’s correlation in R version 3.0.1. Within each family, sib-
lings were randomly designated as Sibling 1 and Sibling 2 (and Sib-
ling 3 in the families represented by three individuals), and the
correlation between Sibling 1 and Sibling 2 was calculated for each
phenotype. Across 100 such random designations, the median rho
and P value of the correlation (rho > 0) were recorded. Phenotype
correlation between unrelated individuals was calculated by similar
random assignment of 100 sets of 98 pairs of unrelated individuals.
Correlations between the nine phenotypes were calculated using all
phenotyped individuals (n = 210).

Results

We first considered the within-individual replicability and inter-indi-
vidual variability in different measures of the signal patterns. For
individual participants, the peak width and peak amplitude of the
10-Hz spectral peak (eyes-closed vs. eyes-open conditions) over the
middle parieto-occipital region remained fairly consistent even
across measurements separated by 16 months, whereas the peak fre-
quencies varied (Fig. 2A). The spectral peak amplitudes were also
very similar between siblings (Fig. 2B, Table 1; Spearman’s
rho = 0.42, P < 0.001) but varied by more than tenfold between
pairs of unrelated individuals (Fig. 2C; Spearman’s rho = �0.013,
P = 0.55). At individual level, correlations between the phenotypes
from the left, middle and right parieto-occipital region were rela-
tively high for each of the three measures (Spearman’s rho 0.54–
0.62 for the spectral peak width, 0.73–0.78 for the peak frequency
and 0.83–0.93 for the peak amplitude), whereas correlations between
the three measures were generally lower (Spearman’s rho from
�0.055 to 0.12 between spectral peak width and frequency, from
�0.036 to �0.082 between peak amplitude and frequency and from
�0.33 to �0.54 between spectral peak width and amplitude).
We calculated heritability (h2) values for phenotypes with large

variation between subjects (spectral peak width and amplitude;
Table 1, Fig. S1) as well as for spectral peak frequency that had
been reported heritable in previous EEG studies (van Beijsterveldt
& van Baal, 2002; Smit et al., 2006). The measured spectral peak
amplitudes showed high heritability (h2 > 0.75), also in accordance
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with earlier EEG results (van Beijsterveldt et al., 1996; van Beijster-
veldt & van Baal, 2002; Smit et al., 2006; Zietsch et al., 2007),
whereas the heritability did not exceed 0.5 for frequency or spectral
peak width (Table 1).
We proceeded to genetic linkage analysis using 28 184 pruned

autosomal SNPs and the variance component option of Merlin. The
linkage analysis of the nine phenotypes revealed one nominally sig-
nificant and 11 suggestive linkage peaks; altogether seven linkage
peaks were seen for the spectral peak width phenotypes, four for the
amplitudes, and one for the frequencies (Figs 3 and 4; Table 2).
The overall probability of observing an equally significant result by
chance in nine linkage scans was P = 0.046. The significant linkage
was observed on chromosome 10q23.2 for the phenotype of left
hemisphere spectral peak width. The effect seemed fairly localized
to the left side, as no linkage at this locus was found for the middle
or right-sided signals (Fig. 3).
On chromosome 10, the region with strongest evidence of linkage

(defined as the area with at least suggestive linkage, i.e.,
LOD > 1.778) spanned approximately 12.7 Mb (from 79.8 Mb to
92.4 Mb on the hg38 map assembly; Fig. 5A). The region contained
144 annotated loci (Table S1), including 65 protein-coding genes
(Fig. 5B). Many of the genes in the region are expressed in the
brain, either specifically or ubiquitously, but not all are well anno-
tated for function. Genes with suggestively interesting functions rel-
evant for this study include GRID1 (glutamate receptor, ionotropic,
delta 1), ATAD1 (ATPase family, AAA domain-containing, member
1), NRG3 (neuregulin-3) and HTR7 (5-hydroxytryptamine
receptor 7).
An association analysis of the non-LD-pruned dataset (153 640

SNPs) revealed a suggestive association with left-hemisphere spec-
tral peak width close to the corresponding linkage peak on chromo-
some 10 (Fig. 5A). The region was located directly adjacent to the
suggestive linkage peak region and contained five SNPs with nomi-
nal P value smaller than 0.001; the most significantly associated
SNP was rs529442 with P = 7.91e-05. The second-best associated
SNP (rs17391134, P = 1.80e-04) was situated intronically in the
KCNMA1 gene (Homo sapiens potassium channel, calcium activated
large conductance subfamily M alpha, member 1). However, consid-
ering the number of SNPs tested (n > 1600 within the linkage peak
region), the observed significances do not survive correction for
multiple testing.

Discussion

In this study, we focused on the genetic basis of the human 10-Hz
rhythm, measured with MEG, by studying the heritability of selected
phenotypic measures and performing a genetic linkage mapping
study in a sib-pair setup. Our present MEG data and heritability
analysis confirm earlier observations of high heritability for peak
amplitude of the 10-Hz rhythm (van Beijsterveldt et al., 1996; van
Beijsterveldt & van Baal, 2002; Smit et al., 2006; Zietsch et al.,
2007). Furthermore, we observed significant genetic linkage for left-
hemisphere spectral peak width emerging in the genome-wide analy-
sis for one locus, and suggestive linkage for 11 loci across pheno-
types, which would be an empirically unlikely finding in
randomized data (P = 0.046).
The heritability estimates for alpha peak amplitudes (0.75–0.87)

resembled closely those reported in the EEG literature (e.g., van
Beijsterveldt & van Baal, 2002). However, the heritability estimates
for peak frequencies were lower than reported in the earlier EEG
studies. Part of this discrepancy may be explained by our estimates
being based on the difference spectra between eyes-closed and eyes-

open conditions, whereas the EEG studies have typically reported
peak frequencies while subjects have their eyes closed. Importantly,
EEG and MEG measurements reflect partially different neuronal
populations, and the alpha peak frequency has been demonstrated to
vary between EEG and MEG recordings within the same individuals
(Srinivasan et al., 2006). This is most likely related to EEG picking
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significant and suggestive results are indicated by continuous and dashed
lines, respectively. The gray-and-white shading denotes the succession of
even- and odd-numbered chromosomes.
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up both frontal and occipital 10-Hz activity and being sensitive to
radial and tangential distributed neuronal layers, while MEG is
rather restricted to tangentially oriented activity in the occipital
region with very little frontal contribution to the measurements
(Srinivasan et al., 2006).
The spectral width of the alpha peak probably reflects variability

in the subjects’ alpha frequency range during the measurement.
Alpha wave bandwidth is known to differ between individuals (Nie-
dermeyer, 2004), and its morphology has been related for example
to subjects’ memory performance (Klimesch et al., 2000). For
migraine patients, alpha bandwidth increased during preattack period
(Bjørk et al., 2009), and patients with thalamic infarctions showed
spreading of alpha rhythm to lower frequencies (M€akel€a et al.,
1998). The cellular-level mechanisms behind the variations in alpha
peak width have earlier been related to desynchronization in the cor-
tical, or thalamocortical, neural generators (Bjørk et al., 2009).
Alpha peak frequency has been shown to increase together with
cognitive load, possibly related to, e.g., engagement of different neu-
ronal networks (Haegens et al., 2014).
Our results are in line with earlier studies in suggesting that the

variability in the alpha rhythm is partly genetically regulated; in our
study the finding was strongest for the spectral peak width. Obvi-
ously, we cannot exclude weak genetic effects for any of the sug-
gestively linked loci or loci undetected here, but focus here only on
the one significant locus. The significantly linked region contains
four genes with known relevance to brain function. Several other
genes in the region are also expressed in the brain according to the
comprehensive FANTOM5 database (FANTOM, 2014), but as their
functions and relevance to brain physiology are poorly known, we
here exclude them from discussion.
Glutamate receptor channels are responsible for the major part of

the rapid, excitatory synaptic transmission in the brain, and they
have been implicated also in synaptic plasticity (Yamazaki et al.,
1992; Debanne et al., 2003). GRID1, located nearest to the linkage

peak along with ATAD1, is a subunit in the glutamate receptor chan-
nels, and it is highly expressed in different parts of the brain with
almost no expression in peripheral tissues (Nagase et al., 1999).
GRID1 has been associated with susceptibility to schizophrenia in

Table 2. Linkage analysis results

Phenotype chr LOD nexp Best SNP Location

L peak width 10 2.814 0.034 rs10509410 Intronic in
PAPSS2

R peak width 16 2.339 0.146 rs11861062 Intergenic
M peak width 2 1.118 0.208 rs9288662 Intronic in SP140
L peak amplitude 19 1.912 0.373 rs1293703 30in DPRX
M peak amplitude 19 2.031 0.390 rs269940 Intronic in NLRP7
R peak width 8 1.996 0.414 rs7015861 Intronic in

FAM91A1
M peak amplitude 18 1.827 0.661 rs9945030 Intronic in

RP11-47G4.2
L peak amplitude 16 1.631 0.738 rs226042 Intronic in CRYM
R peak width 13 1.775 0.804 rs7333894 Intergenic
M peak frequency 1 1.980 0.902 rs11161750 Intronic in

COL24A1
M peak width 7 0.849 0.941 rs10486813 Intronic in SUGCT
L peak width 18 1.802 0.949 rs676603 Intronic in

AQP4-AS1

Suggestive and significant linkages for the nine phenotypes, along with their
chromosomal location (chr), significance based on 1001 permutations (nexp),
name of best-linked SNP and its location relative to genes. PAPSS2, 30-phos-
phoadenosine 50-phosphosulfate synthase 2; SP140, SP140 nuclear body pro-
tein; DPRX, divergent-paired related homeobox; NLRP7, NLR family, pyrin
domain-containing 7; FAM91A1, family with sequence similarity 91 member
A1; RP11-47G4.2, gene RP11-47G4.2; CRYM, crystallin mu; COL24A1, col-
lagen, type XXIV, alpha 1; SUGCT, succinyl-CoA,glutarate-CoA transferase;
AQP4-AS1, AQP4 antisense RNA 1. L, left; M, middle; R, right parieto-occi-
pital region.

Fig. 5. The linkage region on chromosome 10. (A) Association results for
left-hemisphere spectral peak width in and adjacent to the linkage peak. The
SNPs tested for association are depicted as gray dots, plotted according to
their genomic location on the x axis and –log(P) value from the association
test on the y axis. The linkage analysis LOD score across the region is
shown as bold black curve, with horizontal lines depicting the empirical
thresholds for significant linkage (solid line) and suggestive linkage (dashed
line). Vertical lines mark the region of suggestive linkage. (B) The location
of all known protein-coding genes in the linkage region from A, with color
denoting their direction of transcription (black, from centromeric to telom-
eric; gray, from telomeric to centromeric). The four brain-related genes trea-
ted in Discussion are on the two bottom lines, denoted by an asterisk at the
end of their name.
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several independent studies (Fallin et al., 2005; Guo et al., 2007;
Zhu et al., 2009), and in healthy subjects to gray matter variation in
prefrontal and anterior thalamic regions (Nenadic et al., 2012).
ATAD1 is involved in the regulation of cell surface expression of
neuronal glutamate receptor complex proteins, specifically GRIP1
(glutamate receptor-interacting protein 1) and GLUR2 (glutamate
receptor 2) with which it interacts and which bind and regulate
AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate)
type receptors postsynaptically (Dai et al., 2010; Zhang et al.,
2011). Atad1 knock-out mice have severe seizures, and deficits in
short-term memory and in spatial working memory tasks (Zhang
et al., 2011). Thus, either GRID1 or ATAD1 might have a specific
functional effect in the regulation of brain rhythmic activity through
genetic variation affecting glutamate signaling pathways.
Neuregulins, including NRG3 located in the present linkage

region on chromosome 10, are a family of proteins that are
expressed specifically in neurons (Zhang et al., 1997; Carteron
et al., 2006). NRG3 binds specifically the ERBB4 receptor tyrosine
kinase and stimulates its phosphorylation (Zhang et al., 1997).
Developmental NRG3 overexposure results in deficits in social
behavior in adult mice (Paterson & Law, 2014), and, in humans,
variations in NRG3 have been associated with several neuropsychi-
atric and neurocognitive disorders, such as schizophrenia (Fallin
et al., 2003; Faraone et al., 2006; Wang et al., 2008; Kao et al.,
2010) and autism (Balciuniene et al., 2007).
Serotonin, or 5-hydroxytryptamine, can bind to a number of dis-

tinct receptors, one of which is HTR7 in the present linkage region
on chromosome 10. The serotonin receptors are G-protein coupled
receptors and can use alternative downstream signaling pathways;
HTR7 signals through adenylate cyclase activation. In addition to
neurotransmission, HTR7 has been shown to structurally regulate
brain reward pathways postnatally (Adriani et al., 2006; Leo et al.,
2009), modulate hippocampal neuronal morphology (Kobe et al.,
2012) and enhance neurite outgrowth (Speranza et al., 2013). Fur-
thermore, HTR7 has been associated with frontal brain theta oscilla-
tions (Zlojutro et al., 2011), circadian rhythms and the sleep-wake
cycle (Leopoldo et al., 2011; Adriani et al., 2012).
Conceivably, any of these genes, with highly specific brain

expression patterns, relevant functions in synaptic signaling, and
association with brain oscillations, might be candidates to control
part of the variation in the 10-Hz rhythmic activity. The cellular-
level mechanisms underlying the thalamo-cortico-thalamic loop of
10-Hz oscillations remain under debate, but they seem to involve
the GABAergic connections of the reticular nucleus (Steriade,
1999). In addition, the activation of glutamate receptors (mGluR) in
the thalamus has been shown to induce rhythmic activity resembling
alpha oscillations (Hughes et al., 2004), with a suggested role in
blocking unwanted stimuli from reaching the cortex (Vijayan &
Kopell, 2012). The role of glutamergic functions in the generation
of alpha oscillation is especially interesting in light of the potential
genetic link to GRID1 and ATAD1 proposed by our present find-
ings. Another plausible link in this study points to HTR7 – seroton-
ergic HTR7 receptors are highly abundant in the thalamus (Ruat
et al., 1993), and serotonergic hallucinogen psilocybin was recently
shown to modulate cortical alpha activity in humans (Kometer
et al., 2013).
Left-lateralized modulation of alpha activity has been recently

described in relation to suppression of task-irrelevant information
(Okazaki et al., 2014), and genetic correlates for functional differ-
ences in the brain have been reported (e.g., Darki et al., 2012).
Hemispheric differences in the functionality of alpha activity

would thus be in reasonable agreement with our finding that sig-
nificant genetic linkage for 10-Hz spectral peak width was
observed exclusively in the left hemisphere. On a more general
level, our finding might point to a genetic architecture of the phe-
notype where the regulatory loci and/or their effect sizes differ
between the hemispheres. The observed lateralized genetic linkage
could thus stem from an influence of a larger number of genes
on the right than left hemispheric activity, with individual genes
having too small effects to be detected in this study, or it may
suggest a more profound stochastic or environmental component
on the right hemispheric activity.
Similarly, genetic architecture may explain the observed differ-

ences in heritability (highest for peak amplitude) vs. linkage results
(significant for spectral peak width) – peak amplitude may be gov-
erned by a combination of small effects of many genes, which this
study has limited power to detect, whereas the regulation of spectral
peak width may be more oligogenic, and its large-effect determinant
(s) therefore easier to locate. However, we also wish to point out
that a part of the difference – as well as of the lateralization dis-
cussed above – may result from the limited power of this study,
leading to imprecise estimates of the heritabilities and linkage
strength and to suggestive rather than significant linkage signals;
obviously, replication studies will be needed to determine the signif-
icance of the suggestive linkages detected here. Further increases in
resolution and power could be achieved by larger sample sizes, still
within practical limits. Importantly, our previous results (Renvall
et al., 2012) and those reported here emphasize the applicability and
promise of the present genetic mapping scheme for selected func-
tional brain measures, even at modest sample sizes. Given that not
only the alpha rhythm but also all other prominent spectral bands of
the human EEG/MEG, i.e., delta, theta, beta and gamma rhythms
have been demonstrated to be highly heritable (van Beijsterveldt
et al., 1996; van Beijsterveldt & van Baal, 2002; Zietsch et al.,
2007; van Pelt et al., 2012), studies on their genetic determinants
would be of high interest for further uncovering their functional
roles.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Distributions of the phenotype measurements for spectral
peak width (A), peak frequency (B) and peak amplitude (C). The
distributions depict two sets of 98 unrelated individuals (Set1 and
Set2) and measurements from the left (L), middle (M) and right (R)
parieto-occipital region.
Table S1. List of annotated loci in the linkage peak region on chro-
mosome 10.
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