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Abstract

During mRNA translation, several ribosomes attach to the same mRNA molecule simulta-

neously translating it into a protein. This pipelining increases the protein translation rate. A

natural and important question is what ribosomal density maximizes the protein translation

rate. Using mathematical models of ribosome flow along both a linear and a circular mRNA

molecules we prove that typically the steady-state protein translation rate is maximized

when the ribosomal density is one half of the maximal possible density. We discuss the

implications of our results to endogenous genes under natural cellular conditions and also to

synthetic biology.

Introduction

The transformation of the genetic information in the DNA into functional proteins is called

gene expression. Two important steps in gene expression are transcription of the DNA code

into messenger RNA (mRNA) by RNA polymerase (RNAP), and then translation of the

mRNA into proteins. During translation, complex macromolecules called ribosomes traverse

the mRNA strand, decoding it codon by codon into a corresponding chain of amino-acids that

is folded co- and post-translationally to become a functional protein [1]. The rate in which

proteins are produced during the translation step is called the protein translation rate (or pro-

tein production rate).

According to current knowledge, translation takes place in all living organisms and under

all conditions. Understanding the numerous factors that affect this dynamical process has

important implications to many scientific disciplines including medicine, evolutionary biol-

ogy, synthetic biology, and more.

Computational models of translation are becoming increasingly important as the amount

of experimental findings related to translation rapidly increases (see, e.g. [2–11]). Such models

are particularly important in the context of synthetic biology and biotechnology, as they can

provide predictions on the qualitative and quantitative effects of various manipulations of the

genetic machinery. Recent advances in measuring translation in real time [12–15] will proba-

bly further increase the interest in computational models that can integrate and explain the

measured biological data.
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During translation, a large number of ribosomes act simultaneously on the same mRNA

molecule. This pipelining of the protein translation leads to a more continuous translation rate

and increased efficiency. Indeed, the translation rate may reach five new peptide bonds per

second in eukaryotes, and 15 new bonds in prokaryotes [16].

The ribosomal density along the mRNA molecule may affect different fundamental intra-

cellular phenomena. A very high density can lead to ribosomal traffic jams, collisions and

abortions (see, e.g. [17]). It may also contribute to co-translational misfolding of proteins.

On the other hand, a very low ribosomal density may lead to a low translation rate, and a

high degradation rate of mRNA molecules [18–24]. Thus, a natural and important question

is what ribosomal density optimizes one (or more) biological properties, for example, the

protein translation rate. Optimizing the protein translation rate is also an important chal-

lenge in synthetic biology and biotechnology, where a standard objective is to maximize the

translation efficiency and protein levels of heterologous genes in a new host (see, e.g., chapter

9 in [25]).

In this paper, we analyze the density that maximizes the protein translation rate using a

mathematical model of ribosome flow along the mRNA molecule. A standard mathematical

model for ribosome flow is the totally asymmetric simple exclusion process (TASEP) [26, 27].

In this model, particles hop unidirectionally along an ordered lattice of L sites. Every site

can be either free or occupied by a particle, and a particle can only hop to a free site. This

simple exclusion principle models particles that have “volume” and thus cannot overtake

one other. The hops are stochastic, and the rate of hoping from site i to site i + 1 is denoted

by γi. A particle can hop to [from] the first [last] site of the lattice at a rate α [β]. The average

flow through the lattice converges to a steady-state value that depends on the parameters

L, α, γ1, . . ., γL−1, β. Analysis of TASEP is non trivial, and closed-form results have been

obtained mainly for the homogeneous TASEP (HTASEP), i.e. for the case where all the γis
are assumed to be equal.

TASEP has become a fundamental model in non-equilibrium statistical mechanics, and has

been applied to model numerous natural and artificial processes [28]. In the context of transla-

tion, the lattice models the mRNA molecule, the particles are ribosomes, and simple exclusion

means that a ribosome cannot overtake a ribosome in front of it.

TASEP has two standard configurations. In TASEP with open boundary conditions the two

sides of the chain are connected to two particle reservoirs, and particles can hop into the chain

(if the first site is empty) and out of the chain (if the last site is full). In TASEP with periodic
boundary conditions the chain is closed, and a particle that hops from the last site returns to

the first one. Thus, here the particles hop around a ring, and the number of particles on the

ring is conserved.

The ribosome flowmodel (RFM) [29] is a continuous-time, deterministic, compartmental

model for the unidirectional flow of “material” along an open chain of n consecutive compart-

ments (or sites). The RFM can be derived via a dynamic mean-field approximation of TASEP

with open boundary conditions (see section 4.9.7 in [28] and page R345 in [30]). The RFM

includes n state variables, denoted x1(t), . . .xn(t), with xi(t) describing the amount (or density)

of “material” in site i at time t, normalized such that xi(t) = 1 [xi(t) = 0] indicates that site i is

completely full [completely empty] at time t. In the RFM, the two sides of the chain are con-

nected to two particle reservoirs. A parameter λi> 0, i = 0, . . ., n, controls the transition rate

from site i to site i + 1, where λ0 [λn] is the initiation [exit] rate (see Fig 1).

In the ribosome flowmodel on a ring (RFMR) [31] the particles exiting the last site enter the

first site. This is the dynamic mean-field approximation of TASEP with periodic boundary

conditions. The RFMR admits a first integral, i.e. a quantity that is preserved along the
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dynamics, as the total density is conserved. Both the RFM and RFMR are cooperative dynam-

ical systems [32], but their dynamical properties turn out to be quite different [31].

The RFM [RFMR] has been applied to model and analyze ribosome flow along an open

[circular] mRNA molecule during translation. Indeed, in eukaryotes the mRNA is often tem-

porarily circularized (via non-covalent interactions), for example, by translation initiation fac-

tors [33]. Thus, a large fraction of the ribosomes that complete translating the mRNA re-

initiate, and thus the RFMR is a good approximation of the translation dynamics in these cir-

cularized mRNAs. In addition, circular RNA forms (which include covalent RNA interactions)

appear in all domains of life [34–41]. Specifically, it was recently suggested that circular RNAs

can be translated in eukaryotes [39–41]. These cases are better approximated by the RFMR.

Note that there are also cases of circular DNA [42, 43]. This issue is not directly related to

translation, yet transcription of such circular DNAs may be analyzed by a model similar to the

RFMR [44] (see also [45]).

Here, we use the RFM [RFMR] to analyze the ribosomal density along a linear [circular]

mRNA molecule that maximizes the steady-state protein translation rate. We refer to this den-

sity as the optimal density. This problem has already been studied before. For example, Zouri-

dis and Hatzimanikatis [46] derived a deterministic, sequence-specific kinetic model for

translation and studied the effect of the average ribosomal density on the steady-state transla-

tion rate. Their model assumes homogeneous elongation rates and open-boundary conditions,

and includes all the elementary steps involved in the elongation cycle at every codon. Their

simulations suggest that there exists a unique average density that corresponds to a maximal

translation rate, see Figures 2A and 5A in [46] (see also [47]).

The RFM and RFMR are simpler models and thus allow to rigorously prove several analytic

results on the optimal density. For a circular mRNA, we prove that there always exists a unique

optimal density that maximizes the steady-state translation rate, and that it can be determined

efficiently using a simple “hill climbing” algorithm. In addition, we show that under certain

symmetry conditions on the rates the optimal density is one half of the maximal possible

density.

In the case of a linear mRNA molecule, we prove that when the initiation and elongations

rates are chosen to maximize the translation rate, under an affine constraint on the rates, the

corresponding optimal density is one half of the maximal possible density (see Fig 2).

The remainder of this paper is organized as follows. The next section briefly reviews the

RFM and the RFMR. Section 2 describes our main results. Section 3 summarizes the results,

describes their biological implications, and suggests several directions for further research.

The mathematical background and details are given in Appendix A. The proofs of all the

results are placed in Appendix B.

Fig 1. The RFM models unidirectional flow along a chain of n sites. The state variable xi(t) 2 [0,1] describes the density of site i at time t. The

parameter λi > 0 controls the transition rate from site i to site i + 1, with λ0 [λn] controlling the initiation [exit] rate. The ribosome output rate at time t is

R(t) = λn xn(t). This is the amount of proteins produced per time unit on the modeled mRNA molecule.

doi:10.1371/journal.pone.0166481.g001
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1 The Ribosome Flow Model

Recall that the RFM models the ribosomes on the mRNA as “material” that flows between con-

secutive sites. For each site, the dynamics of the model can be expressed mathematically by the

change in the amount of the material (i.e. ribosomes density) in that site, as a function of time,

which is simply equal to the input rate to that site minus the output rate from that site. Since

the model contains n sites, the RFM is expressed by n first-order ordinary differential

Fig 2. Protein translation rate and ribosome density: too few ribosomes (upper figure) lead to a low translation

rate, as do too many ribosomes (lower figure) due to traffic jams along the mRNA. Optimal translation is achieved

when the total density is one half of the maximal possible total density (middle figure).

doi:10.1371/journal.pone.0166481.g002
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equations describing the change in the amount of material in each site:

_x1 ¼ l0ð1 � x1Þ � l1x1ð1 � x2Þ;

_x2 ¼ l1x1ð1 � x2Þ � l2x2ð1 � x3Þ;

_x3 ¼ l2x2ð1 � x3Þ � l3x3ð1 � x4Þ;

..

.

_xn� 1 ¼ ln� 2xn� 2ð1 � xn� 1Þ � ln� 1xn� 1ð1 � xnÞ;

_xn ¼ ln� 1xn� 1ð1 � xnÞ � lnxn;

ð1Þ

where _xi denote the change in the amount of material in site i as a function of time, i.e.

_xi≔ d
dt xiðtÞ, i = 1, . . ., n. Note that this is a set of n nonlinear ordinary differential equations. If

we define x0(t)≔ 1 and xn+1(t)≔ 0 then Eq (1) can be written more succinctly as

_xi ¼ li� 1xi� 1ð1 � xiÞ � lixið1 � xiþ1Þ; i ¼ 1; � � � ; n: ð2Þ

This can be explained as follows. The input rate to site i is λi − 1 xi − 1(t)(1 − xi(t)). This flow is

proportional to xi − 1(t), i.e. it increases with the density at site i − 1, and to (1 − xi(t)), i.e. it

decreases as site i becomes fuller. In particular, when this site is completely full, i.e. xi(t) = 1,

there is no flow into this site. This corresponds to a “soft” version of a simple exclusion princi-

ple: the flow of particles into a site decreases as that site becomes fuller. Note that the maximal

possible flow from site i − 1 to site i is the (i − 1)th transition rate λi − 1. Similarly, the output

rate from site i, which is also the input rate to site i + 1, is given by λi xi(t)(1 − xi + 1(t)).
The output rate of ribosomes from the chain is R(t)≔ λn xn(t), that is, the flow out of the

last site. This is the number of proteins generated per time unit while translating the modeled

mRNA template.

Suppose that we fix the values of the parameters in the RFM, that is, the transition rates.

For any set of initial densities along the mRNA at the initial time zero, that is, the vector

x(0) = [x1(0) . . . xn(0)]T, the RFM admits a unique dynamical solution x(t) = [x1(t) . . . xn(t)]T

for any time t, where xi(t) is the density at site i at time t. Since every xi describes amount of

normalized material in the sites, we always assume that their initial values are between zero

and one. Combining this with the RFM dynamics, it can be shown that the amount of material

in each site is bounded between zero and one for all time, i.e. xi(t) 2 [0,1], for all t� 0 (see

Section A.1). We denote the state-space, i.e. the space of all possible values of the state vari-

ables, by Cn.

It was shown in [48] that the RFM is a cooperative dynamical system [32], and that this

implies the following property. Every solution of the dynamics converges to a steady-state

value, that is, the density xi(t) at site i converges, as time goes to infinity, to a specific value ei.
We denote e≔ [e1 . . . en]T, i.e. the column vector of steady-state densities at each site. Further-

more, the value e will not depend on the initial value x(0). This means that if we simulate the

RFM starting from any density of ribosomes on the mRNA the dynamics will always converge

to the same final state (i.e., the same final ribosome density along the mRNA). Mathematically,

the convergence property is written as limt!1 x(t, x(0)) = e for all x(0) 2 Cn (see also [49]). In

particular, since xn(t) converges to en, the translation rate R(t) = λn xn(t) converges to the

steady-state value:

R≔ lnen: ð3Þ

This steady-state solution, that depends on all the rates but not on the initial state of the chain,
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is analyzed below. The value of e does depend on the rates, i.e. e = e(λ0, . . ., λn) and satisfies

ei 2 (0,1) for all i, that is, at steady-state each site is not completely empty nor completely full.

1.1 Ribosome Flow Model on a Ring

If we consider the RFM under the additional assumption that all the ribosomes leaving site n
circulate back to site 1 then we obtain the RFMR. Just like the RFM, this is described by n non-

linear, first-order ordinary differential equations:

_x1 ¼ lnxnð1 � x1Þ � l1x1ð1 � x2Þ;

_x2 ¼ l1x1ð1 � x2Þ � l2x2ð1 � x3Þ;

..

.

_xn ¼ ln� 1xn� 1ð1 � xnÞ � lnxnð1 � x1Þ:

ð4Þ

Note that the only difference here relative to the RFM is in the equations describing the change

of material in sites 1 and n. Specifically, the flow out of site n is the flow into site 1. This model

assumes perfect re-cycling, but it also provides a good approximation when a large fraction of

the ribosomes are re-cycled. Note that the model here is indifferent to the nature of the bio-

chemical nature of the mRNA circularization; for example it can be both covalent or non-

covalent RNA.

The RFMR can also be written succinctly as Eq (2), but now with every index interpreted

modulo n. In particular, λ0 [x0] is replaced by λn [xn].

The total density of ribosomes along the chain at time t is given by

HðxðtÞÞ≔ x1ðtÞ þ � � � þ xnðtÞ;

i.e. the sum of the density at each site. Also, let s denote the total density of ribosomes along

the chain at time 0, s≔H(x(0)). In the RFM, ribosomes enter and leave the chain and there-

fore H(x(t)) may vary with time t. In the RFMR, ribosomes that exit site n circulate back to site

1, so the total density is preserved for all time. This means that H(x(t)) = s for all t� 0. The

dynamics of the RFMR thus redistributes the particles between the sites, but without changing

the total ribosome density. In the context of translation, this means that the total number of

ribosomes on the (circular) mRNA is conserved. Mathematically, this means that H(x(t)) is a

first integral of the RFMR (see Section A.2).

To understand the dynamics of the RFMR, we denote by Ls the set of all possible ribosome

density configurations such that the total density is equal to s. For example, Ls includes the

configuration where site 1 has a density s and all other sites are empty. It also includes the con-

figuration where sites 1 and 2 have a density s/2 and all other sites are empty, etc. Mathemati-

cally, for s 2 [0,n], the s level set of H is

Ls≔ fy 2 Cn : 1T
n y ¼ sg;

where for p 2 R, pn denotes the column vector ½ p p . . . p �T 2 Rn.

Ref. [31] has shown that the RFMR is a strongly cooperative dynamical system, that every

level set Ls contains a unique equilibrium point e = e(s, λ1, . . ., λn), and that any trajectory of

the RFMR emanating from any x(0) 2 Ls converges to this equilibrium point. In particular, the

translation rate converges to the steady-state value R = R(s, λ1, . . ., λn) (see Section A.2). This

means the following. Fix an arbitrary value s 2 [0,n]. Then the RFMR, initiated with any con-

figuration with total density s, will converge to the same final steady-state density e. This final

density depends on the rates and the value s. For example if s = 0, corresponding to the initial
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condition x(0) = 0n, then x(t)� 0n for all t� 0, so e = 0n. Similarly, s = n corresponds to the ini-

tial condition x(0) = 1n and then clearly x(t)� 1n for all t� 0, so e = 1n. Since these two cases

are trivial, below we will always assume that s 2 (0, n). In this case, e 2 Int(Cn), that is, the final

density in each site will be strictly larger than zero and strictly smaller than one.

For more on the analysis of the RFM and the RFMR using tools from systems and control

theory, see [31, 50–54]. For a general discussion on using systems and control theory in sys-

tems biology, see the excellent survey papers by Sontag [55, 56].

The RFM models translation on a single isolated mRNA molecule. A network of RFMs,

interconnected through a common pool of “free” ribosomes has been used to model simulta-

neous translation of several mRNA molecules while competing for the available ribosomes

[57]. It is important to note that many analysis results for the RFM, RFMR, and networks of

RFMs hold for any set of transition rates. This is in contrast to the analysis results on the

TASEP model. Rigorous analysis of TASEP seems to be tractable only under the assumption

that the internal hopping rates are all equal (i.e. the homogeneous case). In the context of

translation, this models the case where all elongation rates are assumed to be equal.

The next section describes our main results on the optimal ribosome density.

2 Main Results

The average ribosomal density along the mRNA molecule at time t is simply the sum of all the

site densities at time t, divided by the number of sites. We denote this average density by

rðtÞ≔ 1

n ðx1ðtÞ þ . . .þ xnðtÞÞ. Recall that for every set of parameters in our models the state

variables converge to a steady-state e. In particular, ρ(t) converges to the steady-state average

ribosomal density:

r≔
1

n
ðe1 þ � � � þ enÞ:

Note that since ei 2 [0,1] for all i, ρ 2 [0,1]. We are interested in analyzing the density that is

obtained when the parameter values in the model are the ones that maximize the steady-state

translation rate. Our results below show that there is a correspondence between the optimal

translation rate and the optimal average ribosomal density: the optimal translation rate is

obtained when and only when the average ribosomal density admits a specific value.

2.1 Optimal Density in the RFMR

Recall that in the RFMR the dynamical behavior depends on the transition rates and on the

total density of ribosomes on the mRNA at time zero s≔
Pn

i¼1
xið0Þ that, due to conservation

of the total number of ribosomes, is equal to the total density at any time t. This means that the

average ribosomal density is constant: ρ(t)� s/n.

Our first result shows that in the case of a circular mRNA there always exists a unique aver-

age density of ribosomes ρ� = s�/n that corresponds to a maximal steady-state translation rate

of proteins. This means that in order to maximize the steady-state translation rate, the mRNA

must be initialized with a total density s� (the distribution of this total density along the mRNA

at time zero is not important). Initializing with either more or less than s� will decrease the

steady-state translation rate with respect to the one obtained when the circular mRNA is ini-

tialized with total density s�. The optimal value s� depends on the transition rates. This is

mathematically formulated as follows. Fix arbitrary transition rates λi> 0, i = 1, . . ., n, and let

R(s)≔ R(s;λ1, . . ., λn) and e(s)≔ e(s;λ1, . . ., λn) denote the steady-state translation rate and the

steady-state ribosomal density profile, respectively, as a function of s.
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Proposition 1 For any set of rates λi> 0 in the RFMR there exists a unique value
s� = s�(λ1, . . ., λn) 2 (0, n) that maximizes R(s). Furthermore, for this optimal value e�≔ e(s�)
and R�≔ R(s�) satisfy

e�
1
� � � e�n ¼ ð1 � e�

1
Þ � � � ð1 � e�nÞ; ð5Þ

and

ðR�Þn ¼ ðl1 � � � lnÞðe
�

1
� � � e�nÞ

2
: ð6Þ

The optimality condition (5) can be explained as follows. If the total ribosome density s is

very small then there will not be enough ribosomes on the circular mRNA and the transla-

tion rate will be small (for example, for s = 0 we have e = 0n, and thus R = λ1e1(1 − e2) = 0).

In this case, the product of the eis is small, so e1. . .en< (1 − e1). . .(1 − en) and Eq (5) does

not hold. If s is very large traffic jams evolve on the mRNA and again the translation rate

will be small (for example, for s = n we have e = 1n, and thus R = λ1e1(1 − e2) = 0). In this

case, e1. . .en> (1 − e1). . .(1 − en) and Eq (5) does not hold. Thus, Eq (5) describes the unique

point where the balance between too few and too many ribosomes on the circular mRNA

molecule is optimal.

The proof of this result (given in Appendix B) shows that the steady-state translation rate

R(s) is strictly increasing on [0,s�) and strictly decreasing on (s�, n], so a simple “hill climbing”

algorithm can be used to find s�.
The next example demonstrates Proposition 1 in the special case where all the elongation

rates along the circular mRNA are identical. In this case, as shown in the example, the average

ribosome density that maximizes the steady-state protein translation rate is exactly one half of

the maximal possible total density.

Example 1 Consider an RFMR with λ1 = . . . = λn, i.e. all the elongation rates are equal.

Denote their common value by λc. Then it follows from Eq (4) that 1n c, c> 0, is an equilib-

rium point. In other words, any density profile with an identical density c at each site is a

steady-state. Consider an initial condition with total density s. Then the trajectory satisfies

x1(t) + . . . + xn(t) = s for all t� 0. In particular, this must hold for the steady-state value, so

nc = s or c = s/n. By uniqueness of the equilibrium point in every level set of H this implies that

e = (s/n)1n, so R = λnen(1 − e1) = λc(s/n)(1 − (s/n)). Thus, @R
@s ¼

lc
n2 ðn � 2sÞ, so R(s) is strictly

increasing [decreasing] on s 2 [0,n/2] [s 2 [n/2, n]] and therefore attains a unique maximum

at s� = n/2. Then e�≔ e(s�) = (1/2)1n and R�≔ R(s�) = λc/4, and it is straightforward to verify

that Eqs (5) and (6) hold. Note also that @
2R
@s2 ¼ �

2lc
n2 < 0, implying that R(s) is a strictly concave

function.

The next example demonstrates the dependence of R(s) on s when the rates are not

homogeneous.

Example 2 Consider an RFMR with dimension n = 3 and transition rates λ1 = 2, λ2 = 6, and

λ3 = 1/3. Fig 3 depicts R(s) for s 2 [0,3]. It may be seen that R(s) attains a unique maximum at

s� = 1.4268 (all numerical values in this paper are to four digit accuracy). The corresponding

equilibrium point is e� = [0.1862 0.3539 0.8867]T, and the optimal translation rate is

R� ¼ l1e�1ð1 � e�
2
Þ ¼ 0:2405. Fig 4 depicts a histogram of the equilibrium point e for three val-

ues of the level set parameter: s = 1/2, s = 1.4268, and s = 2. Note that e3 is the maximal entry in

e for all s. This is due to fact that the entry rate λ2 = 6 into site 3 is high, and the exit rate λ3 = 1/3

from site 3 is low.

In other words, in the typical case where the elongation rates along the circular mRNA are

not all identical the average ribosome density that maximizes the protein translation rate is
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very close but not equal to half of the maximal possible total density. See Section A.3 for more

explanations on Fig 4.

For small values of n it is possible to provide more explicit results. The following result pro-

vides the maximal possible translation rate value, as a function of the elongation rates, in a

very short RFMR with 2 or 3 sites.

Fact 1 For an RFMR with n = 2 the optimal values are s� = 1 and

R� ¼
l1l2

ð
ffiffiffiffiffi
l1

p
þ

ffiffiffiffiffi
l2

p
Þ

2
: ð7Þ

For an RFMR with n = 3 the optimal translation rate satisfies the equation:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

p
ðR�Þ3=2

þ ðl1l2 þ l1l3 þ l2l3ÞR
� � l1l2l3 ¼ 0: ð8Þ

It is interesting to understand how the steady-state densities along the mRNA change as the

total density along the circular mRNA varies slightly from the optimal value s�. This is impor-

tant since in practice achieving a total number of ribosomes that equals exactly s� may be diffi-

cult, and the actual total number may be close, but not exactly equal to s�. For fixed transition

rates, let e0i≔ @

@s eiðsÞ denote the change in the steady-state ribosome density at site i corre-

sponding to a small change in the the total density s. We refer to e0i as the sensitivity of ei with

respect to a change in the total density s.
The next result provides an expression for these sensitivities at the optimal density (i.e. the

one that maximizes the protein translation rate). It can be used to compute how increasing/

Fig 3. Steady-state protein translation rate R(s) as a function of s for the RFMR in Example 2. Here s is

the total density of ribosomes along the circular mRNA.

doi:10.1371/journal.pone.0166481.g003
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decreasing the total number of ribosomes on the circular mRNA affects the optimal density

profile.

Proposition 2 Consider an RFMRwith dimension n. Fix rates λi> 0, and let s� = s�(λ1, . . ., λn)

and e� = e�(λ1, . . ., λn) be as defined in Proposition 1. Then ðe�Þ0 ¼ v
1Tn v, where

v≔
e�

1
� � � e�n� 1

ð1 � e�
2
Þ � � � ð1 � e�nÞ

e�
2
� � � e�n� 1

ð1 � e�
3
Þ � � � ð1 � e�nÞ

� � �
e�n� 1

1 � e�n
1

� �T

: ð9Þ

See Section A.3 for more on the implications of Proposition 2.

Example 3 Consider again the RFMR in Example 2. Recall that here s� = 1.4268 and

e� = [0.1862 0.3539 0.8867]T. Substituting this in Eq (9) yields v = [0.9002 3.1236 1]T,

so (e�)0 = [0.1792 0.6218 0.1991]T. This means that if we change the density from s� to

�s≔ s� þ ε, where ε is very small, then the steady-state translation rate changes from R� to

�R ¼ l1�e1ð1 � �e2Þ

¼ l1ðe�1 þ εðe
�
1
Þ
0
Þð1 � e�

2
� εðe�

2
Þ
0
Þ þ Oðε2Þ

¼ R� þ l1εðð1 � e�
2
Þðe�

1
Þ
0
� e�

1
ðe�

2
Þ
0
Þ þ Oðε2Þ;

and substituting the numerical values yields

�R ¼ R� þ Oðε2Þ:

Indeed, this agrees with the fact that the graph of R(s) attains a maximum at s�.

Fig 4. Equilibrium point e for the RFMR in Example 2 with n = 3 i.e. three sites, and transition rates λ1 =

2, λ2 = 6, λ3 = 1/3 for three different s values. Here s is the total density of ribosomes on the molecule, and e

is the vector of steady-state densities in the three sites of the RFMR. The density in the third site (e3) is the

highest in all cases, as the transition rate into [out of] this site is the highest [lowest].

doi:10.1371/journal.pone.0166481.g004
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In Example 2 above the optimal value s� is close, but not equal to one half of the maximal

possible total density n/2 = 3/2. The next result describes a specific case where the optimal total

density is exactly one half of the maximal possible density.

Proposition 3 Suppose that the transition rates in the RFMR are symmetric, that is,

li ¼ ln� i; i ¼ 1; . . . ; n: ð10Þ

Then s� = n/2 and e�i ¼ e�nþ1� i for all i.
Thus, in this case the optimal average density is ρ� = (n/2)/n = 1/2, and the steady-state

occupancies are also symmetric. In other words, when the elongation rates in the RFMR are

symmetric the optimal average ribosome density is exactly one half of the maximal possible

average ribosome density.

Note that condition (10) always holds for n = 2. Also, since a cyclic permutation of the rates

leads to an RFMR with the same behavior, it is enough that Eq (10) holds for some cyclic per-

mutation of the rates. For n = 3 this holds if at least two of the rates λ1, λ2, λ3 are equal.

We note that a result similar to Proposition 3 is known for the homogeneous TASEP with

periodic boundary conditions, i.e. that a loading of 50% maximizes the steady-state flow (see,

for example, the fundamental diagram in Figure 4.1 in [28]).

2.2 Optimal Density in the RFM

Due to the open boundary conditions in the RFM, the number of particles along the chain as a

function of time is not conserved. Thus, in this section we analyze the steady-state densities

corresponding to the rates that yield a maximal steady-state translation rate. We refer to this

density [rates] as the optimal density [rates].

Consider first the problem of maximizing the steady-state translation rate given a constraint

on the weighted sum of the initiation and elongation rates. This is motivated by the fact that

the biological resources are of course limited. For example, all tRNA molecules are transcribed

by the same transcription factors (TFIIIB) and by RNA polymerase III. Hence, if the produc-

tion of a specific tRNA is increased then the production of some other tRNA must decrease.

This is captured by the constraint on the weighted sum of the rates, since any increase in one

of the rates must be compensated by a decrease in some other rate. This was formulated in

[51] by the following optimization problem.

Problem 1 Fix parameters b, w0, w1, . . ., wn> 0. Maximize R = R(λ0, . . ., λn), with respect to
its parameters λ0, . . ., λn, subject to the constraints:

Xn

i¼0

wili � b;

l0; . . . ; ln � 0:

ð11Þ

In other words, maximize the steady-state protein translation rate given an affine constraint

on the initiation and elongation rates. Here b is the “total available biocellular budget” that can

be spent on all the rates, and the positive values wi, i = 0, . . ., n, can be used to provide a differ-

ent weighting to the different rates.

Problem 1 formalizes, using the RFM, an important problem in both synthetic biology and

biotechnology, namely, determine the transition rates that maximize the protein translation

rate, given the limited biomolecular budget. See Section A.4 for more details on Problem 1.

Here, our goal is to determine what is the steady-state density when the optimal rates are

used (i.e. when we use the rates that maximize the steady-state translation rate under the con-

straints defined in Problem 1). We refer to this as the optimal density. Let e�i , i = 1, . . ., n,
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denote the steady-state density at site i corresponding to the optimal rates l
�

0
; . . . ; l

�

n in Prob-

lem 1.

The next example demonstrates that the optimal solution of Problem 1 typically corre-

sponds to a ribosome density that is one half of the maximal possible ribosome density.

Example 4 Using a simple numerical algorithm we solved 105 instances of Problem 1 for an

RFM with length n = 11 and total budget b = 1. In each instance the weights wi were drawn inde-

pendently from a uniform distribution over the interval [0,1]. For each instance, we computed

the optimal rates l
�

i and the corresponding average steady-state optimal density r�≔ 1

n

Pn
i¼1

e�i .

Fig 5 depicts a normalized histogram (that is, the empirical probability) of the 105 values of ρ�. It

may be observed that typically ρ� is close to 1/2. Similar results are obtained when the weights

are drawn using other statistics, e.g. exponential, Rayleigh, and Gamma distributions.

In the case where all the weights in Problem 1 are equal we can also derive theoretical

results on the structure of the optimal densities and the optimal average density.

Fig 5. Normalized histogram of the optimal steady-state average density of ribosomes ρ* in Example 4. Data based on 105

random instances of solving the translation maximization problem (Problem 1) for an RFM with length n = 11 sites, and total budget b = 1

(see Problem 1). It may be observed that typically ρ* is close to 1/2.

doi:10.1371/journal.pone.0166481.g005
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2.2.1 Homogeneous Affine Constraint. Recall that in Problem 1 the total weighted sum

of the rates is bounded. The different weights can be used to provide a different “importance”

for each rate. For example, if w0 is much larger than the other weights then this means that any

small increase in the initiation rate λ0 will greatly increase the total weighted sum, thus typi-

cally forcing the optimal value l
�

0
to be small. In this section we consider the case where all the

weights are equal. This means that in the optimization problem all the rates have equal impor-

tance. We refer to this case as the homogeneous constraint case. Indeed, in this case the weights

give equal preference to all the rates, so if the corresponding optimal solution satisfies l
�

i > l
�

j

for some i, j then this implies that, in the context of maximizing R, λi is “more important”

than λj. By Eq (20) (see Appendix A), we may assume in this case, without loss of generality,

that w0 = . . . = wn = b = 1, so the constraint in Problem 1 becomes

Xn

i¼0

li � 1: ð12Þ

The next result shows that under the homogeneous constraint (12) the steady-state densities

corresponding to the optimal solution decrease along the chain, that is the steady-state density

at site 1 is the largest, the density at site 2 is the second-largest, etc. It also implies that these

steady-state densities are anti-symmetric with respect to the center of the chain. This property

immediately implies that the optimal average density is one half (i.e. ρ� = 1/2). In other words,

in this case the optimal solution to Problem 1 corresponds to a ribosome density that is one

half of the maximal possible density.

Proposition 4 Consider Problem 1 with the homogeneous constraint (12). Then the optimal
steady-state occupancies satisfy

e�i ¼ 1 � e�n� iþ1
; i ¼ 1; . . . ; n: ð13Þ

If n is even then

e�
1
> � � � > e�n

2
>

1

2
> e�n

2
þ1
> � � � > e�n; ð14Þ

and if n is odd then

e�
1
> � � � > e�n� 1

2
> e�nþ1

2

¼
1

2
> e�nþ2

2

> � � � > e�n: ð15Þ

In both cases, the corresponding optimal density is ρ� = 1/2.

The next example demonstrates the results in Proposition 4.

Example 5 Consider Problem 1 for an RFM with n = 11 and the homogeneous constraint

(12). Fig 6 depicts the optimal values l
�

i , i = 0, . . ., 11. It may be seen that the l
�

i s are symmetric,

i.e. l
�

i ¼ l
�

11� i, and that they increase towards the center of the chain. The corresponding

steady-state distribution is e� = [0.5913, 0.5224, 0.5059, 0.5016, 0.5004, 0.5000, 0.4996, 0.4984,

0.4941, 0.4776, 0.4087]T (see Fig 7). It may be seen that the steady-state densities strictly

decrease along the chain and are anti-symmetric with respect to the center of the chain.

Since the RFM is the dynamic mean-field approximation of TASEP, our results naturally

raise the question of what is the optimal particle density in TASEP, that is, the density yielding

the maximal possible output rate. Recall that each particle models a ribosome and each ribo-

some that leaves the chain produces a protein, so the output rate is also the protein translation

rate. Rigorous analysis of this problem in TASEP seems to be non trivial.
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We used a simple grid-search to address the problem of maximizing the steady-state flow

in HTASEP (i.e. TASEP with all internal rates equal to one) with respect to the parameters α
and β subject to the constraint w1α + w2 β = b. For L = 11 and w1 = w2 = b = 1 the solution is

α� = β� = 1/2, and the corresponding steady-state occupancies (computed using Eq (3.65) in

[30]) are all equal to 1/2. Thus the average optimal density is ρ� = 1/2.

We also ran 10000 tests with w1 and w2 chosen from an independent uniform distribution

on [0,1]. In each case, a simple grid-search was used to find the optimal rates. Fig 8 depicts a

normalized histogram of the optimal average steady-state ribosome density in an HTASEP

with L = 30. It may be seen that the typical optimal density is about 1/2. A similar result has

been reported in [58] that used HTASEP with a superposition of open and periodic boundary

conditions.

These simulation results corroborate the analytic results derived above for the RFM and

RFMR.

Fig 6. Optimal transition rates l
�

i as a function of site index i for an RFM with n = 11 sites. Data obtained by solving the translation

maximization problem (Problem 1) with the homogeneous constraint (12). It may be seen that the optimal transition rates l
�

i s are

symmetric around the center of the chain, with higher values at the center of the chain.

doi:10.1371/journal.pone.0166481.g006
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3 Discussion

A natural analogy for the cell is that of a factory operating complex and inter-dependent bio-

synthesis assembly processes [59]. Increasing the translation rate can be done by both operat-

ing several identical processes in parallel, and by pipelining every single process. In the context

of translation, many mRNA copies of the same gene are translated in parallel, and the same

transcript is simultaneously translated by several ribosomes. A natural question is what is the

density of ribosomes along the transcript that leads to a maximal translation rate. It is clear

that a very small density will not be optimal, and since the ribosomes interact and may jam

each other, a very high density is also not optimal.

We studied this question using dynamical models for ribosome flow in both a linear and a

circular mRNA molecule. Our results show that typically the optimal density is close to one

half of the maximal possible density.

In synthetic biology and biotechnology optimizing the translation rate is a standard goal, and

we believe that our results can provide guidelines for designing and re-engineering transcripts.

Fig 7. Optimal steady-state ribosome densities e�i as a function of site index i for an RFM with n = 11 sites. Data obtained by

solving the translation maximization problem (Problem 1) with the homogeneous constraint (12). It may be seen that the steady-state

densities strictly decrease along the chain and are anti-symmetric with respect to the center of the chain.

doi:10.1371/journal.pone.0166481.g007
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However, in vivo biological regulation of mRNA translation may have several goals besides opti-

mizing the translation rate. For endogenous genes there are many additional constraints that

shape the transcript, translation rates, and ribosome densities. For example, it is known that evo-

lution optimizes not only protein levels, but also attempts to minimize their production cost [60,

61]. This cost may include for example the biocellular budget required for producing the ribo-

somes themselves. Thus, we do not expect that the protein levels of all genes will be maximal.

Rather, we expect that translation is optimized for proteins that are required with high copy

numbers (e.g. those related to house keeping genes and some structural genes).

Furthermore, it is important to mention that there are various additional constraints shap-

ing the coding regions of endogenous genes. These include various regulatory signals related

to various gene expression steps, co-translational folding, and the functionality of the protein

[22, 23, 62–65]. Thus, under these additional constraints we do not necessarily expect to see

ribosome densities that maximize the translation rate.

Fig 8. Normalized histogram of the average steady-state optimal ribosome density ρ* in HTASEP with L = 30 sites, and

stochastic rates that maximize the translation rate. It may be seen that ρ* is typically close to 1/2, collaborating the analytic results

derived for the RFM.

doi:10.1371/journal.pone.0166481.g008
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Indeed, experimental studies of ribosome densities in various organisms demonstrate that

on average 15% − 20% of the mRNA is occupied by ribosomes [66, 67]. However, in 241 genes

in S. cerevisiae more than 40% of the mRNA is occupied by ribosomes [66]. This suggests that

a ribosome density that is close to 1/2 is frequent in certain specific mRNA molecules. In addi-

tion, it seems that under stress conditions ribosomal densities (and traffic jams) increase (see,

e.g. [17]). Thus, under such conditions we expect more mRNAs with ribosome densities close

to 1/2 (see, for example, [68]).

Interestingly, the reported results are also in agreement with genome-wide simulations of

the RFM that were performed based on the modeling of all the endogenous genes of S. cerevi-
siae, as reported in [29]. Indeed, Fig 4C there shows the ribosome density, averaged over all

the sites of all the mRNAs, as a function of the initiation rate. The maximal translation rate

corresponds to an average density of about 1/2.

We note in passing that for an RFM with dimension n, with all the rates equal (i.e.

λ0 = . . . = λn), the average steady-state ribosomal density is 1/2 for all n, and that for an

RFM with dimension n, λ0!1, and equal elongation rates (i.e. λ1 = . . . = λn), the average

steady-state ribosomal density is nþ1

2n , thus approaching 1/2 as n increases [69].

Further studies may consider optimizing the translation rate under various additional con-

straints. For example, it will be interesting to study the optimal ribosome density when taking

into account also the biocellular cost of protein production, or under given constraints on the

allowed density profile, etc. In addition, it will be interesting to study the optimal densities in

more comprehensive models that include competition for the free ribosomes between several

mRNA molecules [57]. Another important issue, that is not captured by the RFM and RFMR,

is that every ribosome covers several codons. Developing and analyzing RFM/RFMR models

with “extended objects” is an important challenge.

Finally, TASEP has been used to model and analyze many other natural and artificial pro-

cesses including traffic flow and the movement of motor proteins. The problem of the optimal

density is of importance in these applications as well.

A Appendix: Mathematical Background and Details

A.1 RFM

Let x(t, a) denote the solution of Eq (1) at time t� 0 for the initial condition x(0) = a. Since every

state variable xi describes the occupation level at site i normalized between zero and one, this

may also be interpreted as the probability that site i contains a ribosome. We always assume that

a belongs to the closed n-dimensional unit cube: Cn ≔ fx 2 Rn : xi 2 ½0; 1�; i ¼ 1; . . . ; ng: It is

straightforward to verify that this implies that x(t, a) 2 Cn for all t� 0. In other words, Cn is an

invariant set of the dynamics [48]. This means that the occupancy levels always remain bounded

between zero and one.

At steady-state, that is for x = e the left-hand side of all the equations in Eq (1) is zero, so

l0ð1 � e1Þ ¼ l1e1ð1 � e2Þ

¼ l2e2ð1 � e3Þ

..

.

¼ ln� 1en� 1ð1 � enÞ

¼ lnen
¼ R:

ð16Þ
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This yields the following expressions for the final ribosome density profile:

en ¼ R=ln;

en� 1 ¼ R=ðln� 1ð1 � enÞÞ;

..

.

e2 ¼ R=ðl2ð1 � e3ÞÞ;

e1 ¼ R=ðl1ð1 � e2ÞÞ;

ð17Þ

and

e1 ¼ 1 � R=l0: ð18Þ

Combining Eqs (17) and (18) provides an elegant finite continued fraction [70] expression

for the steady-state translation rate R in terms of the initiation and elongation rates along the

coding region:

0 ¼ 1 �
R=l0

1 �
R=l1

1 �
R=l2

. .
.

1 �
R=ln� 1

1 � R=ln:

ð19Þ

Note that this equation admits several solutions for R, however, we are interested only in the

unique feasible solution, i.e. the solution corresponding to e 2 Int(Cn). Indeed, this is the only

solution that also yields a value between zero and one for the steady-state ribosome density at

each site.

Note also that Eq (19) implies that

Rðcl0; . . . ; clnÞ ¼ cRðl0; . . . ; lnÞ; for all c > 0; ð20Þ

that is, R(λ0, . . ., λn) is a homogeneous function of degree one. This means that if the initiation

rate and all the translation elongation rates are multiplied by a factor c> 0 then the steady-

state translation rate will also increase by a factor c.
Ref. [51] proved that R(λ0, . . ., λn) is a strictly concave function on Rnþ1

þþ
. Please see the fig-

ures in [51] for an intuitive explanation of this property.

A.2 RFMR

Eq (4) implies that

d
dt

HðxðtÞÞ � 0; for all t � 0;

so the total ribosome density is conserved, i.e.

HðxðtÞÞ ¼ Hðxð0ÞÞ; for all t � 0: ð21Þ

Let R = R(s, λ1, . . ., λn) denote the steady-state translation rate in the RFMR for any x(0)2Ls.

It follows from Eq (4) that R = λi ei(1 − ei + 1), i = 1, . . ., n (recall that in the RFMR, every index

is interpreted modulo n). It is straightforward to verify that for any c> 0

Rðs; cl1; . . . ; clnÞ ¼ cRðs;l1; . . . ; lnÞ: ð22Þ
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This means that if the initiation rate and all the translation elongation rates are multiplied by a

factor c> 0 then the protein translation rate will also increase by a factor c.

A.3 Optimal Density in the RFMR

In order to better understand Fig 4 of Example 2, note that the equilibrium point in the RFMR

satisfies:

e1 þ . . .þ en ¼ s;

and, by Eq (4),

lnenð1 � e1Þ ¼ l1e1ð1 � e2Þ;

¼ l2e2ð1 � e3Þ;

..

.

¼ ln� 1en� 1ð1 � enÞ:

ð23Þ

For any i 2 {1, . . ., n}, let ki≔ λ1. . .λi − 1 λi + 1. . .λn, i.e. the product of all the elongation rates

except for rate i, and let m≔
Pn

i¼1
li, that is, the sum of all the elongation rates. If s� 0 then

all the eis will be small, so we can ignore the terms 1 − ei in Eq (23), and this yields ei �
kis
m

,

i = 1, . . ., n. A similar argument shows that if s� n then ei � 1 �
ki� 1ðn� sÞ

m
, i = 1, . . ., n. For the

particular case in Example 2 this implies that when s� 0 then e� (s/22) [3 1 18]T. In particular,

e2 < e1 < e3. When s� 3 then e� (s/22) [18s − 32 3s + 13 s + 19]T. In particular, e1 < e2 < e3.

In other words, the relative ordering between the steady-state density at each site may change

as the total density changes.

Regrading Proposition 2, it also implies the following. Indeed it follows from Eqs (9) and

(5) that
vi

vi� 1
¼

1� e�i
e�i� 1

, i = 1, 2, . . ., n. This means that vi> vi − 1 if and only if 1 � e�i > e�i� 1
. In other

words, the sensitivity to a change in the total optimal density at site i is larger than the sensitiv-

ity at site i − 1 if and only if the amount of “free space” at site i is larger than the occupancy at

site i − 1.

A.4 Optimal Density in the RFM

Consider Problem 1. It has been shown in [51] that the optimal solution l
�

0
; . . . ; l

�

n always sat-

isfies
Pn

i¼0
wil

�

i ¼ b. Of course, by scaling the wis we may always assume that b = 1. Combin-

ing this with the strict concavity of the steady-state translation rate R(λ0, . . ., λn) in the RFM

implies that Problem 1 is a convex optimization problem that admits a unique optimal solution

l
�
2 Rnþ1

þþ
. Also, this solution can be determined efficiently using numerical algorithms that

scale well with n.

B Appendix: Proofs

Proof of Proposition 1. It follows from known results on the solutions of ODEs that ei is contin-

uous in s for all i. It is known that every ei is strictly increasing in s (see [Theorem 1] in

[31]). Hence, there exists a set E of measure zero such that for all i and all s 2 [0,n] \ E the

derivative e0i≔ d
ds ei exists, and is strictly positive. The steady-state translation rate satisfies
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R = λi ei(1 − ei + 1), for all i = 1, . . ., n. This yields

R0 ¼ liðe
0

ið1 � eiþ1Þ � eie
0

iþ1
Þ; ð24Þ

for all i and all s 2 [0,n] \ E.

Let sgnð�Þ : R! f� 1; 0; 1g denote the sign function, i.e.

sgnðyÞ ¼

1; y > 0;

0; y ¼ 0;

� 1; y < 0:

8
><

>:

We require the following result.

Proposition 5 For any s 2 [0,n] \ E,

sgnðR0Þ ¼ sgnð
Yn

i¼1

ð1 � eiÞ �
Yn

i¼1

eiÞ:

Proof of Proposition 5. Assume that R0 > 0. Then Eq (24) yields

e0ið1 � eiþ1Þ > eie
0

iþ1
; i ¼ 1; . . . ; n:

Multiplying these n inequalities, and using the fact that e0i > 0 for all i yields

Yn

i¼1

ð1 � eiÞ >
Yn

i¼1

ei: ð25Þ

To prove the converse implication, assume that Eq (25) holds. Multiplying both sides of the

inequality by the strictly positive term
Qn

j¼1
e0i yields

Yn

i¼1

ai >
Yn

i¼1

bi;

where ai≔ e0ið1 � eiþ1Þ, and bi≔ eie0iþ1
. This means that aℓ > bℓ for some index ℓ 2 {1, . . ., n}.

Since R0 = λℓ(aℓ − bℓ), it follows that R0 > 0. Thus, we showed that R0 > 0 if and only if
Qn

i¼1
ð1 � eiÞ >

Qn
i¼1

ei. The proof that R0 < 0 if and only if
Qn

i¼1
ð1 � eiÞ <

Qn
i¼1

ei is similar.

This implies that R0 = 0 if and only if
Qn

i¼1
ð1 � eiÞ ¼

Qn
i¼1

ei, and this completes the proof of

Proposition 5.

We can now complete the proof of Proposition 1. Let pðsÞ≔
Qn

i¼1
ð1 � eiÞ, and

qðsÞ≔
Qn

i¼1
ei. Then p(0) = 1, p(n) = 0, q(0) = 0, and q(n) = 1. The strict monotonicity of every

ei implies that p(s) [q(s)] is a strictly decreasing [increasing] function in the interval s 2 [0,n].

This implies that there is a unique s� 2 [0,n] such that p(s�) = q(s�). By Proposition 5, this is the

unique maximizer of R(s), and for s = s�:

e�
1
. . . e�n ¼ ð1 � e�

1
Þ . . . ð1 � e�nÞ: ð26Þ

Also,

R� ¼ l1e�1ð1 � e�
2
Þ

¼ l2e�2ð1 � e�
3
Þ

..

.

¼ lne�nð1 � e�
1
Þ;

ð27Þ
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and this yields ðR�Þn ¼ ðl1 . . . lnÞðe�1 . . . e�nÞðð1 � e�
1
Þ . . . ð1 � e�nÞÞ. Using Eq (26) completes the

proof of Proposition 1.

Proof of Fact 1. For n = 2, Eq (26) yields e�
1
þ e�

2
¼ 1, and substituting this in Eq (27) yields

Eq (7). Consider the case n = 3. Let λ≔ λ1 λ2 λ3. It follows from Eq (27) that

l2l3R� ¼ le�
1
ð1 � e�

2
Þ;

l1l3R� ¼ le�
2
ð1 � e�

3
Þ;

l1l2R� ¼ le�
3
ð1 � e�

1
Þ:

Summing these equations yields

ZR� ¼ ls� � lðe�
1
e�

2
þ e�

2
e�

3
þ e�

3
e�

1
Þ; ð28Þ

where η≔ λ2 λ3 + λ1 λ3 + λ1 λ2. It follows from Eq (26) that

e�
1
e�

2
þ e�

2
e�

3
þ e�

3
e�

1
¼ s� � 1þ 2e�

1
e�

2
e�

3
;

and substituting this in Eq (28) yields ZR� ¼ lð1 � 2e�
1
e�

2
e�

3
Þ. Applying Eq (6) completes the

proof.

Proof of Proposition 2. Write Eq (24) as

Dðe�Þ0 ¼ Cðe�Þ0; ð29Þ

where D≔ diagð1 � e�
2
; 1 � e�

3
; . . . ; 1 � e�n; 1 � e�

1
Þ, and

C≔

0 e�
1

0 0 . . . 0 0

0 0 e�
2

0 . . . 0 0

..

.

0 0 0 0 . . . 0 e�n� 1

e�n 0 0 0 . . . 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

Note that C is cyclic of order n, so multiplying Eq (29) by Cn−1 yields

Hðe�Þ0 ¼ ðe�
1
. . . e�nÞðe

�Þ
0
; ð30Þ

where H≔ Cn−1 D. In other words, (e�)0 is an eigenvector of H corresponding to the eigen-

value ðe�
1
. . . e�nÞ. The cyclic structure of C implies that

Cn� 1 ¼

0 0 . . . 0 m�
1

m�
2

0 . . . 0 0

..

.

0 . . . m�n� 1
0 0

0 0 . . . m�n 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

where m�i ≔ e�i e
�
iþ1

. . . e�iþn� 2
, with all indexes interpreted modulo n (e.g., e�nþ1

¼ e�
1
). Now it is

straightforward to verify that (e�)0 = cv, with c 6¼ 0, is the only solution of Eq (30). Since every ei
increases with s, we conclude that c> 0. Furthermore,

Pn
i¼1

e�i ¼ s implies that
Pn

i¼1
ðe�i Þ

0
¼ 1,

and this completes the proof.

Proof of Proposition 3. The proof follows immediately from the following result.
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Proposition 6 Consider an RFMR with dimension n, and suppose that the transition rates
satisfy λi = λn−i for all i. Then

1. e�i ¼ e�nþ1� i for any i;

2. R(s) = R(n − s) for any s 2 [0,n], and R(s1)< R(s2) for any 0� s1 < s2� n/2.

This means in particular that R(s) is symmetric with respect to s = n/2, and is strictly

increasing in the interval [0,n/2).

Proof of Proposition 6. Given an RFMR with dimension n, and rates λi, i = 1, . . ., n, let

�xiðtÞ≔ 1 � xnþ1� iðtÞ, i = 1, . . ., n. Then using the equation

_xi ¼ li� 1xi� 1ð1 � xiÞ � lixið1 � xiþ1Þ

yields

_�xi ¼
�l i� 1�xi� 1ð1 � �xiÞ �

�l i�xið1 � �xiþ1Þ;

with �l i≔ ln� i (recall that all indexes are interpreted modulo n). This is again an RFMR. Fix an

arbitrary s 2 [0,n]. Then for any x(0) such that 1T
n xð0Þ ¼ s we have 1T

n �xð0Þ ¼ n � s. Therefore,

the x system converges to e = e(s, λ1, . . ., λn), and the �x system to �e ¼ eðn � s; �l1; . . . ; �lnÞ. This

implies that eiðs; l1; . . . ; lnÞ ¼ 1 � enþ1� iðn � s; �l1; . . . ; �lnÞ for all i. The steady-state transla-

tion rate in the �x system is

�R ¼ �ln�enð1 � �e1Þ

¼ lnð1 � e1Þen
¼ R:

If the rates satisfy λi = λn−i for all i then ei(s) = 1 − en+1 − i(s) for all i, and R(s) = R(n − s). By

Proposition 1, this means that R� = R(n/2). Combining this with the results in the proof of

Proposition 1 completes the proof of Proposition 6.

Proof of Proposition 4. Consider Problem 1 and the homogeneous constraint (12). By [Prop-

osition 4] in [71]:

e�i ¼ 1 � e�n� iþ1
; ð31Þ

and

l
�

i

l
�

i� 1

¼
e�i

1 � e�i
; ð32Þ

i = 1, . . ., n, and by [Theorem 1] in [71]:

l
�

0
< l

�

1
< . . . < l

�

bn=2c
; ð33Þ

and

l
�

i ¼ l
�

n� i; i ¼ 0; . . . ; n: ð34Þ

Thus, Eq (31) proves Eq (13), and combining Eqs (33), (34) and (32) yields Eqs (14) and (15).
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