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Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that

allows for multiparametric quantitative characterization of the tissues of

interest in a single acquisition. In particular, it has gained attention in the

field of cardiac imaging due to its ability to provide simultaneous and

co-registered myocardial T1 and T2 mapping in a single breath-held cardiac

MRF scan, in addition to other parameters. Initial results in small healthy

subject groups and clinical studies have demonstrated the feasibility and

potential of MRF imaging. Ongoing research is being conducted to improve

the accuracy, e�ciency, and robustness of cardiac MRF. However, these

improvements usually increase the complexity of image reconstruction and

dictionary generation and introduce the need for sequence optimization. Each

of these steps increase the computational demand and processing time of

MRF. The latest advances in artificial intelligence (AI), including progress in

deep learning and the development of neural networks for MRI, now present

an opportunity to e�ciently address these issues. Artificial intelligence can

be used to optimize candidate sequences and reduce the memory demand

and computational time required for reconstruction and post-processing.

Recently, proposed machine learning-based approaches have been shown to

reduce dictionary generation and reconstruction times by several orders of

magnitude. Such applications of AI should help to remove these bottlenecks

and speed up cardiac MRF, improving its practical utility and allowing for

its potential inclusion in clinical routine. This review aims to summarize the

latest developments in artificial intelligence applied to cardiacMRF. Particularly,

we focus on the application of machine learning at di�erent steps of the

MRF process, such as sequence optimization, dictionary generation and

image reconstruction.
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magnetic resonance fingerprinting (MRF), artificial intelligence (AI), cardiac MRF,
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Introduction

Cardiac magnetic resonance
fingerprinting

Cardiac Magnetic Resonance (CMR) imaging is widely

accepted as a key non-invasive imaging technique for the

evaluation of cardiovascular diseases (1). CMR enables

comprehensive myocardial tissue characterization, evaluating

specific parameters such as T1, T2 and T1ρ, relaxation times

and extracellular volume (2–5). Hence, quantitative mapping

of these parameters of interest has become a primary tool

for diagnosis of cardiomyopathies. Conventionally, several

MRI scans using different protocols are acquired sequentially

to provide multiparametric quantification by encoding one

parameter at a time. However, this methodology is time

consuming and leads to long scan times, patient discomfort,

and mis-registered parameter maps. In contrast, simultaneous

quantification of multiple parameters would address several

of these issues, making multiparametric quantitative CMR

appealing for widespread use in the clinical routine.

Many simultaneous multiparametric approaches have

recently been proposed to address these issues and

provide co-registered multiparametric quantification,

including Multitasking (6, 7), steady-state techniques with

multiparametric encoding (8, 9), other free-running approaches

(10, 11) and Magnetic Resonance Fingerprinting (MRF), (12).

MRF has the potential to provide not only multiple co-registered

parametric maps in a time-efficient manner but can also include

additional model corrections [e.g., B0 (12), B1 (13), slice profile

(14)]. UnderlyingMRF is the concept that each tissue has unique

properties (such as T1 and T2) and thus unique signal evolutions

for a given sequence. By varying several sequence parameters

(such as flip angle, repetition time or magnetization preparation

pulses) throughout the acquisition (see Figures 1A1,A2), unique

signal evolutions (or “fingerprints”) for each combination of

parameters of interest are created. Beforehand, a large dictionary

(lookup table) of usually 104 to 108 parameter combinations and

signal evolutions can be pre-calculated (Figure 1C), knowing

the sequence details [using, for example Bloch simulations

(15) or Extended Phase Graphs (EPG) (16)], and reutilized for

the subsequent scans provided that the acquisition parameters

remain unchanged. The measured signal evolution is then

compared against the expected signal behavior via dictionary

matching to simultaneously estimate the parametric maps in a

voxel-wise basis, [respectively Figures 1D,E, (10)].

Although the original MRF work was proposed on brain

MRI, the technique was rapidly implemented for other anatomic

regions, including cardiac MRF (17). Compared to conventional

MRF, cardiac MRF faces two main challenges derived for the

inevitable heart motion that occurs during a scan. Firstly, since

the heart is beating while the scan is being performed, the

acquisition needs to be ECG-triggered, so that the acquisition

window is always in the same cardiac phase. However, since

the cardiac wave cannot be predicted, the dictionary must be

specifically calculated for each subject once the acquisition has

been performed to include the exact cardiac rhythm measured

by the ECG. Secondly, cardiac and respiratory motions may

affect MR image quality considerably. Therefore, scans are

usually performed under breath-hold and on a short cardiac

acquisition window (usually at mid-diastole), limiting the

feasible scan time to the breath-hold duration and resulting in

very highly undersampled data.

Despite these challenges, the field of cardiac MRF has

experienced rapid growth. Many efforts have focused on

improving its diagnostic potential by; extending the number

of encoded parameters beyond just T1 and T2 [e.g., fat

fraction (18), T∗2 (19), T1ρ (20)], optimizing sequence design

(21), fast and robust dictionary generation (22–25) and

advanced undersampled image reconstruction (26–28) among

others. However, most of these techniques are computationally

expensive using conventional methods, limiting their practical

utility. There is still much room for improvement, and

the integration of state-of-the-art developments in Artificial

Intelligence (AI) and Deep Learning (DL) could help solve these

and other challenges in cardiac MRF.

Artificial intelligence and deep learning

Artificial Intelligence refers to the ability of machines or

computer algorithms to perform tasks that would typically

require human intelligence (Figure 2). Machine learning (ML)

is a subfield of AI where a model learns how to make

predictions for a specific problem using relevant training

data. In this way, the features of the model are learnt from

relevant training examples without the need of explicitly pre-

programmed rules, allowing the model to generalize and make

predictions for unseen examples. The most advanced form of

ML is DL, that uses multi-layered artificial Neural Networks

(NNs) consisting of artificial neurons, inspired by biological

neural networks. NNs are universal approximators (29), in

theory able to approximate any Borel measurable function

with a finite number of neurons. Thus, NNs can offer a

more compact representation of complicated functions allowing

for more efficient calculation. They are therefore ideal for

cardiac MRF that involves complex acquisition strategies, scan-

specific information, multi-dimensional image data dominated

by noise, complicated reconstruction steps and computationally

expensive calculations using conventional methods. Indeed,

the ability of ML and DL has already been proven to be of

great value in many domains of CMR imaging (30, 31), from

image reconstruction (32–34) to diagnosis of cardiomyopathies

(35, 36), reporting of cardiac function (37, 38), segmentation

of cardiac CINE imaging (39, 40) and quantification of tissue

parameters (41).
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FIGURE 1

An overview of cardiac MRF framework. (A1) Repetition time (TR) and variable flip angles (FA) may be pseudo-randomly varied throughout

acquisition. (A2) Magnetization preparation pulses are introduced to increment contrast weighing on the desired parameters (in this example

Inversion Recovery, (IR pulses, in red), T2 preparation, (T2 prep pulses in green) and T1ρ preparation, (T1ρ prep pulses in blue) are included to

(Continued)
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FIGURE 1 (Continued)

encode T1 and T2 contrasts before some heartbeats). (B) Highly undersampled images are obtained, and (C) a subject-specific dictionary due to

the unique cardiac rhythm during the scan is calculated in parallel. (D) Matching the temporal evolution of the signal measured with the

dictionary will provide (E) inherently co-registered parametric maps of the scanned region. The di�erent colored dots in (A1) correspond to

di�erent timepoints and contrasts (B) during the sequence.

FIGURE 2

Left: Artificial Intelligence (AI) encompasses tasks performed by machines and computers that would normally require human intelligence. A

subfield of AI is Machine Learning (ML), a technique whereby computer algorithms learn to perform a task from training data rather than

requiring explicitly pre-programmed rules, allowing them to provide predictions for unseen examples. Deep Learning (DL) is a subfield of ML

that uses artificial Neural Networks (NNs), modeled on neurons in the human brain, trained using data to provide predictions. Right: NN

architectures used in cardiac MRF. Feedforward neural networks consist of an input later which could be for example a fingerprint in MRF,

followed by a series of hidden layers, followed by a final output later that could output for example tissue parameters. RNNs are ideal for

sequence data and take an input timepoint, along with an internal hidden state that encodes information from previous data in the sequence,

thus incorporating memory of previous patterns in the sequence.

In traditional ML, measurable properties known as features

are first extracted from relevant data. These features are then

input into the model as training data, training the model

parameters so that the model can find and generate accurate

predictions of general underlying patterns using an optimization

algorithm. The optimization algorithm measures the accuracy

of these predictions using some quality measure, for example,

the mean absolute error calculating the mean difference between

predicted and ground truth values. The ability of the model

to generalize is measured on a separate validation dataset. The

accuracy of the predictions from the validation dataset are

then used to optimize model parameters and prevent over-

fitting to the training data. Finally, the model is evaluated on

a separate held-out test dataset to simulate how the model

will perform on unseen data. In medical imaging, models

are often trained using supervised learning, where data is

accompanied with ground truth labels. An example in cardiac

MRF would be predicting signal evolutions labeled with ground

truth parameter combinations and RR intervals (the time

between successive R peaks determined from ECG data which

itself is used to trigger the acquisitions in cardiac MRF).

Models can also be trained in an unsupervised manner, where

no labels are given. Autoencoders are one example, where

a sparse representation of the data is learnt from unlabeled

data and then this encoding is used to regenerate the input

data, which can be useful for denoising applications. Self-

supervised learning is a subset of unsupervised learning where

supervisory signals are obtained from the data itself. For

example, a cardiac motion algorithm can be trained without

labels by using the motion estimation predictions to warp one

cardiac phase to another and a loss term calculated between

the now-similar images. Typically, there are a large number of

features that the algorithm can use, and the accuracy of the

model increases when more relevant features are used. The

art of designing the optimal combination of features is called

feature engineering but this can be a difficult task, usually

requiring an experienced user and even so, the optimal features

for a certain dataset are unlikely to be optimal for a slightly

different one.

DL (42, 43) algorithms can learn features automatically

from the dataset by themselves, removing the need to extract

and select relevant features. NNs consist of multiple layers of

connected nodes, called neurons, mimicking the behavior of

the nervous system in humans. Each neuron is a mathematical

function that takes one or more inputs and sums them with

weights learnt during training, this is then passed through a

non-linear activation function to produce an output. The NN

is made up of layers of neurons with the outputs of one layer
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FIGURE 3

The cardiac MRF workflow from sequence design and optimization through to parameter map estimation and potential uses of cardiac MRF

data, where DL-based analyses such as Radiomics can be used to provide a diagnosis or predict outcomes. Black arrows indicate the flow of

steps taken in the cardiac MRF workflow. The red dashed arrows indicate steps where DL methods have or could be applied within this workflow.

forming the inputs for the next layer and the depth of the

network is given by the number of layers contained within

the model. Recently, rapid advances in DL have been made

due to the combination of the availability of large high-quality

training datasets and tweaks to the architecture of NNs capable

of extracting features. Alongside this, advances in GPUs for

parallel computation and open-source libraries to construct and

train DL algorithms have aided its adoption. There are a broad

range of concepts and types of models within the field of DL,

and a full description of them is outside the scope of this review.

Thus, here only a small selection of terms of interest relevant to

DL applications in CMR and more specifically in cardiac MRF

will be briefly introduced.

Deep learning in cardiac MR

In DL for medical imaging and in particular for CMR

imaging, input data is typically information obtained from the

scanner, such as signal evolutions, k-space data or reconstructed

images. The type of NN model these data are input into
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FIGURE 4

Parameter maps generated by a NN for cardiac MRF from Hamilton et al. (82) for two healthy subjects and compared to maps generated using

dictionary matching. The feedforward network with skip connections that was used takes the real and imaginary components of the fingerprint

and the RR intervals as input and outputs parameter estimates for T1 and T2 on a fingerprint-wise basis. The network produces accurate

parameter estimations for di�erent cardiac rhythms, even for subject B, with a variable heart rate and 1 missed ECG-trigger.

FIGURE 5

Spatially-regularized convolutional neural network from Balsiger et al. (90). In addition to the temporal information from each fingerprint, for

each voxel a HxWxT patch of undersampled image data is used to calculate the parameter maps [in their work, Balsiger et al. (90) employ a patch

size of H = W = 15]. The network achieves improved accuracy by incorporating spatial regularization in the map generation process from

undersampled image data.

will affect the predicted outputs and the overall accuracy

of the trained network. Hence, different types of network

architecture are more suited to different types of data and

problems. As an example, an image can be made up of

patches of highly correlated data that form specific patterns

or features such as edges, corners, ridges and blobs. A

discrete convolution, a mathematical operation, can be used

to filter these patches, hence a stack of convolutions can

extract complex information and features from an image.

Convolutional Neural Networks (CNNs) have been proven

to be a powerful tool when working with imaging data

and are widely applied in CMR. However, if the input

is a set of temporal signal evolutions measured from a

scan, a CNN may be less efficient than other types of

networks better suited for long sequential datasets. Instead,

recurrent neural networks (RNNs) such as long short-term

memory (LSTM) networks can be used. These networks can

track dependencies over a large number of time steps and

remember previous inputs, making themmore suitable for time-

series predictions.
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A good understanding of the type of input data and the

nature of the problem is important to properly exploit AI

for medical imaging. Accelerated (i.e., undersampled) CMR

acquisitions lead to ill-posed inverse reconstruction problems.

Many techniques, such as compressed sensing (44, 45) or low-

rank-based reconstructions (26, 28), have been proposed to

tackle these undersampled problems. However, the non-linear

nature of the problems to be solved leads to long reconstruction

times, in addition to the parameter tuning required for an

optimal regularization. Several DL-based alternatives have been

proposed to overcome these limitations and enable not only

highly accelerated acquisitions in short reconstruction times

(32, 33, 46–51), but also a wide range or AI-aided solutions

for CMR segmentation (40) and analysis or outcome prediction

(52, 53) among others.

Beyond quantitative CMR, many of the ideas in these studies

have been successfully applied in MRF with the potential to be

employed in cardiac MRF. Some of the most interesting ideas in

AI along with their potential use in cardiac MRF are presented

in the following sections.

Artificial intelligence in cardiac MRF

Conventional cardiac MRF is a powerful technique for

quantitative parameter estimation. However, the computational

burden of dictionary generation and pattern matching grows

exponentially with the number of parameters considered.

Dictionary generation and pattern matching is especially

challenging for cardiac MRF as it must incorporate information

about subject-specific heart rate variability throughout the

scan. In addition, the short acquisition times required for a

cardiac MRF sequence to be feasible within a breath-hold

means high acceleration factors must be used, leading to

very highly undersampled k-space that must be reconstructed.

Furthermore, since cardiac MRF sequences are frequently

designed heuristically, it may be possible to further optimize

sequence design to both shorten scan times and provide better

discrimination between the parameters of interest. ML offers

the ability to solve these problems and it has been or has the

potential to be applied to each of these problems, to both speed

up acquisition and reconstruction and optimize MRF sequences

(see Figure 3).

Dictionary generation

Dictionaries are conventionally generated using Bloch

equation simulations or EPG calculations (16). The size of a

dictionary and thus the time required to generate it scales with

the sequence length (number of TRs) and the number of unique

parameter combinations considered. Indeed, the size and thus

time taken to simulate a dictionary grows exponentially with

the number of tissue properties considered. For example, the

dictionary for a 15 heartbeat T1, T2 cardiac MRF sequence

contained 26,680 parameter combinations with 750 TRs and

took 2.2min to generate (54). However, the dictionary for a

16 heartbeat T1, T2, T1ρ cardiac MRF scan contained signal

evolutions for 253,000 parameter combinations with 480 time

points (20) and can take ∼15min to generate using EPG

simulations on a standard multicore CPU-based workstation.

As mentioned above, cardiac MRF differs from regular

MRF as it uses ECG triggering to acquire signals during

the same cardiac phase, across different heartbeats, to reduce

artifacts from cardiac motion. This introduces a dependency of

the measured signal evolutions on the subject-specific cardiac

rhythm. Unlike MRF, where the pulse sequence is fixed and

dictionaries can be generated ahead of time and used for all

future scans, dictionaries for cardiac MRFmust be calculated for

each new scan using the measured RR intervals derived from

ECG data recorded during the scan. This problem is further

complicated when a more granular dictionary is required to

reduce quantization errors, or as the number of modeled or

encoded parameters is increased. This significant bottleneck

presents a barrier to clinical adoption where long computation

times for short scans hamper online parameter map generation

in a fast-paced clinical workflow.

ML offers the promise of learning a surrogate model that can

approximate the Bloch equations, turning dictionary generation

into a straightforward pass through a NN. This provides the

possibility of rapidly generating dictionaries in real-time, crucial

for subject-specific cardiac MRF scans. Furthermore, rapid

dictionary generation using ML makes it possible to quickly

simulate dictionaries that consider larger numbers of parameters

as well as aiding in applications such as sequence optimization

where many different dictionaries must be generated. In the

following sections we will explore in more detail studies where

ML has been applied to the problem of dictionary generation in

cardiac and non-cardiac MRF.

Fully connected feedforward neural network

A fully connected neural network has been proposed for

generating dictionaries for a 16 heartbeat T1 and T2 cardiac

MRF sequence (55). The network takes as input a 17-element

vector consisting of T1 and T2 parameters plus 15 RR intervals.

The input data, passes to two fully connected layers of 300

neurons, each followed by batch normalization and a ReLU

activation function. The final output layer consists of 1,536

outputs corresponding to the real and imaginary components of

the signal evolution of 768 TRs.

Tomodel heart rate variability, the network was trained with

dictionaries corresponding to 1,020 different cardiac rhythms.

The mean of the RRs for each dictionary was varied from 40 to

120 beats per min (bpm) with a step size of 5 bpm. Noise was

added to these RRs to simulate heart rate variability, with noise
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of standard deviation ranging from 0% to 50% of the mean RRs

for a given dictionary. In total 4,392 T1 and T2 combinations

were simulated for each dictionary resulting in ∼4.5 million

signal evolutions for training. In addition, missed ECG triggers

were modeled with a 5% chance of each beat being a missed

trigger, doubling the RR.

The network provided a significant time saving, generating

a dictionary of 26,680 T1 and T2 combinations in just

0.8 s compared to 158 s using Bloch equations. Monte Carlo

simulations were performed for a range of cardiac rhythms

where for each rhythm, 500 dictionaries were generated using

the network and the best-matching entry was found for a ground

truth signal representative of healthy myocardium. The root

mean square error (RMSE) for T1 and T2 for these simulations

was found to be 2% or lower except for low heart rates with

high variability. Further simulations, modeling up to 8 ECG

missed trigger events showed the RMSE values to always be

below 3%. The NN-generated dictionaries were also validated

using phantoms and on in vivo cardiac mapping in healthy

subjects. Maps constructed using the NN generated dictionaries

appeared similar to those generated with dictionaries fromBloch

equations, and there was 6.1ms bias for T1 and 0.2ms bias

for T2.

Significantly, this network focused on cardiac MRF,

considered a wide range of cardiac rhythms, mis-triggering

events, and evaluated the generated dictionaries on phantom

and in vivo data. However, the network only considered

sequences encoding T1 and T2. Further improvements could

extend this work to sequences encoding additional parameters.

Furthermore, rather than training the network solely on

simulated data, actual ECG data could be incorporated, thus

exposing the network to cardiac rhythms and parameter

combinations that may exist in real scans but may not be fully

represented in simulated training data.

Generative adversarial networks

A different approach using generative adversarial networks

(GANs) (56) has been applied to the problem of generating T1

and T2 dictionaries for MRF in the brain (57). This approach

consists of a generative network that is given T1 and T2

tissue parameters, sequence parameters and pure random noise

signals. It consists of 3 hidden layers of 128 neurons each

followed by ReLU activation functions and an output layer

with a hyperbolic tangent activation function with 1,000 output

elements, mimicking a fingerprint. The discriminator network

takes as input MR fingerprints, either generated by Bloch

simulations or the generator network. It has a similar internal

structure as the generative network, but it has an output layer

with a sigmoid activation function, that represents a probability

that the input fingerprint was simulated by Bloch equation

simulations. The two networks are trained together, acting as

two players in a min-max game, with the generator mimicking

fingerprints to fool the discriminator and the discriminator

improving such that it can distinguish between generated and

ground truth fingerprints.

Fingerprints for a total of 5,970 T1 and T2 combinations

were calculated using Bloch equations, each with 1,000 TRs. A

60:20:20 training, validation, test split was used to train and

evaluate the model.

The GAN-MRF model introduced in Yang et al. (57)

could generate a dictionary in 0.3 seconds with Python and

Tensorflow, compared to several hours using Bloch simulations

in MATLAB. Fingerprints synthesized by the GAN-MRF model

were compared to those from Bloch equation simulations for

white and gray matter and cerebrospinal fluid and provided a

goodmatch. A dictionary generated using the GAN-MRFmodel

was used to reconstruct in vivo T1 and T2 maps and compared

to benchmarkmaps reconstructed using a dictionary from Bloch

equation simulations. The maps showed little difference, with

RMSE of 0.55 and 2.66%, respectively for T1 and T2 maps,

respectively. Additionally, the scalability of this method was

tested by using coarser and finer dictionaries, compared to the

grid of parameter combinations used in training, to reconstruct

the in vivo maps. Again, good results were found with 1.69%

and 6.39% RMSE, respectively for T1 and T2 maps for the

coarse dictionary.

While the GAN-MRF model was only evaluated on brain

MRF sequences, a similar model could be trained for cardiac

MRF. However, GANs can be difficult to train due to the non-

convex nature of the min-max problem and mode collapse,

where the generator can learn a single pattern that seems the

most plausible to the discriminator, thus fooling it. This is

especially true when GANs are required to generate a wide

variety of outputs, as is the case in MRF dictionary generation.

Yang et al. (57) use regularization and a modified loss function

to counter these affects. However, this requires a model-specific

regularization parameter to be chosen. Also, convergence of the

GAN during training will likely be more elusive for cardiac

MRF due to increased variety in the fingerprints introduced

by many additional degrees of freedom as a result of cardiac

rhythm dependence.

Invertible neural networks

Invertible neural networks (INNs) (58) have also been

employed to generate fingerprints from parameters in addition

to predicting parameters from signal evolutions (59). Truly

INNs such as NICE (60) and RealNVP (61) (the latter based

upon real valued non-volume preserving transformations) are

constructed of coupling layers, are invertible by design and

have tractable Jacobian determinants and can thus easily be

trained. Ardizzone et al. extended the RealNVP architecture to

calculate posteriors for real-world inverse problems in natural

sciences (58). Using this framework, an INN based upon a
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RealNVP (61) architecture, with two reversible blocks and two

permutation layers, was trained on a T1 and fat fraction (T1-

FF) MRF sequence (62) for diseased skeletal muscle with 175

TRs. Within each invertible block, two fully connected layers

were used with 128 neurons, each followed by a ReLU and linear

activation function. Dictionaries encoding Fat fraction, T1,H2O,

T1,fat and B1 were simulated with 396,000, 6,720 and 26,880

entries used, respectively for training, validation and testing. As

well as providing good results for parameter matching when the

INN is evaluated in the backwards direction (see Section Pattern

matching), the estimated fingerprints were very accurate, with

inner products between predicted and reference fingerprints >

0.997 for the majority of parameter combinations.

However, this INN was trained for a non-cardiac

musculoskeletal sequence. Thus, it does not encode the

additional degrees of freedom due to heart rate variability

that is seen in cardiac sequences. Additionally, as with most

inverse problems, while there is a direct mapping from physical

parameters to signal evolutions, some information is lost in

this forwards process. Thus, the backwards process (estimating

tissue parameters from MRF signals) is often ambiguous, and

a single fingerprint could correspond to a range of parameter

combinations. Due to the cyclic nature of the INN and the

fact no latent space was used to encode this information that

is lost, large errors in this often-ambiguous backwards process

can result in larger errors in the well-defined forwards process,

hampering dictionary generation for some tissue combinations.

Finally, dictionaries generated using this INN for non-cardiac

MRF were not used to reconstruct in vivo data, nor was the

parameter estimation part of the network evaluated on in

vivo data.

Recurrent neural networks

RNNs, (see Figure 2) are capable of memorizing temporal

structures within sequences and are therefore good candidates

for dictionary generation in MRF. For instance, Liu et al. (63)

propose a RNN as a surrogate model for dictionary generation

for non-cardiac MRF. A novel feature of this network is that

it is capable of modeling MRF signal evolutions resulting

from different sequence parameters, in addition to encoding

dependencies on tissue parameters. To achieve this, their RNN

takes both tissue parameters and sequence parameters (such

as repetition times, flip angles and sequence length) as inputs,

and outputs MRF signal evolutions. Their RNN architecture

consists of three stacked gated recurrent units (GRUs) and a

linear layer, to generate the transversal magnetization and its

derivates for every nth echo. This RNN can generate a dictionary

three orders of magnitude faster than the snapMRF (25) GPU-

accelerated EPG simulation package. As the RNN can rapidly

generate both signal evolutions and derivative signals with

respect to tissue parameters it is an ideal candidate for sequence

optimization based upon Cramer-Rao lower bound (CRLB, see

Section Sequence optimization). Liu et al. demonstrate that by

using their RNN to optimize an MRF sequence, they improve

the relative error in reconstructed in vivo brain T2 maps from

12.75 to 3.63%. The key advantage of this RNN is that it

can generalize to predict fingerprints and their derivatives for

different sequence parameters, compared to most networks that

are trained for a specific sequence. However, the RNN was ∼24

times slower generating dictionaries than the network proposed

by Hamilton et al. (55). Extending the RNN to encode cardiac

rhythm dependence for cardiac MRF would likely require

significantly more training data, longer training times and a

model with more layers and parameters.

Undersampled reconstruction of
time-series MRF images

The next significant step in the MRF framework is the

reconstruction of acquired undersampled data. In the case of

cardiac MRF, there is a need to execute the sequence in a short

time (so it can be run within a breath-hold) and within short

acquisition windows (so there is minimal corruption by cardiac

motion). This usually translates into elevated acceleration

factors, which leads to very highly undersampled k-space

data of the order of 10x-102x and produces severely aliased

images at each timepoint. This can be alleviated by exploiting

redundancy in the acquired data, as in Cruz et al. (64, 65),

where a regularized low-rank high-dimensional patch-based

tensor is used to improve the reconstructed image quality

noticeably despite high undersampling factors, although this

adds computational expense.

Cardiac MRF could benefit from recent advances in

Deep MR quantitative imaging where end-to-end DL-based

approaches (66–71), reconstructing images and maps from k-

space data, have been explored. Although the literature on this

topic is vast, there are reviews that summarize much of this work

(41, 72). Some of the most relevant studies are mentioned here.

For instance, Jeelani et al. (73) propose a CNN, where

spatial and temporal information is exploited for fast end-to-

end myocardial T1 mapping, using MOLLI weighted images as

the network’s input. Cheng et al. (74) propose an unsupervised

end-to-end network for T1? mapping of knee cartilage.

The network has a compressed sensing loss function and

an unrolled approach with two chained networks, one to

generate reconstructed contrast-weighted images and another

for map generation. Their approach generates both maps and

contrast-weighted images from undersampled k-space data

and incorporates data consistency, the sparse prior of the

image and prior information provided by the signal model. By

using a compressed sensing loss function and training in an

unsupervisedmanner, their network eliminates the need for fully

sampled training data needed for supervised approaches, as is
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the case for MANTIS (67). A similar approach could be used for

cardiac MRF by replacing the map generation network with one

that incorporates cardiac rhythm dependencies.

The reconstruction process within cardiac MRF could also

benefit from the advances in dynamic MR reconstruction.

For instance, Qin et al. (75) propose a 3D Convolutional

recurrent neural network (CRNN) able to faithfully produce

CINE image reconstructions from 9x undersampled data, by

learning from information propagated along time dimension

and also through iterations.

A large number of scans are usually required for

optimal training of a NN, especially in multiparametric

CMR reconstruction with its dependency on subject-specific

cardiac rhythms during acquisition. Ulyanov et al. (76) propose

Deep Image Priors, a possible solution to this drawback. In

their work, they show that the structure of deep convolutional

generator networks can sufficiently capture enough image

statistics prior to any learning. Hence, inverse problems such

as MR reconstruction can be solved by randomly initializing a

NN’s parameters and searching for the optimal parameters to

accurately reconstruct an image from a single degraded input

image on an image-by-image basis. As a result, this eliminates

the requirement for a large number of scans for training data.

This method has already been successfully applied to dynamic

MR reconstruction (77) and T2 mapping from undersampled

data (78). Recently, low-rank subspace modeling has been

combined with a deep image prior for a cardiac MRF sequence

in a self-supervised framework (79). This results in improved

quality of reconstructed maps, reduced noise and aliasing

artifacts, enabling the sequence to be modified to both improve

scan efficiency and reduce motion artifacts.

Pattern matching

Conventionally, pattern matching or template matching for

MRF involves an exhaustive search of the dictionary receiving

as input the reconstructed time-series MRF images. For a given

voxel, the dot product between the measured signal and each

of the dictionary entries is calculated. In this way, a measured

fingerprint is matched to the most similar signal evolution in the

dictionary, and the voxel is assigned the parameter combination

corresponding to that entry. While this method can find the

globally optimal match from all simulated fingerprints, in the

case of cardiac MRF it first requires a subject-specific dictionary

to be generated which can require large amounts of storage.

Also, both the dictionary generation and dot product matching

become prohibitively computationally expensive as the size of

the dictionary grows with the number of parameters encoded in

the sequence or as the sampling along each dictionary dimension

becomes more granular. Dot product matching can also result

in quantization errors as parameter estimation is limited by the

discrete step sizes used in simulating the dictionary.

Improvements to conventional pattern matching have been

proposed. One approach, tested for dictionary sizes of 104

to 105, snapMRF (25), parallelizes dictionary generation and

pattern matching on the GPU and results in 10–100 times

speed-up for pattern matching compared to other open-source

packages. Singular value decomposition (SVD), where the

dictionary and observed signals are compressed in the time

domain and matching is then performed in the compressed

space, without sacrificing signal-to-noise ratio (SNR), has been

proposed. Accelerated dictionary search methods, including fast

group matching (80) and the Fast Library for Approximate

Nearest Neighbors (FLANN) (81), first group similar dictionary

entries and compare measured signals to representative signals

for these groups, which are successively pruned. In this way

only a portion of the total dictionary entries are searched

over, and fast dictionary matching proves to be almost two

orders of magnitude faster than an exhaustive search of the

dictionary. Similarly MRF-ZOOM (23), iteratively refines its

parameter estimation by searching over a more coarse version

of the dictionary.

However, in the case of cardiac MRF, these methods still

require a subject-specific dictionary to be generated, which

itself is a significant computational bottleneck. Further to this,

SVD requires the dictionary to be compressed and accelerated

dictionary matching techniques require some grouping of

dictionary entries, both of which must be repeated with each

new scan and thus dictionary for cardiac MRF. Finally, all these

methods depend on a dictionary and as a result they are limited

by the discrete sampling used when generating the dictionary.

DL-based methods additionally offer the promise of

completely bypassing the dictionary generation step, and to

generate MRF parametric maps in real time with continuous

variables. A NN can be trained as a surrogate model to learn

the mapping from measured signals to tissue properties. These

methods can transform the pattern matching step from an

optimization-based problem, the complexity of which grows

exponentially with the number of parameters modeled, to a

much faster forward pass through a network. DL methods either

work on a fingerprint-wise basis, reconstructing individual

fingerprints, or on a spatially regularized basis, reconstructing

a small patch of data and leveraging information from

neighboring fingerprints that is likely correlated. They are

typically trained on noiseless data from dictionaries or acquired

in vivo data where it is also possible for NNs to reduce the

amount of noise and aliasing in reconstructed maps compared

to conventional dictionary matching. In the following sections

we will discuss some of these different approaches for cardiac

MRF and non-cardiac MRF.

Fully connected networks

Fully connected neural networks (FCNN) have been

proposed to perform pattern matching on a voxel-wise basis

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1009131
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Velasco et al. 10.3389/fcvm.2022.1009131

for cardiac MRF (82), as well as brain, liver and prostate MRF

(83, 84) for T1 and T2 mapping. The network architectures

for all these approaches have an input layer consisting of

either the magnitude fingerprints or concatenating the real and

imaginary components of the fingerprint. These are followed

by a series of hidden layers, each with activation layers and a

final output layer with sigmoid activations for the regression

outputs, corresponding to the parameter values. The DRONE

(83) network for brain MRF and the network for brain, liver

and prostate (84) (hereafter referred to FCNN2) have just 2 and

3 hidden layers, respectively (300 and 256 neurons each layer,

respectively). However, the FCNN for cardiac MRF (82) must

also take as input 10 RR intervals, to model the dependency

of the measured sequence on the subject’s cardiac rhythm

during the acquisition. As a result, the network is much deeper

consisting of 18 hidden layers (300 neurons each) with skip

connections every 4 layers, beginning after the first hidden layer,

to prevent vanishing gradients during training.

The DRONE network was trained with 69,000 EPG-

generated signals with Gaussian noise added to the simulated

signals to promote robust learning. It was evaluated on in

vivo data reconstructed using a sliding-window approach

(85), which removes most of the artifacts due to the spiral

undersampling used. Other studies focus on directly training

on signals that include artifacts due to the non-Cartesian

undersampling artifacts from spiral trajectories used in cardiac

MRF. In an attempt to make more realistic training data in

a scalable manner, without acquiring in vivo data, the cardiac

MRF FCNN (82) used pseudo-noise from a pre-computed

library generated before training. The pseudo-noise library was

generated by simulating the data acquisition of random maps

using a spiral k-space trajectory and subtracting fully sampled

reference images from the undersampled images. The noise

patterns were then randomly scaled, phase shifted and added to

the simulated signals with no noise which were also randomly

phase shifted, resulting in simulated signals with pseudo-noise.

In total, 8 million signal evolutions were simulated across 4,000

different cardiac rhythms, and these were combined with 1.8

million pseudo-noise samples. A similar approach for generating

pseudo-noise for artifact patterns was used to generate training

data for the FCNN2 (84), making it possible for both of these

networks to take MRF images with undersampling artifacts

as input.

The DRONE network achieved relative errors of< 3% when

evaluated on simulated data with no noise but this increased

significantly in Monte Carlo experiments where the SNR was

varied, climbing to∼15% and∼48%, respectively for T1 and T2

at the lowest SNR. For themodels trained on undersampled data,

FCNN2 performed much better when trained using pseudo-

noise and achieved R2 ≥ 0.98 in phantom experiments and

good results on in vivo data>200 times faster than conventional

dictionarymatching. Equally, as is shown in Figure 4, the cardiac

MRF FCNN achieved good results, with R2 = 0.93 for T1 and

R2 = 0.95 for T2 and could quantify gridded sections of images

in < 400ms compared to 10 s with conventional methods and

without the need of a subject-specific dictionary that typically

takes 4min to generate.

Convolutional neural networks

As mentioned before, CNNs are commonly used in image

and pattern recognition and work by performing convolutions

using filters learnt during training. Therefore, they are excellent

candidates forMRF pattern recognition, where fingerprints have

repeating patterns and shapes encoding tissue parameters, and

fingerprints are spatially correlated due to tissue structure and

undersampling patterns in k-space.

One-dimensional CNNs have been proposed for brain MRF

(86, 87). A 1D residual CNN (87) was proposed consisting

of two 1D convolutional layers followed by 4 residual blocks,

with 1D CNN architecture and short-cuts, followed by a

max-pooling layer and two fully connected layers to give the

parameter outputs. The advantage of this network is that the

CNN architecture can learn patterns in the input signals, while

residual blocks allow the model to avoid vanishing gradient

problems as the model becomes sufficiently deep to effectively

learn the mapping from measured signals to parameters. The

network is trained using dictionary generated sequences and

a low-rank prior is exploited for signature restoration of in

vivo data before it is input into the network. The network

outperforms dictionary matching on synthetic maps without

undersampling as well as maps with 15% undersampling,

where it provides comparable results to a conventional low-

rank method (88). Importantly, the network produces T1 and

T2 maps in 1.6 seconds, 56 times faster than dot product

dictionary matching.

A further refinement of this method, HYbrid Deep magnetic

ResonAnce fingerprinting (HYDRA) (86) inspired by self-

attention and non-local NNs, modifies the architecture of the

previous network to include non-local operations. The non-

local operations capture long-range dependencies of the signal

in the temporal dimension, thus extracting global features which

would not be captured by convolutions alone that process one

local neighborhood at a time. Importantly, parameter estimation

for HYDRA is continuous and errors for predicted T1 and T2

are as small as ∼0.2ms, compared to errors of up to 4.5ms

due to discrete sampling every 10ms in the case of dictionary

matching. Song et al. demonstrate for noise-free synthetic data

that HYDRA outperforms dictionary matching and continuous

methods including the DRONE FCNN (83) and a standard 1D

CNN, with HYDRA having the smallest deviations and bias.

When applied to in vivo data where signature restoration using

a low-rank prior is performed, HYDRA outperforms dictionary

matching and other DL based methods for fully sampled,

15% undersampled and especially for 9% undersampled data

with variable density spiral trajectories. For undersampled data,
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HYDRA is also 4.8 times faster than a competing low-rank

method for parameter map generation (88).

Spatially regularized or spatiotemporal CNNs have also

been proposed for MRF (89, 90). These networks are

motivated by noisy reconstructions arising from fingerprint-

wise reconstructions, the fact that neighboring tissue properties

are likely correlated and that undersampling in k-space leads

to the signal from one pixel being distributed to several other

pixels. To determine parameter values at each voxel, these

networks take MRF image patches as input, a square grid of

fingerprints centered on the voxel. Initially, a spatiotemporal

CNN using 5x5xT image patches (5x5 image patches in image

dimension and length T corresponding to the size of the

fingerprints in the temporal dimension) was explored for T1 and

T2 brain MRF (89). The approach in training and evaluation

of this network differed from most studies, in this case ground

truth maps derived from separate T1 and T2 scans were used

instead of deriving these maps from dictionary matching using

the MRF scans. A sliding-window reconstruction (85) was used

to partially reconstruct the data and to obtain MRF images for

input into the network. Applying this method demonstrated that

the spatiotemporal CNN outperformed the DRONE (FCNN)

(83), a 1D CNN and spatiotemporal dictionary matching (91),

achieving the lowest RMSE and producing less noisy maps than

the fingerprint-wise networks.

This spatially-regularized network was extended by Balsiger

et al. (90), this time with a HxWxT image patch (see Figure 5)

using a database of 164MRF scans for a T1-FF sequence (62) that

gives 5 parametric maps. A non-uniform fast Fourier transform

(NUFFT) (92) was used to transform the data to image space

which led to some undersampling artifacts in the input data

to the network. This CNN achieved the best reconstruction

compared to dictionary matching, a fingerprint-wise RNN (93)

and a spatially regularized network (94) without introducing

artifacts. Additionally, this method generalized to anatomical

regions not previously seen during training.

A network combining residual channel attention blocks

(RCABs) and a U-Net (RCA-U-Net) has been also investigated

for brain MRF (95). The network improves upon U-Net

architectures by including RCABs at each layer of the U-

Net. These include channel attention blocks to focus on the

most informative features for parameter quantification, and

residual skip connections to allow more efficient flows of

information within the network. The U-Net itself includes 3

down-sampling and 3 up-sampling layers to extract spatial

information at different scales. The network is trained on

undersampled in vivo brain scans. Training data input into

the network are first head-masked and then passed through a

compression network for feature extraction and dimensionality

reduction. The performance of the RCA-U-Net was compared

to conventional dictionary matching, SVD matching (22), a 1D-

CNN (96) and spatially-constrained quantification network (94).

For the high acceleration rates used (8x and 16x), the RCA-U-

Net achieves improved accuracy compared to all the other state-

of-the-art methods with relative errors of <2%. In particular,

the RCA-U-Net provides accurate T2 estimation (1.4% error) for

standard scans with an acceleration factor of 16 when compared

to conventional dictionary matching (6.2% relative error).

Recurrent neural networks

RNNs, with their ability to memorize temporal structures,

have also been employed for pattern matching for brain T1

and T2 MRF sequences (93, 97) where signal evolutions evolve

continuously, there is redundant information and patterns are

repeated. Both Oksuz et al. and Hoppe et al. use Long Short-

TermMemory (LSTM) RNNs followed by fully connected layers

which lead to outputs for the parameter values on a voxel-

wise basis. Oksuz et al. also use GRUs equivalent to RNNs. The

RNNs provided good results, with the LSTM from Hoppe et al.

(97) outperforming a comparable CNN (96) method on in vivo

data and the networks in Oksuz et al. providing lower mean

absolute errors than the DRONE FCNN (83), a 1D CNN and

conventional inner product matching on EPG generated signals.

Invertible neural networks

INNs have been proposed for a wide range of inverse

problems in natural science (58). Inverse problems, such

as cardiac MRF parametric mapping generation, typically

involve determining physical parameters (x) from a set

of measurements (y). While the forward process from

parameters to measurements (Bloch equation simulations) is

well understood, the backward process, or inverse problem, from

measurements to parameters (parametric mapping generation)

is often ambiguous. Ideally, cardiac MRF sequence design

would make the inverse problem as unambiguous as possible,

but this becomes more challenging due to artifact noise from

undersampling and as the number of encoded parameters

increases. INNs are unique in that they jointly optimize the well-

defined forward problem and the ambiguous inverse problem

using the same network and weights. During training, a latent

space (z) is introduced that encodes information lost in the

forwards process, which then aids the network in the inverse

process, where the latent space is sampled over ([[y, z] →

x]), allowing it to disentangle ambiguous cases. It has been

demonstrated by Ardizzone et al. (58) that for INNs, learning

the forwards process and latent space dramatically improves

the accuracy of parameter estimation, compared to learning the

backward process alone.

Balsiger et al. (59) implemented an INN to perform

both dictionary generation and pattern matching on a voxel-

wise basis for musculoskeletal MRF sequences. In their

implementation training data simulated using the Bloch
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equations was augmented with Gaussian noise and no latent

space was used in the network. The INN consisted of two

reversible blocks, each followed by permutation layers, with

each reversible block using fully connected layers with 128

neurons each. Their INN accurately generated fingerprints

(inner product > 0.995) and significantly outperformed non-

invertible networks (83, 86, 93, 97) for the pattern matching

step, achieving mean relative errors for parameter estimation

ranging from 2 to 8%. Inferring parameter values for 1,000

fingerprints took just 50ms with the INN, comparable to other

ML based methods.

INNs offer multiple avenues for improvement which could

aid in using them for parametric mapping generation for cardiac

MRF. Conditional INNs could be used for cardiac MRF where

both the forward and backward processes in the INN could be

conditioned on subject-specific RRs. Additionally, the invertible

blocks within INNs can consist of any network architecture

and can therefore be adapted to use convolutional networks

to operate on image patches rather than on individual voxels.

Finally, by sampling the latent space, INNs can provide marginal

posterior distributions p(x|y, z) for each parameter of interest.

This could give insight into the uncertainty of parameter

estimation for cardiac MRF, the correlation between marginal

posterior distributions across parameters and innately measure

whether the signal from certain regions is multi-modal, due to

combinations of different tissues.

Complex-valued neural networks

Typically, the real and imaginary components of complex-

valued MRF signals are concatenated or input as 2-channels

into real-valued NNs. However, this approach neglects the phase

information and may lead to poorer reconstructions had the

phase been considered. To rectify this problem, Virtue et al.

(98) proposed a complex-valued NN for parameter estimation

in MRF that includes a complex cardioid activation function

sensitive to the input phase rather than the input magnitude.

Using a numerical brain phantom, they show that complex-

valued NNs outperform 2-channel real valued networks in the

majority of their experiments, suggesting the inclusion of phase

information aids in the reconstruction. Complex-valued NNs

have not been trialed for cardiac MRF and the adaptation of

previous methods to include complex-values could lead to better

pattern matching algorithms for cardiac MRF where data is

highly undersampled.

While each of the networks architectures shown here have

promising features that could be employed in cardiac MRF

pattern matching, most of these networks, with the exception of

the work from Hamilton et al. (82), are for non-cardiac MRF

sequences. Further work is needed to extend these networks

to cardiac MRF where the additional dependence of measured

fingerprints on the subject’s cardiac rhythm during the scan

must be considered. Additionally, many studies did not evaluate

their networks on in-vivo data but instead on simulated signals

(59, 93, 98), while some networks depended upon partially

reconstructed data for their inputs (83, 86, 87, 89), others

took data corrupted by undersampling artifacts (82, 84, 90,

95). Furthermore, most networks focused on fingerprint-wise

reconstruction (59, 82–84, 86, 87, 93, 97, 98), only a few of

the studies took advantage of the fact signals from neighboring

tissues are correlated due to undersampling by using spatial-

temporal networks (89, 90, 95). These points, combined with

the fact that each study considered a different sequence, makes

it hard to compare the performance of the different networks.

Ideally a standardized MRF-specific dataset could be used for

comparison across models.

Sequence optimization

AI has already been used in different stages of sequence

optimization in MRI, such as automatic generation of sequences

(99, 100), or in the search of more efficient sampling patterns

(101–104). In the field of MRF, due to the inherent flexibility of

its sequence design, there are essentially infinite combinations

of parameters such as flip angle trains, TR, TE, number of

RF shots, position and duration of magnetization preparation

pulses, and strength and waveform of gradients. As a result,

most of the cardiac MRF sequences proposed so far have been

designed heuristically.

An MRF sequence can be optimized in search of different

goals, such as better encoding power, higher accuracy, or

shorter scan times (i.e., higher efficiency). To quantify the

performance of a certain sequence on these areas, different

specific cost functions may be employed. The goal of a sequence

optimization strategy would then be the minimization of the

chosen cost function.

Given that parametric mapping in MRF is widely achieved

by pattern matching between the undersampled fingerprint

and the predicted dictionary, most optimization strategies have

focused on the minimization of the inner product between

these two signals (i.e., maximization of the encoding capability

of the sequence). Cohen et al. (105) explore four different

optimization algorithms to optimize the pattern of short TR

and FA trains in a constrained range. Sommer et al. (106) also

investigate the encoding capability of MRF sequences by inner

product minimization and a Monte Carlo simulation that tries

to consider the aliasing noise present in pattern matching by

adding Gaussian noise to the fingerprints. Noise and aliasing

artifacts were also taken into consideration in the optimization

approach proposed by Kara et al. (107).

MRF sequence performance can be analyzed in terms of

a cost function based on CRLB. This statistical tool looks for

the lower bound of the variance of unbiased estimators and

has been already utilized by MRF community to optimize FA

and TR patterns for optimal sequence design (108–111). Apart
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from statistical-based optimizers, physics knowledge could be

also included in the model, as in Jordan et al. (112).

All these algorithms work on the premise of a cost

function or optimizer that is iteratively minimized. However,

this is a computationally expensive task, and AI offers the

ability of speeding up this process. The RNN proposed by

Liu et at. (63) for dictionary generation is also employed to

develop a computationally efficient method to solve the CRLB

optimization. In their work, they optimize a flip angle train

of an MRF sequence given two target tissues by computing

the 14,000 necessary magnetization signals and their derivatives

with their proposed RNN in ∼10s, a reduction of two orders of

magnitude in runtime. NNs and supervised learning have also

been proposed for use in the joint sequence optimization and

image reconstruction frame for MRI [Loktyushin et al. (113)].

However, most of these works have been proposed on phantom

and in vivo brain MRF studies. Although efforts have been made

to optimize a 2D cardiac MRF acquisition pattern (21) from

a large number of simulated sequences, AI is yet to be fully

exploited for sequence optimization in cardiac MRF. Particular

problems within cardiac MRF sequence optimization, like RR

interval dependance or short acquisition windows, are potential

issues to be addressed with NN-based sequence optimization

algorithms and further investigation is required for this purpose.

Discussion

Current limitations

The possibilities and promising results shown in recent

years demonstrate that current advances in AI could become

part of the cardiac MRF workflow in the near future and help

its potential clinical adoption. However, there are still several

remaining challenges and limitations that need to be addressed

and understood before widespread implementation.

Data availability

The main obstacle that DL-derived techniques face in

medical imaging in general is data availability. The accuracy

of DL alg orithms heavily relies on the amount of data used

to train and validate these algorithms. Whereas, very large

databases (in some cases, containing millions of samples) can

be generated in other fields in AI, the amount of trainable

data available in CMR is several orders of magnitude smaller.

Huge efforts are underway to generate large databases of

CMR datasets, for example UK biobank or other open-

source datasets (114). However, libraries of multiparametric co-

registered scans (including k-space data) such as those that

could be obtained with MRF are yet to be constructed, especially

since multiparametric quantitative MR is not routinely carried

out in a clinical environment and k-space data is not

conventionally stored. Still, for AI applications to be of help in

the clinical routine, training databases should include not only

healthy subject data, but also incorporate multiparametric maps

corresponding to different pathologies. Currently, most cardiac

MRF studies in the literature are evaluated against healthy

subjects or a reduced cohort of patients, althoughHamilton et al.

(115) recently presented results clinically evaluating a specific

T1 and T2 cardiac MRF sequence. Nonetheless, this study was

carried out on a relatively small number of subjects (n = 68)

within a reduced age range. Cardiac MRF is further complicated

by its dependence on subject-specific cardiac rhythms during

the scan. This introduces an additional requirement for training

data to either sample a wide range of heart rates and variabilities

or the use of methods that rely on additional simulated data

across this parameter space. Crucially, further studies are needed

to generate larger clinical datasets.

The training dataset must not only be generalizable against

different diagnoses but must also be unbiased. Recent studies

have shown that the existence of imbalanced data may lead to

inaccuracies and underperformance over different population

groups, such as gender or race (116). Future studies such

as that of Puyol-Anton et al. (117) should be conducted to

further investigate the impact of biases and potential strategies

to address this so-called “fairness”, or lack thereof, in DL.

In addition to data availability and the issue of balanced

multicenter multiparametric training data, anonymization and

data protection are required conditions for the use of medical

data in research. These necessary privacy requirements hinder

sharing of locally generated data between different medical

institutions, leading to data silos. Model-sharing alternatives like

the distributed DL techniques proposed by Chang et al. (118)

and federated learning (118, 119), where algorithms are trained

without exchanging training data from different centers, need to

be explored further.

Reconstruction quality and fidelity

Given the lack of data availability, it is currently inevitable

that many DL-MRF reconstruction approaches are based on

simulated datasets. Nevertheless, for some applications, such as

DL for dictionary generation (where data can be generated by

EPG calculations or Bloch equations) this may be adequate. In

such cases, close attention needs to be paid to the accuracy of

the generated data, and its similarity to real data. The simulated

data should ideally include all sort of possible imperfections

that could be present in a real MRF acquisition. This implies

approximations such as perfect slice profile, field homogeneity

or hard RF excitation pulse should be disregarded, and instead

all the possible corrections should be included, even at the

cost of longer simulation times. Moreover, cardiac MRF-specific

features such as cardiac and respiratory motion, mis-triggering,

and an essentially infinite number of heart rate possibilities must

be taken into account in the simulations. In any case, as in any

other AI-based solution proposed for CMR, the algorithms need
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to be generalizable in different clinical settings such as vendors

or field strengths, and for this to happen wide multi-vendor

involvement is required.

Interpretability

Although novel DL algorithms have been shown to

outperform non-AI-based techniques, and results may be more

accurate in terms of quantitative metrics, it is often difficult to

understand how these predictions have been made and where

they come from. There are efforts to improve interpretability,

such as explainable AI (120), which tries to generate solutions

that can be more easily understood by the end user. However,

this so-called black-box problem (121) still needs to be addressed

so that the community can better comprehend what factors

contribute to the decision-making of a ML model in order to

better interpret its outputs.

Future perspective

In addition to the MRF-specific solutions that the presented

NNs offer, the advances in other more “traditional” directions

need to also be integrated in the cardiac MRF framework. In

this way, DL-based approaches for motion correction or fast

CMR acquisition and reconstruction, along with the inherent

versatility of cardiac MRF, would enable the extension of cardiac

MRF in the spatial (from 2D to 3D), temporal (from ECG-

triggered to motion-corrected free-running) and contrast (other

parametric maps apart from T1 and T2) dimensions.

In addition to the usual symbiosis between cardiac MRF and

ML, where ML is used as a tool to address problems faced in

cardiac MRF, such as sequence optimization and reconstruction,

this synergy can also be flipped and cardiac MRF could be

used as a tool in a ML-based field. There has been growing

interest in the use of multiparametric MRI to generate ML-

based risk prediction or stratification. Radiomics is an example

in this field (122), an approach where a set of medical images are

used as input to extract quantitative information by means of a

set of well-defined mathematical operations that are performed

to extract information of the distribution and neighborhood

relations of each pixel in the image of interest. These relations,

or features, can be used to feed an ML algorithm and provide

a quantitative analysis. Radiomics is a well stablished technique

in some medical imaging fields like oncology, and it has started

showing its potential for MRI and particularly CMR application

in the recent years (123), however reproducibility is still limited.

Conventionally, the input datasets used for CMR radiomics

are Late-Gadolinium Enhanced (LGE), CINE or contrast-

weighted semi-quantitative images (124–128). However, in

recent years quantitative information given by parametric

maps such as T1 and T2 have been employed, showing a

great potential (129–133). In most of these studies, only one

type of relaxation parameter is used for radiomics analysis.

Nevertheless, as in conventional quantitative CMR, stacking

multiparametric information could increase the diagnostic

power of radiomics, as shown by Baessler et al. (129, 130).

However, an accurate and robust multiparametric radiomics

analysis can only be performed when the different parametric

maps are perfectly aligned. This is where the multiparametric

information provided by cardiac MRF could become a more

robust input for radiomics applications, due to its inherent

spatial and temporal co-registration. Consequently, cardiac

MRF presents the potential to generate a multidimensional

dataset that may serve as an input to improve diagnostic

capacity of radiomics or other DL approaches for diagnosis

in CMR.

Conclusion

Cardiac magnetic resonance fingerprinting is increasingly

proven in its potential as a valuable tool for multiparametric

quantification on CMR. Its scalable ability to generate several

parametric maps within the same acquisition usually comes,

however, at the cost of sequence complexity and increased

reconstruction and dictionary generation times. This is further

aggravated by the CMR-specific problems, such as unpredictable

heart rate and cardiac motion. Nevertheless, recent advances

in AI applied to medical imaging have shown that, with the

correct understanding of the type of network required for the

specific problem and a sufficient amount of training data, NNs

are capable of solving many of these problems, much more

rapidly and to comparable accuracy as conventional methods.

Thus, the field of AI, which has experienced a rapid growth

in recent years, is expected to become part of cardiac MRF at

every step of its framework (sequence optimization, dictionary

generation, image reconstruction, parametric estimation and

analysis) and greatly contribute to the potential inclusion

of cardiac MRF in the clinical routine. Nonetheless, special

care needs to be taken to overcome the limitations that may

hinder this goal; aspects such as algorithm interpretability

and most importantly data availability need to be enforced

to ensure AI is used at its full capacity in cardiac magnetic

resonance fingerprinting.
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