
bioengineering

Article

SlicerArduino: A Bridge between Medical Imaging
Platform and Microcontroller

Paolo Zaffino * , Alessio Merola , Domenico Leuzzi †, Virgilio Sabatino †, Carlo Cosentino
and Maria Francesca Spadea

Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro,
88100 Catanzaro, Italy; merola@unicz.it (A.M.); domenico.leuzzi@studenti.unicz.it (D.L.);
virgilio.sabatino@studenti.unicz.it (V.S.); carlo.cosentino@unicz.it (C.C.); mfspadea@unicz.it (M.F.S.)
* Correspondence: p.zaffino@unicz.it; Tel.: +39-0961-369-4196
† These authors contributed equally to this work.

Received: 7 August 2020; Accepted: 5 September 2020; Published: 11 September 2020
����������
�������

Abstract: Interaction between medical image platform and external environment is a desirable
feature in several clinical, research, and educational scenarios. In this work, the integration between
3D Slicer package and Arduino board is introduced, enabling a simple and useful communication
between the two software/hardware platforms. The open source extension, programmed in Python
language, manages the connection process and offers a communication layer accessible from any
point of the medical image suite infrastructure. Deep integration with 3D Slicer code environment
is provided and a basic input–output mechanism accessible via GUI is also made available. To test
the proposed extension, two exemplary use cases were implemented: (1) INPUT data to 3D Slicer,
to navigate on basis of data detected by a distance sensor connected to the board, and (2) OUTPUT
data from 3D Slicer, to control a servomotor on the basis of data computed through image process
procedures. Both goals were achieved and quasi-real-time control was obtained without any lag
or freeze, thus boosting the integration between 3D Slicer and Arduino. This integration can be
easily obtained through the execution of few lines of Python code. In conclusion, SlicerArduino
proved to be suitable for fast prototyping, basic input–output interaction, and educational purposes.
The extension is not intended for mission-critical clinical tasks.

Keywords: medical imaging platform; microcontroller; 3D Slicer; Arduino

1. Introduction

Interaction between medical image platform and external environment has been always a
desirable option in several applications. Intraoperative navigation [1–3], remote control [4,5],
signal acquisition [6–9], and actuator control [10,11] are some examples. However, these kind of tasks
usually require dedicated hardware and software, often expensive and mostly lacking of generalization
for covering wide range of possible use cases.

3D Slicer (for the sake of simplicity, from now on it will be mentioned as “Slicer”) is an open
source platform for medical image processing, analysis, and visualization, largely used for research and
educational purposes [12–14]. It is written in C++ and Python, strongly relying on ITK [15], VTK [16],
and QT [17] libraries. A dedicated Python interpreter is embedded into the platform. Slicer includes
algorithms for image registration (rigid and deformable), image segmentation (manual, semi-automatic
and automatic), volume rendering, mesh generation, and visualization. Due to the large amount of
available extensions, it can be finely tailored to accomplish well-defined tasks. OpenIGTLink [18],
in cooperation with Plus toolkit [19], is the principal interface for reliable and real-time navigation
in Slicer. To achieve this, ad hoc setup of libraries and services is required, as well as dedicated and

Bioengineering 2020, 7, 109; doi:10.3390/bioengineering7030109 www.mdpi.com/journal/bioengineering

http://www.mdpi.com/journal/bioengineering
http://www.mdpi.com
https://orcid.org/0000-0002-0219-0157
https://orcid.org/0000-0002-8728-2084
https://orcid.org/0000-0001-5768-1829
https://orcid.org/0000-0002-5339-9583
http://dx.doi.org/10.3390/bioengineering7030109
http://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/2306-5354/7/3/109?type=check_update&version=2

Bioengineering 2020, 7, 109 2 of 10

often expensive hardware. While it is the best choice for complex and critical tasks, users that need
to interact with the external environment to execute simple operations could find this solution too
complicated compared to their simple requirements.

Arduino is one of the most used microcontrollers worldwide [20,21]. It is open source, cheap, easy
to program, and it can relies on a countless amount of external boards designed to extend its capabilities.
Among the available hardware extensions there are connectivity adaptors (e.g., LAN and Bluetooth),
servomotors, sensors (e.g., temperature, force, proximity, accelerometer, and gyroscope), high-power
device drivers, cameras, and gesture recognition board. In addition to digital Input/Output (I/O)
pins, multiple analog-to-digital converters are primitively embedded on the device, enabling an
out-of-the-box acquisition of time continuous signals. Free and dedicated libraries are usually provided
to interact with the chosen hardware extension. Several type of Arduino boards are available on the
market, ranging from the smallest ones to more powerful devices featuring high number of I/O pins,
digital–analogic conversion, and wireless on-board communication modules. Finally, it supports serial
connection to share data with other devices (through two dedicated pins) and/or with a computer
(via the USB port).

In light of this, the SlicerArduino module was designed and implemented to provide the user
with a comfortable system to connect Slicer with the external environment via Arduino board. Due to
its simplicity, it allows fast prototyping and basic I/O interaction, without claiming to be able to
accomplish critical missions and high-complexity tasks. The proposed extension can be also used for
educational purposes. The affordability of Arduino and its external boards, in cooperation with the
open source Slicer capabilities, can represent a game changer for several applications. Data coming
from/directed to Arduino are deeply integrated with the Slicer infrastructure, making it possible to
easily interact with all the tools offered by the image processing and visualization suite.

2. Materials and Methods

2.1. General Extension Description

SlicerArduino aims to provide a bidirectional link between the microcontroller and the medical
image platform. The physical layer used to communicate is the USB port, natively embedded into all
the Arduino boards. The entire extension is written in Python and, at a low level, it takes advantage of
PySerial library [22] to manage the connection and the data stream to/from the board. The extension
can be easily installed via the Slicer extension manager or, alternatively, it is possible to manually
download the the source code [23] and add the folder to the extension path. A Graphical User Interface
(GUI) was developed to allow the user to define connection parameters, to establish a link and to
have a basic interaction with the microcontroller without writing code. In Figure 1, the extension GUI
is depicted.

The GUI can be split in four sections, each of them dedicated to a specific aspect:

• Connection setting: In this section, it is possible to set the serial port for communicating with
the Arduino board, the baud rate, and the sampling frequency used to interrogate the buffer.
Once these parameters are defined, it is possible to connect/disconnect the device. The list of the
available serial ports is dynamically created by inspecting the connected hardware.

• Arduino IDE: As it could be necessary to reprogram the board, the Arduino IDE can be run
directly from Slicer. The extension automatically searches for the IDE executable in the system
path or, alternatively, it can be manually set. Once the path is defined, it will be made persistent
until a new choice is made.

• Sender: If a connection is established, by using this section is possible to send text string to
the board.

• Monitor: Data coming from the board can be inspected in real-time. If the data stream contains
characters and/or numbers, they can be shown in a dedicated window. If the data stream is made
only of numbers, they can be plotted by taking advantage of the Slicer plotting infrastructure.

Bioengineering 2020, 7, 109 3 of 10

The amount of samples to plot can be defined by the user. Monitoring the stream does not
interfere with the other tasks that use Arduino data.

Figure 1. SlicerArduino Graphical User Interface (GUI).

In Figure 2, an example of the full SlicerArduino GUI interacting with Slicer is reported. In this
case, Arduino sends a square signal (ten 0 values followed by ten 255 values) and, after the connection
has been established, the data stream is both plotted and shown into the monitor window.

Figure 2. Data stream visualization coming from an established hardware connection.

2.2. Slicer Integration

A key point of the entire project is the deep integration between Slicer infrastructure and data
coming from/directed to Arduino. Slicer massively uses vtkMRMLNode objects to store and represent
different type of data (volumes, transformations, and segmentations). The best way to incorporate
data coming from the external environment and to interact with the Slicer environment is to exploit the

Bioengineering 2020, 7, 109 4 of 10

advantages arising from the methods that nodes offer. For this reason the extension creates a dedicated
node, where the value read from the board is stored into a specific parameter. As SlicerArduino serves
as a base layer for developing additional code, it is necessary to notify the entire software environment
that new data have arrived from the board and that it is stored into the node. This is achieved by
taking advantage of the notify/observer mechanism already implemented into the vtkMRMLNode
and largely used in Slicer. As a result, from any point of the Slicer infrastructure (including extensions
and the embedded Python console), it is sufficient to observe the Arduino node to execute a specific
method when a new value is received from the board and stored into the given parameter. There are no
limitations about the maximum number of observers, so the same data can be simultaneously accessed
by multiple applications (e.g., the plotter and the monitor shown in Figure 2). Finally, to send data
from Slicer to the board, the sender method of the object instantiated by the SlicerArduino GUI can be
directly executed, without using the vtkMRMLNode instance.

A graphical concept of the extension is shown in Figure 3.

Figure 3. Graphical concept of SlicerArduino extension.

2.3. Exemplary Use Cases

In order to test the functionality and performance of ArduinoSlicer, two exemplary use cases were
implemented: one to receive signals from the board, and one to send instruction to the microcontroller.
In both experiments, Slicer was ran on a GNU/Linux laptop and an Arduino UNO R3 was used.
For the Slicer side the code was written in Python, Arduino was programmed by its C-like language.

2.3.1. From External Environment to Medical Imaging Platform

In the first experiment, a Slicer scene mimicking an ultrasound guided procedure was loaded and a
distance sensor (SHARP 2Y0A21) was connected to Arduino. The goal was to apply, in quasi-real-time,
a translation to the probe on basis of the data coming from a hand moving closer or further from the
sensor. In this way, the deep integration achievable between Slicer and Arduino was highlighted and
stressed. A Slicer transformation, in fact, can be applied to any volume, model, or segmentation. In light
of this, it was sufficient to use the value received from the microcontroller to edit the transformation
and, as a consequence, move the model. The anatomical image was updated as well. Figure 4 shows
this use case, while the Python code used for the task is reported in code block (Listing 1).

Bioengineering 2020, 7, 109 5 of 10

Figure 4. Simulation of an ultrasound guided procedure. The aim was to move the probe according to
the data coming from a distance sensor.

Listing 1. Python code developed for moving ultrasound probe according to data coming from distance
sensor. Since the class is observing the Arduino node, when a new value is read the function that edits
the linear transformation is executed.

class ProbeUSController():
"""
Class for probe control.
"""

def __init__(self):

Get Arduino node from Slicer scene
self.ArduinoNode = slicer.mrmlScene.GetFirstNodeByName("arduinoNode")

Add observer to Arduino node and define the function to execute when an parameter is modified
sceneModifiedObserverTag = self.ArduinoNode.AddObserver(vtk.vtkCommand.ModifiedEvent,

self.editTransformation)

Get Transformation node from the scene
self.transform = slicer.mrmlScene.GetNodeByID("vtkMRMLLinearTransformNode7")

Initialize identity matrix to be used for probe translation
self.matrix = vtk.vtkMatrix4x4()

def editTransformation(self, caller, event):
"""
Function ran when an parameter into the Arduino node is modified.
"""

Edit matrix according to the data read from the distance sensor
self.matrix.SetElement(2, 3, float(self.ArduinoNode.GetParameter("Data")))

Bioengineering 2020, 7, 109 6 of 10

Update transformation node
self.transform.SetMatrixTransformToParent(self.matrix)

Refresh Slicer views
slicer.util.resetSliceViews()

Instantiate object, this will enable the quasi-real time probe control
controller = ProbeUSController()

2.3.2. From Medical Imaging Platform to External Environment

In the second experiment, two chest computed tomography (CT) scans were loaded in Slicer
and a linear servomotor (Actuonix L16 Actuator 50 mm) was connected to Arduino. By using the
Slicer infrastructure, the CT images were rigidly registered (only a displacement along the Z-axis was
required to align the volumes, as reported in Figure 5) and the servomotor arm was moved by the same
quantity found for the Z translation. Moreover, in this case it was possible to easily control an external
device (in this instance a motor) on the basis of a parameter typical of an image processing workflow.
The basic idea was to mimic the patient’s position correction process executed before radiotherapy
session by moving the machine couch. The code developed for Slicer is reported into code block
(Listing 2).

Figure 5. Computed tomography (CT) scans shown in overlay mode. In the left panel, before
registration, it is possible to see the misalignment along the z axis. In the right panel, after linear
registration, the displacement was accurately recovered.

Listing 2. Python code for controlling a servomotor according to a translation identified by the
alignment of two CT scans.

Get transformation node from Slicer scene
transformation_node = slicer.mrmlScene.GetNodeByID("vtkMRMLLinearTransformNode4")

Get transformation matrix from node
transformation_matrix = transformation_node.GetMatrixTransformFromParent()

Get z translation
z_translation = transformation_matrix.GetElement(2,3)

Send translation to Arduino board
slicer.modules.arduinoconnect.widgetRepresentation().self().logic.sendMessage("%.3f" % (z_translation))

Bioengineering 2020, 7, 109 7 of 10

3. Results

Both experiment goals where successfully achieved. In the first case, the hand movement smoothly
controlled the probe translation in Slicer; in the second case, the servomotor moved accordingly to the
computed transformation. In this regard, to provide the reader with a better insight into the test results,
a video recording is available as supplementary material.

The source code required to accomplish the exemplary tasks was very short and simple, and
proved the simplicity of interaction between hardware and software platforms. Integration between
Slicer environment and data coming from/to the board was direct and transparent.

During the first experiment, a smooth trajectory tracking was achieved, suggesting the capability
to also execute tasks where time response is an important parameter; during the second experiment,
the servomotor took 3 s to reach its final position (displacement equal to 25 mm). No visual severe
Slicer lag, freeze, or crash occurred, proving that the pooling thread does not interfere with the
main process.

Finally, connection stress tests were also conducted. One-hundred messages were successfully
sent from Slicer to Arduino in 192 ms. Another test was to measure the time required for a message to
travel back and forward the board, passing through Slicer infrastructure. This was quantified for two
different polling frequencies, 50 Hz and 100 Hz, and the experiment was repeated 20 times for each
frequency. Results are reported in Table 1.

Table 1. Time needed for a sample to travel back and forward the board via Slicer (at 9600 baud).

Polling Frequency (Hz) Mean (ms) Standard Deviation (ms)

50 20.0 2.4
100 17.4 1.7

4. Discussion

In the last years, important progress has been made in the development of more powerful and
accessible image processing platforms (e.g., the open source project “3D Slicer”) and microcontrollers
(like Arduino). In the light of this, SlicerArduino was implemented to provide a simple link between
Slicer and the external environment, via Arduino board. The main applications of this plugin are about
fast prototyping, basic input–output tasks and educational purposes.

Any clock signal is natively provided to interface multiple devices. However, this does not
exclude the implementation of a custom synchronization mechanism by the user. We are aware that
the absence of a predefined sync strategy could represent a disadvantage for certain applications.
However, it is important to highlight that the proposed extension was not designed for mission-critical
and high-complexity scenarios (e.g., connection with a commercial surgical navigation platform
and/or multiple devices). In such cases, Slicer already has well-tested and powerful solutions [18,19].
Rather, the proposed extension aims to support users that want to develop from scratch their own
custom solution.

The strength of the proposed work is about simplicity of communication and accessibility of both
hardware and software. In fact, Slicer and its extensions are free, open source, and easily customizable;
the Arduino microcontroller and its countless additional boards, sensors, and actuators are cheap and
can be adapted to a wide range of cases. As a result, joining Slicer and Arduino may enable a large
number of potential applications.

In the proposed experiments, a single sensor/actuator was used, but the combination of multiple
input/output devices can lead to an advanced interaction. It is important to highlight that both of the
proposed experiments served only as a proof of bidirectional communication between the medical
image suite and the external environment.

Being Slicer binaries available for multiple platforms (Windows, Mac OSX, and GNU/Linux),
no restrictions about the preferred operating system exist. The proposed plug-in can be installed via

Bioengineering 2020, 7, 109 8 of 10

the Slicer extension manager or by manually downloading the source code, independently of the
used platform.

Due to the homogeneous Arduino environment, the entire family of microcontrollers can be
interfaced with Slicer via the proposed bridge. In this way, the user will choose the best hardware
solution for his task (physical size, maximum current per pin, number of I/O pins, memory, etc.)
without the need to edit the Slicer code. In addition to managing the connection part, a basic sender
and an input monitor/plotter are also available via GUI.

A fundamental point of the entire project is the deep integration between data coming
from/directed to the board and the Slicer environment. Data, in fact, are not just read, but stored
into a dedicated vtkMRMLNode, one of Slicer’s pillars. As a result, interaction with other nodes is
immediate and simple. The raw data, in fact, would be almost useless and it would not be possible to
take advantage of the full potentialities of Slicer. The observe mechanism guarantees the possibility to
notify to the entire environment the arrival of a new data from the microcontroller, allowing to write
code that can react in quasi-real-time to the data stream. In addition, this makes it possible to access
the data from different instances, simultaneously. No evident lag or freeze of the main process that
could compromise the comfortable interaction between internal and external environments occurred
during the tests. In this paper, the definition “quasi-real-time” was used, even if the amount of time
required to acquire/send the data was extremely low (see Table 1). The adequacy of this parameter
depends on the specific task the user wants to achieve.

As proved by the proposed experiments, the coding effort needed for the user to make Slicer
interacting with Arduino (and vice versa) is minimal. If necessary, the input data stream can be filtered
and conditioned distributing the computational effort between Arduino and Slicer. It is important to
highlight that is also possible to interactively communicate with the board by using the embedded
Python console.

Due to the plethora of possible sensors/actuators/boards and the way of combining them for
accomplishing a well-defined task, it was not possible to embed in the extension a more specific
interface (e.g., preconfigured options) for an out-of-the-box support of a specific device.

Both Slicer [24] and Arduino have a very active community and a complete documentation,
which helps beginners to improve their knowledge and to accomplish the task. SlicerArduino’s
documentation is also available on the project webpage [25].

The main current limitation regards the possibility to connect just a single board, while future
efforts will be aimed toward adding a Bluetooth connection and testing the compatibility with
microcontrollers different from Arduino family (e.g., TexasInstrument and STMicroelectronics).

5. Conclusions

For the fist time, a bridge between one of the most used medical image processing platform
(3D Slicer) and a popular microcontroller family (Arduino) was developed. A simple and powerful
interaction between them can be achieved, enabling a wide range of possible applications. The main
envisioned applications are related to fast prototyping, basic I/O tasks, and educational purposes in
the medical image field.

Supplementary Materials: The video is available online at http://www.mdpi.com/2306-5354/7/3/109/s1.

Author Contributions: P.Z.: conceptualization, code development, and writing—original draft preparation; A.M.
and C.C.: formal analysis and writing—review and editing; D.L. and V.S.: code development and testing; M.F.S.:
review, editing, supervision, and project administration. All authors have read and agreed to the published
version of the manuscript.

Acknowledgments: The authors would like to thank Andras Lasso, Davide Punzo, and the entire Slicer
community for their precious comments and suggestions in this project. The authors express their gratitude
also to the Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro (Italy),
for supporting the publication of this work.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2306-5354/7/3/109/s1

Bioengineering 2020, 7, 109 9 of 10

References

1. Tabrizi, L.B.; Mahvash, M. Augmented reality–guided neurosurgery: Accuracy and intraoperative
application of an image projection technique. J. Neurosurg. 2015, 123, 206–211. [CrossRef] [PubMed]

2. Pelargos, P.E.; Nagasawa, D.T.; Lagman, C.; Tenn, S.; Demos, J.V.; Lee, S.J.; Bui, T.T.; Barnette, N.E.;
Bhatt, N.S.; Ung, N.; et al. Utilizing virtual and augmented reality for educational and clinical enhancements
in neurosurgery. J. Clin. Neurosci. 2017, 35, 1–4. [CrossRef] [PubMed]

3. Peterhans, M.; vom Berg, A.; Dagon, B.; Inderbitzin, D.; Baur, C.; Candinas, D.; Weber, S. A navigation
system for open liver surgery: Design, workflow and first clinical applications. Int. J. Med Robot. Comput.
Assist. Surg. 2011, 7, 7–16. [CrossRef] [PubMed]

4. Ebert, L.C.; Flach, P.M.; Thali, M.J.; Ross, S. Out of touch—A plugin for controlling OsiriX with gestures
using the leap controller. J. Forensic Radiol. Imaging 2014, 2, 126–128. [CrossRef]

5. Wipfli, R.; Dubois-Ferrière, V.; Budry, S.; Hoffmeyer, P.; Lovis, C. Gesture-controlled image management for
operating room: A randomized crossover study to compare interaction using gestures, mouse, and third
person relaying. PLoS ONE 2016, 11, e0153596. [CrossRef] [PubMed]

6. Patete, P.; Riboldi, M.; Spadea, M.F.; Catanuto, G.; Spano, A.; Nava, M.; Baroni, G. Motion compensation in
hand-held laser scanning for surface modeling in plastic and reconstructive surgery. Ann. Biomed. Eng. 2009,
37, 1877–1885. [CrossRef] [PubMed]

7. Achenbach, S.; Goroll, T.; Seltmann, M.; Pflederer, T.; Anders, K.; Ropers, D.; Daniel, W.G.; Uder, M.; Lell, M.;
Marwan, M. Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch
spiral coronary CT angiography. JACC Cardiovasc. Imaging 2011, 4, 328–337. [CrossRef] [PubMed]

8. Gianoli, C.; Riboldi, M.; Spadea, M.F.; Travaini, L.L.; Ferrari, M.; Mei, R.; Orecchia, R.; Baroni, G. A multiple
points method for 4D CT image sorting. Med. Phys. 2011, 38, 656–667. [CrossRef] [PubMed]

9. Spadea, M.F.; Baroni, G.; Gierga, D.P.; Turcotte, J.C.; Chen, G.T.; Sharp, G.C. Evaluation and commissioning
of a surface based system for respiratory sensing in 4D CT. J. Appl. Clin. Med. Phys. 2011, 12, 162–169.
[CrossRef] [PubMed]

10. Buzurovic, I.; Huang, K.; Yu, Y.; Podder, T. A robotic approach to 4D real-time tumor tracking for radiotherapy.
Phys. Med. Biol. 2011, 56, 1299. [CrossRef] [PubMed]

11. Buzurovic, I.; Yu, Y.; Werner-Wasik, M.; Biswas, T.; Anne, P.; Dicker, A.; Podder, T. Implementation and
experimental results of 4D tumor tracking using robotic couch. Med. Phys. 2012, 39, 6957–6967. [CrossRef]

12. Pieper, S.; Halle, M.; Kikinis, R. 3D Slicer. In Proceedings of the 2004 2nd IEEE International Symposium on
BIOMEDICAL Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; IEEE:
Piscataway, NJ, USA, 2004; pp. 632–635.

13. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.;
Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging
Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [CrossRef] [PubMed]

14. Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A platform for subject-specific image analysis,
visualization, and clinical support. In Intraoperative Imaging and Image-Guided Therapy; Springer: New
York, NY, USA, 2014; pp. 277–289.

15. McCormick, M.M.; Liu, X.; Ibanez, L.; Jomier, J.; Marion, C. ITK: Enabling reproducible research and open
science. Front. Neuroinform. 2014, 8, 13. [CrossRef] [PubMed]

16. Schroeder, W.; Martin, K.; Lorensen, B. The Visualization Toolkit, 4th ed.; Kitware: Clifton Park, NY, USA, 2006.
17. Available online: http://www.qt.io/ (accessed on 1 September 2020).
18. Tokuda, J.; Fischer, G.S.; Papademetris, X.; Yaniv, Z.; Ibanez, L.; Cheng, P.; Liu, H.; Blevins, J.; Arata, J.;

Golby, A.J.; et al. OpenIGTLink: An open network protocol for image-guided therapy environment. Int. J.
Med. Robot. Comput. Assist. Surg. 2009, 5, 423–434. [CrossRef] [PubMed]

19. Lasso, A.; Heffter, T.; Rankin, A.; Pinter, C.; Ungi, T.; Fichtinger, G. PLUS: Open-source toolkit for
ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. 2014, 61, 2527–2537. [CrossRef]
[PubMed]

20. Badamasi, Y.A. The working principle of an Arduino. In Proceedings of the 2014 11th international conference
on electronics, computer and computation (ICECCO), Abuja, Nigeria, 29 September–1 October 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 1–4.

http://dx.doi.org/10.3171/2014.9.JNS141001
http://www.ncbi.nlm.nih.gov/pubmed/25748303
http://dx.doi.org/10.1016/j.jocn.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/28137372
http://dx.doi.org/10.1002/rcs.360
http://www.ncbi.nlm.nih.gov/pubmed/21341357
http://dx.doi.org/10.1016/j.jofri.2014.05.006
http://dx.doi.org/10.1371/journal.pone.0153596
http://www.ncbi.nlm.nih.gov/pubmed/27082758
http://dx.doi.org/10.1007/s10439-009-9752-8
http://www.ncbi.nlm.nih.gov/pubmed/19585239
http://dx.doi.org/10.1016/j.jcmg.2011.01.012
http://www.ncbi.nlm.nih.gov/pubmed/21492807
http://dx.doi.org/10.1118/1.3538921
http://www.ncbi.nlm.nih.gov/pubmed/21452703
http://dx.doi.org/10.1120/jacmp.v12i1.3288
http://www.ncbi.nlm.nih.gov/pubmed/21330975
http://dx.doi.org/10.1088/0031-9155/56/5/005
http://www.ncbi.nlm.nih.gov/pubmed/21285488
http://dx.doi.org/10.1118/1.4758064
http://dx.doi.org/10.1016/j.mri.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22770690
http://dx.doi.org/10.3389/fninf.2014.00013
http://www.ncbi.nlm.nih.gov/pubmed/24600387
http://www.qt.io/
http://dx.doi.org/10.1002/rcs.274
http://www.ncbi.nlm.nih.gov/pubmed/19621334
http://dx.doi.org/10.1109/TBME.2014.2322864
http://www.ncbi.nlm.nih.gov/pubmed/24833412

Bioengineering 2020, 7, 109 10 of 10

21. D’Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 2012, 44, 305–313.
[CrossRef] [PubMed]

22. Available online: https://github.com/pyserial/pyserial (accessed on 1 September 2020).
23. Available online: https://github.com/pzaffino/SlicerArduinoController (accessed on 1 September 2020).
24. Kapur, T.; Pieper, S.; Fedorov, A.; Fillion-Robin, J.C.; Halle, M.; O’Donnell, L.; Lasso, A.; Ungi, T.; Pinter, C.;

Finet, J.; et al. Increasing the impact of medical image computing using community-based open-access
hackathons: The NA-MIC and 3D Slicer experience. Med. Image Anal. 2016, 33, 176–180. [CrossRef]
[PubMed]

25. Available online: https://pzaffino.github.io/SlicerArduinoController/ (accessed on 1 September 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3758/s13428-011-0163-z
http://www.ncbi.nlm.nih.gov/pubmed/22037977
https://github.com/pyserial/pyserial
https://github.com/pzaffino/SlicerArduinoController
http://dx.doi.org/10.1016/j.media.2016.06.035
http://www.ncbi.nlm.nih.gov/pubmed/27498015
https://pzaffino.github.io/SlicerArduinoController/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	General Extension Description
	Slicer Integration
	Exemplary Use Cases
	From External Environment to Medical Imaging Platform
	From Medical Imaging Platform to External Environment

	Results
	Discussion
	Conclusions
	References

