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It is widely accepted that the immune system includes molecular and cellular

components that play a role in regulating and suppressing the effector immune

response in almost any process in which the immune system is involved.

Myeloid-derived suppressor cells (MDSCs) are described as a heterogeneous

population of myeloid origin, immature state, with a strong capacity to

suppress T cells and other immune populations. Although the initial

characterization of these cells was strongly associated with pathological

conditions such as cancer and then with chronic and acute infections,

extensive evidence supports that MDSCs are also involved in physiological/

non-pathological settings, including pregnancy, neonatal period, aging, and

vaccination. Vaccination is one of the greatest public health achievements and

has reduced mortality and morbidity caused by many pathogens. The primary

goal of prophylactic vaccination is to induce protection against a potential

pathogen by mimicking, at least in a part, the events that take place during its

natural interaction with the host. This strategy allows the immune system to

prepare humoral and cellular effector components to cope with the real

infection. This approach has been successful in developing vaccines against

many pathogens. However, when the infectious agents can evade and subvert

the host immune system, inducing cells with regulatory/suppressive capacity,

the development of vaccines may not be straightforward. Notably, there is a

long list of complex pathogens that can expand MDSCs, for which a vaccine is

still not available. Moreover, vaccination against numerous bacteria, viruses,

parasites, and fungi has also been shown to cause MDSC expansion. Increases

are not due to a particular adjuvant or immunization route; indeed, numerous

adjuvants and immunization routes have been reported to cause an

accumulation of this immunosuppressive population. Most of the reports

describe that, according to their suppressive nature, MDSCs may limit

vaccine efficacy. Taking into account the accumulated evidence supporting

the involvement of MDSCs in vaccination, this review aims to compile the
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studies that highlight the role of MDSCs during the assessment of vaccines

against pathogens.
KEYWORDS

MDSCs, myeloid-derived suppressor cells, vaccine, pathogens, immunization,
parasites, viruses, bacteria
Introduction

The immune system has always been characterized by its

effector function related to coping pathogens and anomalous

cells. However, accumulating evidence since the 1970s supported

the existence of both lymphoid and myeloid cells with

regulatory/suppressive capacity (Gershon and Kondo, 1970;

Bennett et al., 1978). Since the initial proposal and after

decades of research, to date, it is widely accepted the existence

of T-cells (Sakaguchi et al., 1995; Shevach, 2006; Plitas and

Rudensky, 2016) and non-T cells such as myeloid-derived

suppressor cells (MDSCs) with regulatory/suppressive capacity

that play a role in almost any process in which the immune

system is involved, including infections, cancer, autoimmune

disease, allergies, obesity, transplants, pregnancy, vaccination

and other scenarios (2021; Nagaraj and Gabrilovich, 2007;

Medina and Hartl, 2018; Ostrand-Rosenberg, 2018; Ahmadi

et al., 2019; Pawelec et al., 2019; Kidzeru et al., 2021; Veglia

et al., 2021).

The terminology of MDSCs was proposed in 2007

(Gabrilovich et al., 2007) to include a heterogeneous

population of myeloid origin, an immature state, and a strong

capacity to suppress not only T-cells but also other immune

populations (Nagaraj and Gabrilovich, 2007; Veglia et al., 2021).

Most of the knowledge acquired about these cells was gained by

their study in pathological conditions such as cancer and acute

and chronic infections, but currently, a large body of evidence

supports the involvement of MDSCs also in physiological/

nonpathological conditions, such as pregnancy, neonatal

period, aging, and vaccination (2021; Ahmadi et al., 2019;

Cabrera and Marcipar, 2019; Pawelec et al., 2019; Veglia

et al., 2021).

Vaccination is one of the public health measures with the

greatest benefits to humanity, preventing major epidemics,

morbidity, and mortality (Koff et al., 2013; Domıńguez-Andrés

et al., 2020; Plotkin, 2020). The worldwide pandemic caused by

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

is a clear example of the pressure that may be exerted on the

health systems when a needed vaccine is not available. Moreover,

the lack of a vaccine against SARS-CoV2 not only increased

deaths and disease but also forced the governments to employ

extreme measures such as quarantines, social distancing, travel
02
restrictions, and other interventions that caused a huge

economic and social impact (Milne et al., 2021; Feikin et al.,

2022; Goldblatt et al., 2022). Notably, accelerated vaccine

research using all old and new strategies of vaccine

development allowed to markedly diminish the impacts of the

pandemic (Goldblatt et al., 2022).

Vaccines are biological preparations that are used to

stimulate the effector arm of the immune system, including

humoral and cellular components, to confer protection against

infection and/or disease on subsequent exposure to a given

pathogen (Koff et al., 2013; Domıńguez-Andrés et al., 2020;

Plotkin, 2020; Pollard and Bijker, 2021). The strategy based on

the stimulation of the effector response has been sufficient in

many cases to develop very successful vaccines against many

pathogenic microorganisms (Plotkin, 2020). However, there is a

long list of pathogens for which there is no available vaccine or

that the existent vaccine should be improved (Plotkin, 2018).

Interestingly, many if not all of the pathogens for which a

vaccine is still lacking are endowed with the capacity to evade

and subvert the host immune system, inducing cells with

regulatory/suppressive capacity, such as HIV, HCV,

Trypanosoma cruzi (T. cruzi), plasmodium falciparum,

Toxoplasma gondii , Leishmania spp., Mycobacterium

tuberculosis, etc (Van Ginderachter et al., 2010; Goh et al.,

2013; Ost et al., 2016; Singh et al., 2016; O’Connor et al., 2017;

Dorhoi et al., 2019; Koushki et al., 2021). In addition, since

immunization is designed to mimic, at least in a part, certain

aspects of the natural infection, it is not illogical that the

immunization process generates by itself MDSC increases. For

instance, the use of the attenuated Bacillus Calmette-Guerin

(BCG) vaccine has been shown to elicit MDSC increases

(Martino et al., 2010), a feature that has also been described

for M. tuberculosis (du Plessis et al., 2013; Magcwebeba et al.,

2019; Kotzé et al., 2020), the pathogen for which the BCG

vaccine has been developed.

The induction of MDSCs does not depend on a particular

pathogen, adjuvant, or immunization route. In contrast, the

involvement of the immunosuppressive population has been

documented in vaccine studies including viruses, bacteria,

parasites, and fungi. Different adjuvants and also immunization

routes have been implicated in MDSC increases, clearly

supporting the notion that the study of the role played by
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MDSCs could be valuable in many settings and may affect vaccine

efficacy. Moreover, conditions in which vaccine effectiveness may

be decreased, such as aging, obesity and newborns are associated

with MDSC increases (Chen et al., 2015; Painter et al., 2015;

Köstlin-Gille and Gille, 2020; Pawelec et al., 2021).

According to this, the present review aims to compile reports

supporting the study of MDSCs as a valuable and

complementary tool to develop or improve vaccines against

several complex pathogens.
History of MDSCs in vaccination
against pathogens

The first studies providing support to the concept that the

immune system included cells whose function would be to

regulate and suppress other immune cells were published in

the 1970s (Gershon and Kondo, 1970; Bennett et al., 1978;

Sakaguchi et al., 2007). Interestingly, one of the pioneer

studies demonstrating the suppressive capacity of myeloid

cells was carried out in a model of BCG inoculation (Bennett

et al., 1978) (Figure 1). Bennet et al., 1978 showed that bone

marrow natural suppressor cells were activated after systemic

administration of BCG. In addition, the treatment also caused

suppressor cell increases in the spleen through the migration

and colonization of that organ by bone marrow elements

(Bennett et al., 1978). Strikingly, the authors stated in 1979
Frontiers in Cellular and Infection Microbiology 03
that modulation of immunity by BCG is the vectorial sum of

its many effects, augmenting immunity but also suppressive

activities that often co-exist with adjuvant effects (Mitchell

and Murahata, 1979). This pioneering work was not followed

by other studies and the research of the involvement of

myeloid cells with suppressive capacity in vaccine studies

against pathogens did not receive special attention. In the

1990s it was reported that mice immunized with an

attenuated strain of Salmonella typhimurium generated

protection against a virulent challenge, but exhibited

suppressed responses to B and T cell mitogens in the

culture of splenocytes, showing a nitric oxide (NO)-

dependent immunosuppressed state (al-Ramadi et al., 1991;

1992). This report was also an isolated case, and the study and

initial characterization of myeloid cells with suppressive

capacity were mainly performed in the field of cancer

(Talmadge and Gabrilovich, 2013). Since suppressive

myeloid cells do not express classic membrane markers of T

cells, B cells, natural killer cells (NKs), or macrophages,

studies focalized on this population used different

terminologies such as natural suppressor cells, immature

myeloid cells or null cells (Talmadge and Gabrilovich, 2013;

Li et al., 2021). In 2007, a letter written by D. Gabrilovich et al.

proposed the name of myeloid-derived suppressor cells

(MDSCs), and a consensus was reached regarding the

nomenclature of this population of suppressive cells of

myeloid origin (Gabrilovich et al., 2007).
FIGURE 1

Timeline of the study of MDSCs in vaccination. The Figure shows some important reports describing the involvement of MDSCs in vaccination
against different pathogens. BCG, Bacillus Chalmette-Guerin; MDSCs, Myeloid-derived suppressor cells; HIV, Human immunodeficiency virus;
SIV, simian immunodeficiency virus. (1) Bennett et al., 1978; (2) Koyama et al., 1982; Yang et al., 2006; (3) al-Ramadi et al., 1991; (4) Gabrilovich,
et al., 2007; (5) Heithoff et al., 2008; (6) Martino et al., 2010; (7) Sui et al., 2014; (8) Bandyopadhyay et al., 2015; (9) Lin et al., 2018; (10) Kidzeru
et al., 2021.
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In 2008 it was published the first vaccine study using the

new terminology and demonstrating the involvement of

MDSCs during immunization with a Salmonella bivalent

vaccine (Heithoff et al . , 2008). Since then, MDSC

participation was studied in vaccines designed to immunize

against other pathogens including viruses, bacteria and

parasites. New interest in the role of MDSCs during the

assessment of vaccines against M. tuberculosis gave raise to

additional reports from 2010 (Martino et al., 2010). The first

study concerning the role of MDSCs in SIV/HIV vaccines was

published only 8 years ago, in 2014 (Sui et al., 2014). The

involvement of MDSCs in vaccine studies against parasites

started in 2015, after a work conducted on a model of

immunization against Leishmania (Bandyopadhyay et al.,

2015). Lin et al. reported in 2018 that MDSCs in circulation

early increased after influenza A vaccination of rhesus

macaques (Lin et al., 2018), which constitutes a very valuable

model for late-stage vaccine testing before clinical trials. The

relevance of the frequency of MDSCs in infants receiving

vaccination began to be studied only 2 years ago. A higher

frequency of MDSCs at the time of vaccination was associated

with a lower immune response against certain antigens

(Kidzeru et al., 2021). The increasing evidence supporting the

involvement of MDSCs as an important part of vaccine assays

guarantees that further research will be performed next years in

this direction.
Frontiers in Cellular and Infection Microbiology 04
Markers and origin of myeloid-
derived suppressor cells

In mice, there are two main subtypes of MDSCs: M-MDSCs

(monocytic MDSCs) which express CD11b+, Ly6G- Ly6C+, and

PMN-MDSCs (polymorphonuclear MDSCs, also granulocytic

G-MDSCs) which express CD11b+ Ly6G+ and Ly6C+/low

(Figure 2). In addition, since there is an anti-Gr-1 antibody

that binds both Ly6C and Ly6G, in some studies MDSCs are

marked as CD11b+ GR-1+ which marks MDSCs but does not

differentiate between M-MDSCs and PMN-MDSCs (Bergenfelz

and Leandersson, 2020; Veglia et al., 2021). Recently, CD84 has

been suggested as an additional marker for MDSCs that are

present in the tumor microenvironment (Veglia et al., 2021). In

humans, there are no molecules equivalent for Ly6C and Ly6G

and thus anti-GR-1 staining is not possible. Instead, the

equivalent to M-MDSCs is defined by CD11b+ CD33+ CD14+

CD15- HLA-DR -/low staining and PMN-MDSCs are defined by

CD11b+ CD33+ CD14- CD15+/CD66b+ HLA-DR -/low

(Figure 2) (Ostrand-Rosenberg and Fenselau, 2018; Jiménez-

Cortegana et al., 2021; Veglia et al., 2021). Similar to mice, the

use of CD84 has also been suggested for distinguishing human

MDSCs from classical myeloid cells without suppressor capacity.

In addition, for differentiating PMN-MDSCs from neutrophils,

the staining of lectin-type oxidized LDL receptor 1+ (LOX1+)

was proposed. Alternatively, since PMN-MDSCs have low
FIGURE 2

Markers of myeloid-derived suppressor cells. The figure illustrates surface markers of the different subsets of myeloid-derived suppressor cells
(MDSCs) in mice and humans. These markers allow the discrimination between polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSCs) and monocytic myeloid-derived suppressor cells (M-MDCS). LOX-1, lectin-type oxidized LDL receptor 1+. The small boxes show that
the anti-GR-1 antibody binds to both Ly6G and Ly6C molecules.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1003781
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Prochetto et al. 10.3389/fcimb.2022.1003781
density, the suppressor cells could be separated from neutrophils

in a density gradient (1.077 g/ml) (Veglia et al., 2021). Regarding

M-MDSCs, it has been suggested that CXCR1+ staining would

be useful to distinguish M-MDSCs from classical monocytes

(Bronte et al., 2016).

Irrespective of the staining of the markers, it is always

recommended to test the function of the potential MDSCs,

since the suppressive capacity is considered the hallmark of

this population. The inhibition of T-cell proliferation is the most

widely used assay to confirm the nature of cells resembling

MDSCs (Gabrilovich and Nagaraj, 2009; Bronte et al., 2016;

Solito et al., 2019; Veglia et al., 2021).

Under steady-state, growth factors including GM-CSF, G-

CSF and M-CSF induce the differentiation of granulocytes and

monocytes from myeloid cells in the bone marrow (Barreda

et al., 2004; Gabrilovich and Nagaraj, 2009; Millrud et al., 2016).

However, under specific settings, the kinetic of production of

growth factors, together with increases of other molecules may

lead to MDSC expansion. For instance, in a setting of chronic

inflammation, or during severe and acute infection, many

myeloid populations may be consumed and then the bone

marrow may activate an emergency myelopoiesis to replenish

the consumed cells (Panopoulos and Watowich, 2008; Takizawa

et al., 2012; Millrud et al., 2016; Loftus et al., 2018; Veglia et al.,

2018). In addition, it has been described that extramedullary

myelopoiesis may also play a role in MDSC expansion and

activation in cancer and other settings (Song et al., 2005; Millrud

et al., 2016; Dietrich et al., 2021).

It has been proposed that the activation and accumulation

of MDSCs occur in two partially overlapping phases (2 signals

model). Signal 1 leads to the expansion of myeloid cell, which

takes place in the bone marrow and spleen; and signal 2 leads to

the conversion of immature cells including granulocytic and

monocytic cells into activated MDSCs, which takes place

primarily in peripheral tissues. The first group of signals

necessary for the expansion of immature myeloid cells

includes not only growth factors GM-CSF, G-CSF and M-

CSF, but also other molecules such as IL-6, IL-1ß, PGE2,

TNFa, VEGF, S-SCF, Gal-1, Gal-3 and polyunsaturated fatty

acids (Blidner et al., 2015; Veglia et al., 2018; Dorhoi et al.,

2019; Fultang et al., 2020). The second group of signals is

related to the activation of the cells and includes danger-

associated molecular patterns (DAMPs) and inflammatory

cytokines such as IFN-g, IL-1b, IL-4, IL-6, IL-13, PGE2,

HMGB1, TNFa and TLR ligands (Parker et al., 2014;

Condamine et al., 2015; Fultang et al., 2020; Veglia et al.,

2021). Several transcription factors and signaling pathways

have been described to participate in the expansion and

activation of MDSCs and have been reviewed elsewhere

(2021; Condamine et al., 2015; Gabrilovich and Nefedova,

2015; Millrud et al., 2016; Veglia et al., 2018; Fultang

et al., 2020).
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MDSC mechanisms of suppression

Cells of both the innate and adaptive immune response can

be suppressed or affected byMDSCs (Figure 3). The mechanisms

used by MDSCs include A) Production of inhibitory cytokines

with suppressor capacity such as IL-10 and free and membrane-

bound TGF-b (Li et al., 2009; Yang et al., 2020), B) production of

NO by iNOS and reactive oxygen species (ROS) by NADPH

oxidase-2) (Yang et al., 2020; Veglia et al., 2021). NO is a second

messenger that together with ROS may form peroxynitrites

(PNT), a reactive molecule that causes nitration of tyrosine

affecting the function of several proteins. In addition,

peroxynitrites can also affect the migration of T cells since

PNT can cause nitration and inactivation of CCL2 chemokine,

which is important for the migration of T cells (Yang et al., 2020;

Veglia et al., 2021), C) depletion of amino acids, including:

tryptophane consumption by indoleamine-2,3-dioxygenase

(IDO), depletion of cystine, which causes a decrease in the

precursor needed to produce cysteine (Srivastava et al., 2010),

and depletion of arginine by the enzymes arginase-1 and iNOS

(Veglia et al., 2018; Davies et al., 2019); D) expression of several

molecules in the surface of MDSCs, such as: PD-L1 (Lu et al.,

2016; Nam et al., 2019; Yang et al., 2020), VISTA (Deng et al.,

2019), CTLA-4, CD80 (Yang et al., 2006), CD40 (Pan et al.,

2010); E) production of CCR5 ligands that may recruit Foxp3+

regulatory T cells (Tregs) (Schlecker et al., 2012); F) Synthesis of

prostaglandin E2 (PGE2) (Veglia et al., 2018), G) induction of

heme oxygenase-1 (HO-1) (De Wilde et al., 2009); H)

production of exosomes (Ostrand-Rosenberg and Fenselau,

2018); I) transfer of oxidatively truncated lipids (Ugolini et al.,

2020), J) shedding of the CD62L from lymphocytes via

ADAMS17 (Hanson et al., 2009), K) generation of adenosine

via CD39 (nucleoside triphosphate diphosphohydrolase) and

CD73 (exto-5´nucleotidase) (Ryzhov et al., 2011),

MDSCs may suppress in a non-specific but also specific

manner. It has been described that MDSCs can uptake and

present the antigenic epitopes to antigen-specific CD8+ cells

(Kusmartsev et al., 2005). ROS and peroxynitrites from close

MDSCs can nitrate tyrosines in the T-cell receptor and can

abrogate the expression of the T-cell receptor (TCR) z-chain

(Yang et al., 2020), in both cases impairing that CD8 T cells

could interact with Major histocompatibility complex I (MHCI)

expressing cells (Nagaraj and Gabrilovich, 2007; Qu et al., 2012).

In addition, MDSCs in close contact with target cells may result

in down-regulation of L-selectin on naive T cells, interfering

with their ability to migrate to their activation site (Hanson et al.,

2009). On the other hand, it has been described that specific

suppression of CD4+ cells is also possible when sufficient MHC

II expression is achieved by MDSCs (Nagaraj et al., 2012).

Depletion of cysteine is one of the mechanisms that have been

postulated to be involved in this type of suppression (Yang

et al., 2020).
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Interestingly, It has been described that MDSCs may cause

Tregs expansion, mainly in the context of cancer, but there are

reports describing that MDSCs are also able to suppress CD4+

Foxp3+ differentiation from CD4 naïve T cells via ROS and the

IDO enzyme (Centuori et al., 2012; Ji et al., 2016).

It has been postulated that each subset of MDSCs may

suppress using some of the mechanisms described, according

to the setting (Gabrilovich, 2017; Veglia et al., 2018). PMN-

MDSCs would mainly employ ROS and PNT (Raber et al.,

2014; Yang et al., 2020; Veglia et al., 2021), whereas M-

MDSCs would mainly use arginase-1, NO and suppressive

cytokines (Raber et al., 2014; Yang et al., 2020; Veglia

et al., 2021).
MDSCs in vaccination
against bacteria

Taking into account the signals that are required to expand and

activate MDSCs and considering that vaccination aims to mimic at

least some of the events that take place during a given acute

infection, it is reasonable to expect that prophylactic vaccination

may affect the MDSC population. Currently, there is substantial

support showing that the regulatory immune system plays a major
Frontiers in Cellular and Infection Microbiology 06
role during Mycobacterium tuberculosis infection (Cardona and

Cardona, 2019; Magcwebeba et al., 2019; Kelly and McLoughlin,

2020). Moreover, the involvement of MDSCs has been described in

acute and chronic infection (du Plessis et al., 2013; Knaul et al.,

2014; Daker et al., 2015; Magcwebeba et al., 2019; Kotzé et al., 2020).

Although BCG is a related and attenuated vaccine, the influence of

this bacteria on myeloid cells with suppressive capacity was the first

to be shown more than 40 years ago (Bennett et al., 1978)

(Supplementary Table I). After the consensus on the MDSC

terminology, a work by Martino et al. (2010) showed that BCG

immunization in a murine model recruited MDSCs to the site of

inoculation. The CD11b+Ly-6CintLy-6G- cells produced NO, but

did not kill phagocyted BCG and impaired T cell priming in the

draining lymph node (Martino et al., 2010). Interestingly, the

authors highlighted that a deeper knowledge of the innate

immune response elicited by BCG may be necessary to

understand why BCG does not consistently protect adults against

pulmonary disease. For this purpose, several new vaccine candidates

are under study based on new tuberculosis (TB) antigens.

Interestingly, it has been suggested that different antigens may

not solve the problem and next-generation anti-TB vaccine types

should also consider the regulatory arm of the immune system,

controlling MDSC influx and maturation to increase immune-

priming efficacy (Schaible et al., 2017; Kelly andMcLoughlin, 2020).
FIGURE 3

MDSC suppressive mechanisms. MDSC cells, through cell-to-cell contact and the secretion of various anti-inflammatory molecules, produce
the suppression of various types of immune cells, both of the innate and adaptive arms. Also, they can affect the function of various proteins
and cell migration. The suppression mechanisms of MDSCs are diverse and can exert their action in a specific as well as non-specific manner, as
explained in the text. Abbreviations: TGF b, Transforming growth factor b; PGE 2, Prostaglandin E2; NO, Nitric oxide; ROS, Reactive oxygen
species; IL-1, Interleukin 1; IL-10, Interleukin 10; CD62L, Cluster of differentiation 62 ligand; CD 73, Cluster of differentiation 73; IDO, Indolamine
2,3-dioxygenase; ARG 1, Argininie1; PNT, peroxynitrite; VISTA, domain Ig suppressor of T cell activation.
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The association between MDSC-resembling cells and TB

received further support in 2007, when it was reported that

splenocytes from complete Freund adjuvant (CFA) primed-mice

contained suppressive Gr-1+ cells, including monocytic NO-

producing Ly6G- cells and granulocytic O2- producing Ly6G+

cells (Dietlin et al., 2007). In a recent report, Ribechini et al. (2019)

showed that a vaccine based on heat-killed TB induced spleen M-

MDSCs that can be activated to kill dendritic cells (DCs), an

additional mechanism that may help to explain the difficulties

found to develop a very successful anti-TB vaccine (Ribechini et al.,

2019). In this sense, the authors suggested that the involvement of

MDSCs in vaccines againstM. tuberculosis should be investigated in

clinical trials (Ribechini et al., 2019). To date, several candidates

have been suggested to modulate MDSCs and improve anti-TB

vaccine efficacy (Jayashankar and Hafner, 2016).

Despite the role of the regulatory arm of the immune system

in vaccine studies received almost no attention during the

previous century, in the 1990s it was reported that

immunization with an attenuated strain of Salmonella

Typhimurium induced a marked state of immunosuppression in

B and T cell splenocytes cultured with mitogens. Interestingly,

suppression was shown to be NO-dependent, a mechanism that

currently is very linked to MDSCs (1992; al-Ramadi et al., 1991).

Moreover, in 2008, once the MDSC terminology was established

(Gabrilovich et al., 2007), Heithoff et al. (2008) showed that a

Salmonella Bivalent vaccine (Dam) was able to generate cross-

protective immunity against several Salmonella strains, at the

same time that diminished the expansion of MDSCs, as

compared with an AroA Salmonella strain that induced

significant increases of MDSCs (Heithoff et al., 2008).

Interestingly, lower levels of MDSCs correlated with increased

levels of cross-reactive opsonizing antibodies and increased

number of IFN-ɣ-producing memory CD4 and CD8 T

splenocytes, alterations which may account for the protection

observed in Salmonella bivalent vaccinated mice (Heithoff et al.,

2008). Based on these results, the authors suggested that

interventions capable of reducing MDSCs may be beneficial to

enhancing B and T cell stimulation by vaccines (Heithoff

et al., 2008).
MDSCs in vaccination
against viruses

Despite HIV was described in the 1980s (Montagnier, 2010),

a prophylactic or therapeutic vaccine is not yet available.

Notably, the relevance of MDSCs in HIV-infected patients

only began to be studied in 2012 (Vollbrecht et al., 2012; Qin

et al., 2013). It has been reported that MDSCs positively correlate

with viral load and negatively correlate with CD4+ T cell count

(Dorhoi et al., 2020). Further supporting the involvement of

MDSCs in HIV-infected persons, in 2014 a report described that

gp120 HIV envelope protein was able to induce MDSC
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(PBMCs) (Garg and Spector, 2014). Simian immunodeficiency

virus (SIV) is a retrovirus similar to HIV that belongs to the

family of lentivirus. In 2015 a study performed on rhesus

macaques described that the administration of a mix of several

adjuvants alone (TLR agonists + IL-15 + other molecules)

correlated with lower viral load after a SIV challenge as

compared with immunization with several vaccine candidates

(Supplementary Table I). Strikingly, all the vaccines tested

caused increases in cel ls resembling MDSCs after

immunization, whereas the treatment with the mix of

adjuvants alone did not cause increases in those cells and

correlated with better protection (Sui et al., 2014). According

to these results, the authors suggested that preventing MDSC

increases could be critical to improve vaccines against HIV (Sui

et al., 2014).

Zhou, J. et al. (2013) developed a sPD1-p24fc/EP DNA DC-

targeting vaccine, which induced a strong and durable HIV-1

GAG-specific CD8+ T lymphocyte response (Zhou et al., 2013).

Interestingly, the same group found that after EcoHIV challenge

in a murine model, the virus-infected and expanded MDSCs

subverted the memory CD8+ T cell response at a very early stage

of infection, allowing virus persistence, even in the context of a

primed immune system (Liu et al., 2020). Moreover, depletion of

MDSCs by anti-GR1 antibody administration (day 7, 9 and 11

post-infection) allowed a better clearance of infected cells,

supporting that MDSCs diminished the efficacy of the vaccine

(Liu et al., 2020).

Using a different vaccine candidate based on DNA-

SIV+ALVAC-SIV+gp120 alum, it was observed that

immunization of rhesus macaques increased the levels of M-

MDSC-like cells (HLD-DR- CD14+), which was associated with

an increased risk of SIV acquisition, and suggesting that MDSCs

diminished vaccine effectiveness (Vaccari et al., 2019). In addition,

the results supported the notion that an increased arginase activity

linked to MDSCs may interfere with the proper induction of T

and B cell responses. The authors highlighted the relevance of the

understanding of the role of MDSCs to improve the efficacy of

vaccine candidates, not only for HIV but also for other pathogens

(Vaccari et al., 2019).

Interestingly, a mucosal vaccine against HIV/SIV in rhesus

macaques also induced significant increases of both CD14+ M-

MDSCs and CD15+ PMN-MDSCs in the PBMCs (Sui et al.,

2019). The kinetic increase of the subsets was different, CD14+

MDSCs early increased from the first dose but then decreased

progressively, whereas CD15+ PMN-MDSCs only increased

significantly after the last dose of the vaccine regimen

consisting of four doses. The authors suggested that both

populations may be playing very different roles: CD15+

MDSCs were more likely to be early infected and suppressed

the virus-specific T cell response; in contrast and strikingly,

CD14+ M-MDSCs could be playing a protective role being part

of the trained immunity (Sui et al., 2019). Based on these results,
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the authors suggest that induced trained immunity may be a new

opportunity for innovative HIV vaccine design (Sui et al., 2019).

Although the study of the role of MDSCs in HIV infection

started quite late, increasing evidence supports the notion that

this population not only plays a major role in the pathogenesis of

HIV infection, but also in the efficacy of a given vaccine against

HIV (Dorhoi et al., 2020; Yaseen et al., 2021).

Using a late-stage vaccine study in rhesus macaques, it was

reported that an influenza A vaccine consisting of modified RNAm

induced M-MDSCs and PMN-MDSCs that shared several markers

used to mark MDSCs in humans. Both subpopulations were able to

suppress T cell proliferation in vitro and upregulated genes linked to

MDSCs such as arginase-1, IDO1, PDL1, and IL-10 (Lin et al.,

2018). Interestingly there are at least four vaccine studies performed

in rhesus macaques showing that immunization induces MDSCs

(2019; Sui et al., 2014; Lin et al., 2018; Vaccari et al., 2019). These

results are important since late-stage studies in rhesus macaques are

critical to test vaccines before clinical trials.
MDSCs in vaccination
against parasites

The involvement of MDSCs during Leishmania sp. infection

has been demonstrated in several studies (Van Ginderachter

et al., 2010; Pereira et al., 2011; Schmid et al., 2014). In 2015,

immunization with a soluble leishmania antigen (SLA) from L.

donovani increased spleen and liver MDSCs in a murine model.

Interestingly, CD11b+ Gr-1+ cells from immunized mice were

less suppressive than MDSCs induced by L, donovani infection

(Supplementary Table I). Supporting these results, Cox-2,

arginase-I, iNOS, and PGE2, were found to be less expressed

in MDSCs from SLA-immunized mice (Bandyopadhyay

et al., 2015).

In the same year, a malaria peptide antigen was assessed with

different adjuvants in a murine model of vaccine development

against Plasmodium berghei (Wilson et al., 2015). Strikingly,

protective CD8 responses were obtained immunizing

intradermically with the peptide linked to polystyrene

nanoparticles (PSNP) or using Montanide as an adjuvant.

Both approaches did not cause MDSC increases in the

draining lymph node (DNL). In contrast, the use of Poli I:C as

an adjuvant increased MDSCs in the DNL, a fact that correlated

with the lack of CD8 protective response. This result is

compatible with a scenario in which MDSCs may play a role

in decreasing the efficacy of the vaccine adjuvanted with Poli I:C

(Wilson et al., 2015). The authors also showed that

administration of the adjuvants alone caused different ratios of

GR-1+MDSCs/CD11c+ DCs. In this approach, only the Poly I:C

adjuvant caused an increase in the ratio in the DNL supporting

that this adjuvant generates a more suppressive environment as

compared with Montanide or the nanoparticle-based adjuvant

(Wilson et al., 2015). In a different work, the authors showed that
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a different vaccine adjuvanted with polystyrene nanoparticles

was able to achieve partial protection against infection with

blood-stage malaria (Wilson et al., 2019). These results suggest

that further research using anti-inflammatory vaccine carriers

and adjuvants may be valuable to improve malaria vaccines

(Wilson et al., 2019).

The protozoan parasite Trypanosoma cruzi (T. cruzi) is the

etiological agent of Chagas Disease (Pérez-Molina and Molina,

2018). Currently, there is substantial evidence supporting that

acute parasite infection causes alterations in several

immunoregulatory populations of the host, including MDSCs

(Goñi et al., 2002; Arocena et al., 2014; Cardillo et al., 2015;

Flávia Nardy et al., 2015; Poncini et al., 2015; Nardy et al., 2016;

Prochetto et al., 2017). It has been reported that MDSCs increase

in a very notable manner in the spleen, liver and heart of acutely

infected mice (Goñi et al., 2002; Cuervo et al., 2011; Arocena

et al., 2014). Only five years ago we reported that a Trans-

sialidase-based vaccine was able to confer protective capacity

against T. cruzi influencing not only the effector response but

also the regulatory arm of the immune system (Prochetto et al.,

2017). TSf-immunized mice had better survival against infection

correlating with a significant decrease of spleen MDSCs as

compared to non-immunized and infected mice (Prochetto

et al., 2017). In another work, we observed that the remaining

MDSCs in immunized and infected mice still have the capacity

to strongly shape the immune response, since depletion of

MDSCs with 5 fluorouracil (5FU) at day 15 post-infection in

immunized mice caused a notable increase of the CD8 response

and also affected dendritic cells and CD4+Foxp3+ regulatory T

cells (Gamba et al., 2021). Interestingly, previous work had

shown that depletion of MDSCs at day 10 or 15 post-

infection, despite potentiating the immune response, also

significantly increased the mortality to almost 100% in non-

immunized mice (Arocena et al., 2014). Thus, the evidence

suggests that MDSCs may be necessary to resolve

inflammation in non-immunized mice, but vaccines may be

able to allow decreases in MDSCs at the same time that increases

the effector response and improve the outcome of the infection,

including better survival, lower parasite and lower fibrosis in the

heart of chronically infected mice (Prochetto et al., 2017; Gamba

et al., 2021). The fact that MDSCs increase in a very notable

manner during experimental acute T. cruzi infection, together

with the fact that decreasing this population may notably

reshape the immune response and affect the outcome of the

infection, support the use of MDSCs as an important target to

improve vaccine efficacy during rational vaccine design against

T. cruzi.
MDSCs in vaccination against fungi

Most of the studies addressing MDSCs in vaccination

support the notion that those cells may play a role in
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decreasing the efficacy of the vaccine candidates. However, a

protective role for MDSCs in vaccine studies has also been

described. In this sense, it has been reported that

intraperitoneal (i.p.) vaccination with low virulence/attenuated

Candida species protects against i.p. or intravenous (i.v.) lethal

Candida albicans/Staphylococcus aureus (Ca/Sa) challenge that

causes sepsis in a murine model, (Lilly et al., 2019)

(Supplementary Table I). The authors described that

protection was long-lived (up to 60 days post-vaccination) and

mediated by Ly6G+ Gr-1+ putative G-MDSCs, with no role for

macrophages (Lilly et al., 2018; 2019; 2021). The adaptive

immunity was not involved, since protection was maintained

in RAG1-/- mice lacking T and B cells. In addition, macrophages

were neither involved in protection, since clodronate-mediated

depletion of phagocytic macrophages failed to abrogate

protection (Lilly et al., 2021).

Taking into consideration that macrophages have been

involved in trained innate immunity (TII) (Ziogas and Netea,

2022), the authors proposed that Ly6G+ G-MDSCs may be

considered a novel form of TII termed trained tolerogenic

immunity (Lilly et al., 2021). It is worth mentioning that in a

very different model of a mucosal vaccine against HIV infection

of rhesus macaques, it has been proposed that CD14+ M-

MDSCs could be playing a protective role being part of the

trained immunity (Sui et al., 2019). Thus, both subtypes of

MDSCs have been proposed to play protective roles after

vaccination, as a part of innate trained immunity, in

special contexts.
MDSCs in adjuvant development

Adjuvants play a critical role in inducing and directing the

immune response to improve vaccine efficacy (Awate et al., 2013;

Apostólico et al., 2016).

Taking into account the studies collected for this review, it

could be noted that MDSC induction is not an isolated event that

occurs for one particular adjuvant. On the contrary, very

different adjuvants were shown to cause MDSC increases. For

instance, the studies performed in rhesus macaques, which is a

critical late-stage vaccine testing model, showed that modified

RNAm (Lin et al., 2018), DNA (Vaccari et al., 2019), and

peptide-prime/MVA-SIV boost vaccines adjuvanted with IL-

15, TLR agonists and other compounds (Sui et al., 2014),

induced MDSCs. Modified RNAm and DNA were

administered via intramuscular, whereas the other two studies

using MVA-SIV vaccines were administered via intrarectal,

supporting the concept that different routes of immunization

and several adjuvants can induce MDSCs in rhesus macaques.

Interestingly a study by Rosenbaum et al., 2021 analyzed

whether the MVA vector inoculated by different routes

influenced MDSCs in cynomolgus macaques (Rosenbaum

et al., 2021). The authors described that all the immunization
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routes (intradermal, intramuscular, and subcutaneous) were

associated with significant increases of CD14+ MDSCs and

Lin- MDSCs in the blood compartment. In addition, the

recruitment of Lin- MDSCs was greater after intramuscular

immunization as compared with the other routes (Rosenbaum

et al., 2021).

On the other hand, gastrointubation of attenuated

Salmonella (Heithoff et al., 2008), or intradermal BCG

immunization also induced MDSCs increases (Martino et al.,

2010). Interestingly in 1982, it was reported that complete

Freund adjuvant (CFA) emulsion that includes mycobacterium

antigens affected the induction of suppressor T-cells in tumor-

bearing hosts (Koyama et al., 1982). Further supporting this

previous result, in 2010 it was also reported that CFA induced a

population of myeloid cells with a suppressive capacity that was

dependent on NO production (Wang et al., 2010). In addition, it

has been recently described that subcutaneous immunization

with CFA causes significant increases of MDSCs in the spleen of

vaccinated mice (Ribechini et al., 2019). Intraperitoneal

inoculation of CFA plus SLA antigen causes MDSC increases

in a model used to assess a vaccine candidate against Leishmania

spp. (Bandyopadhyay et al., 2015). Thus, substantial data is

supporting the notion that attenuated pathogens or emulsified

formulations of them can cause MDSC increases via another set

of immunization routes such as gastrointubation, intradermal,

intraperitoneal and subcutaneous immunization.

ISCOMs (immunostimulating complexes) are adjuvants

composed of saponin, cholesterol, phospholipids and

incorporated antigens (Morein et al., 1984). ISCOMATRIX

and ISPA are similar adjuvants with cage-like particle

structures but without an incorporated antigen (Bertona et al.,

2017). We have previously shown that subcutaneous

immunization with cage-like particles induces increases in

CD11b+ GR-1+ cells resembling MDSCs (Prochetto et al.,

2017). Moreover, in our model of T. cruzi infection, the

pretreatment with 5FU in a dose reported by several groups to

selectively deplete MDSCs (Vincent et al., 2010; Arocena et al.,

2014; Namdar et al., 2015; Khosravianfar et al., 2018) allowed to

significantly improve the protective capacity of a TSf-ISPA

vaccine candidate allowing 100% of mice survival after a

challenge with a lethal dose (Gamba et al., 2021).

Thus, there is wide evidence that different adjuvants and

administration routes influence MDSCs in immunization

protocols, suggesting that targeting those cells may be a

valuable approach to improve vaccine efficacy against

pathogens, as has been suggested (Gamba et al., 2021).
Conditions that affect MDSCs also
affect vaccination

Taking in mind that a substantial number of studies

supports the notion that MDSCs may play a role in
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immunization against different pathogens, via different

immunization routes and using different adjuvants, the

question that arises is whether conditions that affect MDSCs

would also influence vaccination. In the same line and further

reinforcing the role of MDSCs in vaccination, it has been

described that several conditions such as aging, obesity and

newborns, which are known to affect MDSC levels, also

influence vaccination.

The first study that addressed this topic was performed by

Heithoff et al. (2008). In that work, in addition to showing that a

Salmonella bivalent vaccine generated cross-protective capacity

against Salmonella, it was also described that vaccinated aged

mice, which had higher levels of MDSCs, exhibited a 50-fold

increase of colony-forming unit (CFU) in the spleen relative to

that of young mice. Similar results were obtained using both

C57BL/6 and BALB/c mice, supporting that the observation is

independent of the mouse strain (Heithoff et al., 2008).

According to these results, the authors postulate that

conditions capable of reducing MDSC numbers or activities in

the elderly may be valuable to improve vaccine efficacy (Heithoff

et al., 2008).

In a different approach but in the same line, Harman, et al.

(2015) described that MDSCs expanded in aged mice after

immunization with CpG-ODN emulsified with Freund´s

adjuvant lasted longer in the spleen of aged mice than in their

younger counterparts. CD11b+ Gr1+ cells highly express other

surface proteins, such as CD124 and CD31, and were capable of

suppressing T cell proliferative response by arginase induction

(Harman et al., 2015).

Obesity is another condition that is associated with chronic

inflammation and increases in MDSC basal levels (Ostrand-

Rosenberg, 2018; Pawelec et al., 2019). In addition, obesity is a factor

that correlates with a decreased vaccine-induced immune response

(Painter et al., 2015). Using a murine model of obesity, vaccine efficacy

against hepatitis B (HB) was tested. Interestingly, obese mice, which

had increased proportions of MDSC in the spleen and liver, showed

decreased humoral and HBsAg-specific cellular responses to the HB

vaccine (Chen et al., 2015). Based on their results, the authors

concluded that in their model obesity is related to impaired vaccine-

induced humoral and cellular immunity (Chen et al., 2015).

It has been described that MDSCs present in newborns may

be important to control inflammation (Gervassi et al., 2014; He

et al., 2018; Köstlin-Gille and Gille, 2020). However, the presence

of MDSCs may also be related to reduced response to vaccines in

infants, as has been suggested (Gervassi et al., 2014). Recently,

Kidzeru et al. (2021) analyzed MDSC frequencies in infants and

immune responses to the vaccines Bacillus Calmette-Guérin

(BCG), HB, and combination diphtheria, tetanus, and

pertussis (dTaP). Higher MDSC frequency at vaccination was

associated with a lack of subsequent IFN-ɣ release in response to

vaccine Ags, except for BCG. No association was found between

MDSCs and vaccine Ag-induced CD4+ T cell proliferative
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responses or humoral responses (Kidzeru et al., 2021).

As suggested by the authors, the response to the vaccine may

be affected by several factors such as vaccine composition,

administration route, and capacity for inducing MDSCs as

well as preexisting MDSC frequencies (Kidzeru et al., 2021).

The fact that MDSC levels are increased in very different

conditions such as aging, obesity and newborns, in which a

reduced vaccine response has been described, constitutes an

additional line of evidence supporting that MDSCs may play an

important role regarding vaccine efficacy. Moreover, it is very

well-known that MDSCs are increased in several types of cancer

and vaccine efficacy against cancer cells can be decreased by

MDSCs (Poschke et al., 2012; Mengos et al., 2019; Shi

et al., 2021).
Concluding remarks

Vaccines are one of the most successful measures of public

health to control diseases. Despite a substantial number of

vaccines have been developed and included in vaccination

schedules, there is still a long list of pathogens for which a

licensed vaccine is still not available. Decades of research have

not been sufficient to develop successful vaccines against

complex pathogens such as HIV, HCV, Plasmodium

falciparum, Trypanosoma cruzi, Leishmania spp, etc. Thus, the

need for alternative strategies to improve vaccination has been

mentioned in many of these cases (Koff et al., 2013).

One of the reasons that may account for the lacking vaccines

could be related to the ability of the pathogens to evade and

subvert the host immune system. In this sense, many pathogens

can cause immunosuppression (Rueckert and Guzmán, 2012), a

condition that may decrease not only the host response but also

the response expected to be elicited by any vaccine candidate.

Moreover, since vaccination aims to resemble certain aspects of

the events that occur during natural infection, the immunization

process by itself may expand populations of the regulatory arm

of the immune system, such as MDSCs, decreasing vaccine

efficacy. The reports collected in this review support the

concept that induction of MDSCs during vaccination is not an

isolated event that depends on a particular pathogen, adjuvant,

or immunization route. On the contrary, consistent data support

that induction of MDSCs is a very likely event that may take

place during vaccination, although it is not generally assessed. If

the vaccine by itself causes an expansion of MDSCs or other

immunoregulatory populations, then the possibility that this

vaccine cannot achieve its full potential exists, and targeting

MDSCs may represent a valuable and promising tool to be

explored as a strategy to improve the vaccine efficacy. For many

pathogens, considering the effector arm of the immune response

has been sufficient to develop successful vaccines. However,

regarding the pathogens that precisely are endowed with the
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ability to subvert the host immune system, monitoring and/or

targeting the MDSC population during rational vaccine design

may constitute a valuable alternative to complement and further

improve the vaccines that are still lacking.
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