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ABSTRACT
Purpose: Acute kidney injury (AKI) is a common complication and associated with a poor clinical
outcome. In this study, we developed and validated a model for predicting the risk of AKI
through machine learning methods in critical care patients with acute cerebrovascular disease.
Methods: This study was a retrospective study based on two different cohorts. Five machine
learning methods were used to develop AKI risk prediction models. We used six popular metrics
(AUROC, F2-Score, accuracy, sensitivity, specificity and precision) to evaluate the performance of
these models.
Results: We identified 2935 patients in the MIMIC-III database and 499 patients in our local data-
base to develop and validate the AKI risk prediction model. The incidence of AKI in these two
different cohorts was 18.3% and 61.7%, respectively. Analysis showed that several laboratory
parameters (serum creatinine, hemoglobin, white blood cell count, bicarbonate, blood urea nitro-
gen, sodium, albumin, and platelet count), age, and length of hospital stay, were the top ten
important factors associated with AKI. The analysis demonstrated that the XGBoost had higher
AUROC (0.880, 95%CI: 0.831–0.929), indicating that the XGBoost model was better at predicting
AKI risk in patients with acute cerebrovascular disease than other models.
Conclusions: This study developed machine learning methods to identify critically ill patients
with acute cerebrovascular disease who are at a high risk of developing AKI. This result sug-
gested that machine learning techniques had the potential to improve the prediction of AKI risk
models in critical care.

Abbreviations: AKI: Acute kidney injury; AUROC: Area under receiver operating characteristic;
KDIGO: Kidney Disease: Improving Global Outcomes; SCr: Serum creatinine; NSAID: Non-steroidal
anti-inflammatory drug; ICU: Intensive care unit; LOS: Length of stay; HGB: hemoglobin; WBC:
White Blood Cell Count; BUN: blood urea nitrogen; ALB: albumin; PLT: platelet count
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Introduction

Acute kidney injury (AKI) is a common syndrome that is
characterized by a sudden reduction in kidney function
and is caused by different etiologies. AKI is a serious
complication in intensive care units (ICUs) and can
increase the mortality rate for critically ill patients.
Previous studies have reported that the incidence of
AKI in ICU patients ranges from 19.2% to 57.3% [1,2].
However, despite significant advances in health care,
the incidence of AKI is still increasing [1,3–5]. Although
many studies have described the risk factors and clinical
outcomes of AKI [5–7], we still know very little about
the risk of AKI in patients with acute cerebrovascu-
lar disease.

In general, acute cerebrovascular disease includes
both hemorrhagic stroke and ischemic stroke. The
acute cerebrovascular disease has a high mortality rate
if patients are complicated by AKI. A previous study
showed that the incidence of AKI among an eastern
European population with ischemic stroke and hemor-
rhagic stroke was 14.5% [8]. A meta-analysis further
showed that the incidence of AKI after stroke was
9.61% and that the risk of AKI after hemorrhagic stroke
was much higher at 20% [9]. Other studies have also
shown that AKI is associated with increased mortality,
disability, and a poorer neurological outcome [10–12]. It
is important to identify patients at risk of AKI so that
we can prevent the development of AKI and improve
patient outcomes.
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The development of artificial intelligence has led to
a significant improvement in the predictive models
used for estimating the risk of AKI [13–16]. There was a
study using a Bayesian networks (BNs) model to predict
the risk of AKI in gastrointestinal cancer (GI) patients.
BNs model achieved good predictive capacity com-
pared with other machine learning models [17].
However, there is still limited data relating to the AKI
risk prediction models using machine learning methods
in patients with acute cerebrovascular disease in the
ICU setting. In the present study, we used a public data-
base (the Medical Information Mart for Intensive Care
(MIMIC)-III database) with the database held by our
local hospital, to build a range of models for predicting
the risk of AKI in critically ill patients with acute cere-
brovascular disease. In generating our models, we
applied a machine learning approach to develop a clin-
ical risk model that could assist clinicians with decision-
making and clinical management.

Methods

Data source

This was a retrospective study based on two different
cohorts: the MIMIC-III database (internal validation) and
the database held by the First Affiliated Hospital of
Fujian Medical University (external validation). The
MIMIC-III database features critical care data for over
40,000 patients admitted to intensive care units at the
Beth Israel Deaconess Medical Center (BIDMC) between

2001 and 2012 [18]. The data held by the MIMIC-III
database have been de-identified and all patient identi-
fiers have been sealed in accordance with the Health
Insurance Portability and Accountability Act (HIPAA)
Safe Harbor provision. Researchers can apply to use
this database without charge. In the present study, we
used MIMIC-III v1.4. To gain access to the database, we
completed relevant training courses at the National
Institutes of Health and got the certificate (reference:
41733653). We also used another database held by our
own hospital (a tertiary teaching hospital); this data-
base featured 499 patients diagnosed with acute cere-
brovascular disease and admitted to the ICU between
January 2016 and February 2021. This study was
approved by the ethics committee of the First Affiliated
Hospital of Fujian Medical University (Reference:
[2020]280). Figure 1 shows a flowchart depicting the
study protocol.

We used International Classification of Diseases,
ninth revision, Clinical Modification (ICD-9-CM) diagno-
sis codes (430,431,432,433,434,852,853,854) to identify
eligible patients (acute cerebrovascular disease) for ana-
lysis. We excluded patients younger than 18 years of
age or more than 90 years of age, those who stayed in
the ICU for <48 h or more than 60 days, and those with
an incomplete set of laboratory or medical data.

Definition and staging of AKI

The definition and staging of AKI was based on serum
creatinine (SCr) criteria according to the 2012 Kidney

Figure 1. Flowchart depicting the study protocol. MIMIC-III: Medical Information Mart for Intensive Care III; LOS: length of stay;
ICD-9-CM: International Classification of Diseases, ninth revision, Clinical Modification.
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Disease: Improving Global Outcomes (KDIGO) guide-
lines [19]. A diagnosis of AKI could be made if the SCr
had increased beyond 0.3mg/dL (�26.5 lmol/l) within
48 h, or if the increase of SCr was not less than 1.5-
folder different from baseline, and these situations were
known or presumed to have occurred within the past
seven days.

The staging of AKI was described as follows. AKI
stage 1: SCr lay in a range that was 1.5–1.9-fold that of
the baseline, or �0.3mg/dL (�26.5lmol/L), and these
situations were known or presumed to have occurred
within the past seven days. AKI stage 2: SCr lay in a
range that was 2.0–2.9-fold higher than baseline. AKI
stage 3: SCr was not less than 3.0-fold higher than base-
line, or the increase of SCr was not less than 4.0mg/dL
(�353.6lmol/L), or renal replacement therapy had
been initiated.

Normally, the baseline was set as the patient’s initial
SCr test prior to ICU admission. However, the data pro-
vided by the MIMIC-III database only contained patient
data from the period after ICU admission. Therefore,
the baseline was set as the minimum value after ICU
admission. A patient would be diagnosed with AKI if
the SCr level increased and was not less than 1.5-fold
higher than the baseline within 48 h. Urine volume was
not included in our analysis due to incom-
plete datasets.

Data collection

For each of the included patients, we collated data
relating to 23 features as follows: (1) demographics
(sex, age, length of ICU stay); (2) medications (in accord-
ance with the literature, we selected several factors that
are known to exert significant influence on AKI, includ-
ing diuretics, non-steroidal anti-inflammatory drugs
(NSAIDs), vasopressors, aminoglycosides, mannitol, col-
loid bolus, continuous renal replacement therapy
(CRRT) and mechanical ventilation); (3) comorbidities
(hypertension, diabetes, and infection); (4) laboratory
test results, including white blood count (WBC), hemo-
globin (HgB), platelets (PLT), creatinine (CR), blood urea
nitrogen (BUN), albumin (Alb), sodium (Naþ), potassium
(Kþ), and bicarbonate (HCO3�), and (5) prognosis
(whether patients died after discharge). For all parame-
ters, we used the first values obtained during the first
24 h in the ICU.

Data pre-processing

We identified and removed duplicate data and used ‘00

in the analysis from the beginning for any parameters

with missing data. We found that the distribution of
some parameters was skewed or concentrated within a
very small range. To normalize such data, we used loga-
rithmic transformations so that the data were distrib-
uted in a manner that was more similar to the Gaussian
distribution. Figure 2 shows a typical example of such
transformation.

To account for different data ranges for different fea-
tures, we also normalized data that featured scores and
not classifications. We used min-max scaling for data
normalization. The min-max scaling transforms the ori-
ginal data into the range of [0,1], and the normalized
formula is Xnorm¼(X-Xmin)/(Xmax-Xmin). Xnorm is the
normalized data, X is the original data, Xmax and Xmin
are the maximum and minimum values of the original
data respectively. The method can realize an equal
scale of the original data. This allowed us to analyze
data in a standardized manner. Figure 3 depicts a typ-
ical example of data cleaning.

Predictive model and data split

Simple and unadjusted independent models, such as
the Adaboost Decision Tree, were selected in advance,
and the relationship between the number of samples
and the stability of the model was studied in general.
When the number of training samples was lower than
800–1000, we found that the AUROCs (the areas under
the receiver operating characteristic curves) and F2
scores improved significantly as the number of samples
increased, thus indicating that the number of samples
was insufficient originally. When the number of samples
exceeded 1200–1400, the degree of improvement was
only minor, thus indicating that the sample size was
sufficient. Based on this information, the training set
featured 1400 samples (and represented 50% of the
total sample set).

Following data cleaning, the MIMIC-III database was
randomly partitioned into three groups: 50% of samples
were used to train the model, 25% of samples were
used to validate, and 25% were used as internal tests to
complete the basic assessment. We also used our local
database to perform external tests, such that we could
assess the model in a more comprehensive and object-
ive manner.

In this study, we used five methods to develop risk
prediction models for AKI: an extreme gradient boost-
ing (XGBoost), adaptive boosting (AdaBoost), random
forest (RF), logistic regression (LR) and multi-layer per-
ception (MLP). A tree-like model represents a flowchart-
like structure with each internal node representing a
‘test’ of an attribute. In machine learning, multiple
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tree-like weak learners would normally be integrated
into a model to improve quality. Weak learners are
used in a serial manner in the boosting model
(XGBoost, AdaBoost) and in a parallel manner in the
random forest model; thus, boosting models are
updated by each of the weak learners according to the
result of the previous one. The random forest model
refers to every weak learner by different weightings at
the same time. The tree-based supervised machine
learning methodology is usually robust when faced
with abnormal conditions. Logistic regression is a trad-
itional statistical model while multi-layer perception
uses backpropagation techniques for training and can
distinguish data that is not linearly separable.

Boosting trees help to reduce bias while bagging
trees helps to reduce variance. For each predictive
model, we used 5-fold cross-validation to evaluate the
performance of these algorithms and employed six
popular metrics (AUROC, F2-Score, accuracy, sensitivity,
specificity and precision) to evaluate the functionality
of these models. We used a loop function to select
hyperparameters by grid searching and trained the five
models individually using hundreds of combinations for
ranking. According to the training log-loss and testing

Figure 2. An example of data pre-processing involves the normalization of data. Original data VS Processed data (the data after
logarithmic transformations); CR, serum creatinine; BUN, blood urea nitrogen.

Figure 3. The data cleaning process.
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log-loss, we finally selected the best combination for
the predictive model.

Data analysis

Python (3.7.0) was used for all data analyses in this
study. For continuous variables, the Shapiro-Wilk test
was used to assess whether the data were normally dis-
tributed. Data that conformed to the normal distribu-
tion were expressed as means ± standard deviation.
Comparisons between groups were carried out by the
student’s t test. Data that were not normally distributed
were expressed as medians and interquartile ranges.
Comparisons between groups were carried out using
the Kruskal-Wallis test. Comparisons between groups
were carried out with the Chi-squared test for categor-
ical variables. XGBoost was used to calculate the scores
for important features and perform feature selection.
The performance of each feature was analyzed and we
used a range of factors to evaluate the performance of
the model, including the AUROC, F2-Score (F2), accur-
acy, specificity, sensitivity and precision. By placing
more emphasis on false negatives, the F2 score is asso-
ciated with a higher recall rate than precision. A high
precision but low recall rate provides us with an
extremely accurate outcome but can miss many instan-
ces that are difficult to classify. AUROC was applied to
assess model discrimination and a calibration curve was
applied to assess model calibration. Statistical signifi-
cance was defined as p< 0.05.

Results

A comparison of clinical features across different
study cohorts

We finally identified 2935 patients with acute cerebro-
vascular disease from the MIMIC-III database and 499
patients from our local hospital to develop and validate
the AKI risk prediction model. The MIMIC-III database
was randomly divided into a training set (50% of
patients), a validation set (25% of patients) and an
internal test set (25% of patients). There were no statis-
tically significant differences between these three
groups in terms of all the features, indicating that the
division was random. There was no difference in terms
of hypertension, diabetes, SCr, and bicarbonate,
although there was a notable difference in terms of
other clinical features between the MIMIC-III database
and our local database, as shown in Table 1, illustrated
that there was a significant difference in these two
cohorts. Even with the big difference in these two
cohorts, however, our machine learning models can still
achieve good performance for the AKI risk prediction, it
means that the model could be generalized to
other cohorts.

Scores for important features

Twenty-three important features were extracted for the
risk prediction of AKI. We then investigated the relative
importance of each factor for AKI prediction. We used

Table 1. Characteristics of the study population.

Factors
Training set
(N¼ 1467)

Validation set
(N¼ 734)

Testing set
(N¼ 734)

Total
(N¼ 2935)

Local
(N¼ 499) P value

Sex (male), N (%) 753 (51.3) 373 (50.8) 374 (51.0) 1500 (51.1) 341 (68.3) <0.001
Age (years) 66.8 (54.1, 78.4) 66.7 (53.0, 78.5) 67.5 (53.8, 78.1) 66.8 (53.6, 78.3) 61.0 (50.0, 71.0) <0.001
Length of stay in ICU (days) 8.7 (4.7, 15.2) 8.5 (4.7, 15.3) 8.2 (4.8, 14.8) 8.6 (4.7, 15.1) 10.0 (5.0, 18.0) <0.001
AKI, N (%) 268 (18.3) 134 (18.3) 134 (18.3) 536 (18.3) 308 (61.7) <0.001
Die when discharge, N (%) 290 (19.8) 154 (21.0) 150 (20.4) 594 (20.2) 212 (42.5) <0.001
Hypertension, N (%) 862 (58.8) 445 (60.6) 445 (60.6) 1752 (59.7) 304 (60.9) 0.605
Diabetes, N (%) 301 (20.5) 154 (21.0) 151 (20.6) 606 (20.6) 95 (19.0) 0.410
CRRT, N (%) 12 (0.8) 7 (1.0) 6 (0.8) 25 (0.9) 19 (3.8) <0.001
Mechanical ventilation, N (%) 771 (52.6) 390 (53.1) 393 (53.5) 1554 (52.9) 390 (78.2) <0.001
Mannitol, N (%) 43 (2.9) 22 (3.0) 34 (4.6) 99 (3.4) 368 (73.7) <0.001
Colloid bolus, N (%) 83 (5.7) 39 (5.3) 44 (6.0) 166 (5.7) 373 (74.7) <0.001
NSAIDS, N (%) 405 (27.6) 193 (26.3) 207 (28.2) 805 (27.4) 283 (56.7) <0.001
Diuretics, N (%) 468 (31.9) 224 (30.5) 249 (33.9) 941 (32.1) 412 (82.6) 0.047
Vasoactive drugs, N (%) 274 (18.7) 116 (15.8) 123 (16.8) 513 (17.5) 231 (46.3) <0.001
Aminoglycosides, N (%) 235 (16.0) 118 (16.1) 126 (17.2) 479 (16.3) 42 (8.4) <0.001
Infection, N (%) 522 (35.6) 246 (33.5) 248 (33.8) 1016 (34.6) 412 (82.6) <0.001
White blood cell count (10�9/L) 10.6 (8.2, 13.9) 10.9 (8.3, 13.8) 10.8 (8.0, 13.7) 10.7 (8.2, 13.9) 11.9 (9.5, 16.0) <0.001
Hemoglobin (g/L) 11.8 (10.4, 13.1) 12.0 (10.6, 13.3) 12.1 (10.6, 13.3) 11.9 (10.5, 13.2) 11.4 (9.6, 13.2) <0.001
Platelet count (10�9/L) 218.0 (170.0, 276.0) 221.0 (174.0, 282.0) 218.0 (167.0, 274.3) 218.0 (170.0, 277.0) 177.0 (135.0, 234.0) <0.001
Creatinine (mg/dl) 0.8 (0.7, 1.1) 0.8 (0.7, 1.0) 0.8 (0.7, 1.0) 0.8 (0.7, 1.0) 0.8 (0.6, 1.0) 0.659
Blood urea nitrogen (mmol/L) 17.0 (12.0, 23.0) 17.0 (13.0, 23.0) 17.0 (12.0, 23.0) 17.0 (12.0, 23.0) 8.5 (5.8, 14.7) <0.001
Potassium (mmol/L) 3.9 (3.6, 4.2) 3.9 (3.6, 4.2) 3.9 (3.6, 4.2) 3.9 (3.6, 4.2) 3.9 (3.5, 4.3) 0.047
Sodium (mmol/L) 140.0 (137.0, 142.0) 139.0(137.0, 142.0) 139.0(137.0, 142.0) 139.0 (137.0, 142.0) 146.4 (140.4, 154.5) <0.001
Bicarbonate (mmol/L) 25.0 (23.0, 27.0) 25.0 (23.0, 27.0) 25.0 (23.0, 27.0) 25.0 (23.0, 27.0) 24.8 (21.4, 28.4) 0.297
Albumin (g/L) 3.3 (3.0, 3.7) 3.3 (3.1, 3.7) 3.3 (3.0, 3.6) 3.3 (3.0, 3.7) 3.7 (3.3, 4.2) <0.001

Abbreviations: AKI, acute kidney injury; CRRT, continuous renal replacement therapy; NSAIDS, Non-Steroidal Anti-inflammatory Drugs.
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XGBoost, AdaBoost, and random forest classification
models to acquire the relative importance score for
each feature individually and then took the average
from all three models (Figure 4). Laboratory tests CR,
HGB, WBC, HCO3, BUN, Na, Alb, and PLT, combined
with age and the length of ICU stay, were the top ten
most important factors. This result suggested that these
factors were strongly associated with AKI, guiding the
physicians to pay more attention to these factors.

Comparison of AUROC values across
different models

Model discrimination was assessed using AUROC values.
Figures 5A–B showed that the performance of different
models varied under these two different cohorts. The
AUROC values of the XGBoost model were 0.880
(95%CI: 0.831–0.929) and 0.780 (95%CI: 0.731–0.829)
respectively in the internal validation set and external
validation set, while the MLP model performed the
weakest (0.780, 95%CI: 0.725–0.835 and 0.670, 95%CI:
0.615–0.724). As we can see, the XGBoost model had
higher AUROC values, indicating that the XGBoost
model was better at predicting AKI risk in patients with
acute cerebrovascular disease than other models. The
scores for some models (such as the XGB, RF, LR, and
MLP) decreased by 0.070–0.100 from the internal test to

the external test, mainly due to the differences between
the MIMIC-III database and our local database.
However, our local database still showed a sufficiently
strong AUROC to demonstrate the model’s ability to
generalize to other cohorts.

Calibration curves for internal validation on the
MIMIC-III test database

We further performed the calibration curve by the
XGBoost model. As shown in Figure 6, the calibration
curve indicated the predicted and actual incidence of
AKI. The closer the predicted calibration curve was to
the actual calibration curve, and the more similar the
predicted probabilities were to the actual probabilities.
Thus, the result suggested that the calibration in the
XGBoost model was better than others.

A comparison of the performance for
different models

Furthermore, six popular metrics (AUROC, F2-Score,
accuracy, sensitivity, specificity and precision) were
used to evaluate the performance of these models.
Comparative analysis of the different models showed
that AUROCs and accuracies were both good in general,
although F2 Scores were low (Table 2). The main

Figure 4. Feature importance scores. Features selected by machine learning methods, ranked by importance scores.
Abbreviations and annotations: NSAIDS, Non-Steroidal Anti-inflammatory Drugs; CRRT, continuous renal replacement therapy.

48 X. ZHANG ET AL.



problem was that the recall rate for sensitivity was low.
In general, we hoped to achieve an accuracy of >60%
when identifying positive patients in the primary
screening, and at least 60% of patients were predicted
to be positive by the model. On this basis, the higher
the AUROC, the better the performance. The XGBoost
model had higher AUROC (0.880, 95%CI: 0.831–0.929),
illustrating that it had better performance at predicting
AKI risk in patients with acute cerebrovascular disease
than other models.

Considering the impact of different data distribu-
tions on the model, we did find that the overall score
did fall slightly (such as the AUROC and accuracy),
although the scores were still acceptable (the AUROC of
the XGBoost model was from 0.880 to 0.780 and the
accuracy was from 0.879 to 0.713). This indicated that
the model did possess a generalization ability that
could be applied to different regions and different
groups (Table 3).

Discussion

AKI is a complex disease associated with poor out-
comes. Consequently, it is immensely challenging to
develop a simple individual model that could accurately
predict the risk of AKI in ICU patients with acute cere-
brovascular disease. One previous study reported that
the incidence of AKI after all stroke types was 11.6%
while subgroup analyses further revealed that the
pooled prevalence rate of AKI after acute ischemic
stroke was 19.0% and the rate of AKI after intracerebral
hemorrhage was 12.9% [20]. In the present study, we
showed that the incidence of AKI in critically ill patients
with acute cerebrovascular disease in the MIMIC-III
database was 18.3%; this concurred with the findings of

Figure 5. Performances of the prediction models for internal
and external validation. (A) Internal testing performance:
Receiver operating characteristic curve for the MIMIC-III test
cohort. (B) External testing performance: Receiver operating
characteristic curve for the local test cohort.

Figure 6. Calibration curves for internal validation on the MIMIC-III test database. The X-axis represented ten subgroups accord-
ing to the predicted probabilities from 0 to 1. The Y-axis represented the probabilities of the incidence of AKI.
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other studies. Machine learning methods had been suc-
cessfully used to develop models to predict and to
detect AKI for older patients [2]1 and to predict mortal-
ity in ICU patients with sepsis [22]. Machine learning
methods were also successfully established to predict
cardiac surgery-associated acute kidney injury (CSA-
AKI), which determines risks following cardiac surgery,
enabling the optimization of postoperative treatment
strategies to minimize the postoperative complications
following cardiac surgeries [23]. If we are able to accur-
ately identify patients at high risk of AKI by applying
machine learning methods, we may be able to prevent
or reduce mortality.

Many factors have been associated with AKI after
intracerebral hemorrhage, including age, hypertension,
diabetes, hypovolemia, central nervous system injury,
nephrotoxic drugs, and infection [24]. The variables we
selected to include in our model development were
selected carefully from the existing literature. In this
study, the new models were trained with the MIMIC-III
database and tested for predictive ability by applying
data acquired from our local hospital database.
Although the two databases were very different, the
predictive models still showed good results for
both databases.

Using advanced machine learning techniques, we
identified the top ten most important factors associated
with AKI. We found that laboratory tests (such as CR,
HGB, WBC, HCO3-, BUN, Naþ, Alb, PLT) might have
strong associations with AKI. This result could be
explained by the fact that patients who had anemia,
inflammation, metabolic acidosis, hypernatremia, hypo-
albuminemia, and a low platelet count, might easily suf-
fer from AKI compared to others. Anemia is associated
with an increased risk of AKI; the potential mechanisms
responsible for this include reduced renal oxygen deliv-
ery, worsening oxidative stress, and impaired hemosta-
sis [25]. AKI is also associated with intrarenal and
systemic inflammation. Inflammation is essential for

eliminating microbial pathogens and repairing tissue
after injury. Leukocytes infiltrate the injured kidneys via
the circulatory system and induce the generation of
inflammatory mediators, such as cytokines and chemo-
kines, thus causing damage to the kidney [26]. These
resident and infiltrating leukocytes play an important
role in the AKI [27]. Studies have also shown that lower
serum bicarbonate levels are an independent risk factor
for the development of AKI [28]. It is thought that
hypernatremia can result in renal dysfunction via intra-
vascular dehydration and vasoconstriction, either dir-
ectly or through a tubuloglomerular feedback
mechanism [29]. Hypoalbuminemia is also a risk factor
for AKI; therefore, serum albumin determinations might
be useful to identify patients at increased risk for AKI.
There are several possible mechanisms underlying
these effects, including the expansion of intravascular
volume, antioxidant function, the maintenance of renal
perfusion and glomerular filtration, thus mitigating the
effect of nephrotoxic medications [25,30]. Platelets play
a significant role in the coordinated immune response
to infection and therefore in the inflammation and
coagulation dysfunction that contributes to organ dam-
age during sepsis [31]. In our clinical work, we can eas-
ily acquire these parameters and use this information to
predict patients at a higher risk of AKI. This is a
reminder that we should pay close attention to these
indicators in our clinical work.

Our research also showed that some clinical factors
(such as age, respiratory failure requiring mechanical
ventilation, and the length of ICU stay) were likely to be
associated with AKI in ICU patients with acute cerebro-
vascular disease. Studies have shown that age is a risk
factor for acute kidney injury [9,32]. Other studies have
shown similar results in that respiratory failure requiring
mechanical ventilation was independently associated
with AKI [6,21,33]. In other words, critically ill patients,
with acute cerebrovascular disease, who require mech-
anical ventilation, can readily suffer from AKI. Thus, the

Table 2. The performance of different models based on the MIMIC-III database.
Model AUROC F2-Score Accuracy Sensitivity Specificity Precision

XGB classifier 0.880 0.510 0.879 0.470 0.970 0.778
AdaBoost classifier 0.780 0.420 0.846 0.388 0.948 0.627
Random forest classifier 0.870 0.450 0.872 0.403 0.977 0.794
Logistic regression 0.850 0.680 0.812 0.746 0.827 0.490
Multi-Layer perception 0.780 0.510 0.860 0.485 0.943 0.657

Table 3. The performance of different models was tested by our local database.
Model AUROC F2-Score Accuracy Sensitivity Specificity Precision

XGB classifier 0.780 0.770 0.713 0.769 0.623 0.767
AdaBoost classifier 0.790 0.700 0.729 0.669 0.827 0.862
Random forest classifier 0.780 0.840 0.711 0.870 0.455 0.720
Logistic regression 0.780 0.760 0.739 0.753 0.717 0.811
Multi-Layer perception 0.670 0.560 0.617 0.526 0.764 0.783
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longer ICU stay, the more severe the disease and the
higher the risk of AKI.

It is possible that brain-kidney crosstalk may occur
via increased sympathetic nervous system activity, dis-
tant hormonal communication, and an inflammatory
state [34]. Intracerebral hemorrhage may directly affect
the function of the hypothalamus and brainstem, thus
affecting the regulation of sympathetic nerves, causing
the constriction of renal vessels, thus resulting in ische-
mic necrosis in the renal tubules; ultimately, this will
lead to AKI [24]. It is important to prevent and treat AKI
in patients with intracerebral hemorrhage to protect
renal function as early as possible and avoid risk factors
that can cause renal injury, such as mannitol [35]. The
reason why CRRT and mannitol received lower import-
ance scores in our analysis may have been due to the
small number of patients in our cohorts. Some studies
have shown that there is a close correlation between
the occurrence of cerebrovascular events and renal
injury; these are two conditions that can aggravate
each other [36]. A recent study also found predictive
nomogram incorporating cystatin C is beneficial for
physicians to evaluate possibilities of AKI in patients
with traumatic brain injury [37]. These models will help
doctors to pay more attention to high-risk patients and
anticipate potential complications.

In this study, we used five different machine learning
methods (XGBoost, AdaBoost, RF, LR and MLP) to build
predictive models. Six popular metrics (AUROC, F2-
Score, accuracy, sensitivity, specificity and precision)
were used to evaluate the performance of these algo-
rithms. As we know, high specificity values lead to
fewer false-positive results, and high sensitivity values
lead to fewer false negatives [38]. High specificity cut
points (enriching for patients very likely to develop AKI)
may be appropriate for interventions that carry some
risk (such as empirical volume resuscitation), while
high-sensitivity cut points (ensuring that few patients
with impending AKI are missed) might be appropriate
for more benign interventions (such as serum creatinine
monitoring) [39]. In our model, specificity is good, it
means that the model can reduce the misdiagnosis
rate, but sensitivity is poor, the omission diagnostic rate
might increase to some extent. AUROC is an overall
measure of a model considering sensitivity and specifi-
city. The advantage of our model is that it is applicable
to patients in our local hospital as external validation,
while sensitivity, specificity and AUROC values also had
good results and it is easy for broad applicability. For
these five machine learning methods, the areas under
the receiver operating characteristic curves (AUROCs)
for AKI in the MIMIC-III database were 0.880, 0.780,

0.870, 0.850, and 0.780 respectively. For external valid-
ation, the AUROCs were 0.780, 0.790, 0.780, 0.780, and
0.670, respectively. The analysis demonstrated that the
XGBoost had higher AUROC values in both the internal
validation set and external validation set, indicating
that the XGBoost model was better at predicting AKI
risk in patients with acute cerebrovascular disease than
other models. The XGBoost model had also been suc-
cessfully used in the prediction of volume responsive-
ness in patients with oliguric acute kidney injury in
critical care [15]. Therefore, this new algorithm might
provide an efficient risk stratification tool in the clinic
because of its high levels of accuracy.

This study has several strengths. Firstly, we used the
MIMIC-III database, which contains a large population
of ICU patients, to train the model and used a database
from our local unit to test the model externally.
Secondly, we used five machine learning methods and
designed an ensemble model to generate the final
results in order to achieve better performance. Finally,
the factors we selected can be acquired easily in clinical
work. Consequently, our final model has strong applica-
tions for doctors when making important clin-
ical decisions.

Nevertheless, it should be noted that some limita-
tions exist in our study. Firstly, our local dataset was too
small; this means that our results are not generalizable
to other populations in other locations. Therefore, fur-
ther studies will be needed to confirm the validity of
our findings. Secondly, the MIMIC-III database does not
include Scr levels during the previous three months.
Thirdly, we did not consider urinary criteria to diagnose
AKI in our study because data relating to hourly urinary
output were not readily available; this may have under-
estimated the incidence of AKI [40]. What is more, we
only used the clinical factors in the first 24 h after
admission, but AKI is a dynamic disease, that cannot be
used to provide a dynamic prediction. Finally, the clin-
ical values were normalized by min-max scaling meth-
ods, which could not be observed directly. Therefore,
including additional variables and enlarging the sample
size for external validation would be beneficial. Our pre-
dictive model is capable of providing clinicians an early
estimation about the incidence of AKI, but it has a lim-
ited ability to give real-time prediction throughout ICU
stay duration.

Conclusions

This study provided a new methodology to identify
patients at high risk of AKI in critically ill patients with
the acute cerebrovascular disease by applying machine
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learning methods. Our predictive model might assist
physicians to determine which patients have a high AKI
risk and who should be given priority for treatment,
thus improving patient prognosis. Further epidemio-
logical studies, using advanced machine learning meth-
ods, might improve the performance of AKI risk
prediction models. Our future studies would prospect-
ively evaluate the effectiveness of our AKI prediction
model and systematically check whether it improves
the outcome of AKI patients in clinical practice. Our
results suggest that machine learning techniques have
the potential to improve the prediction of AKI risk mod-
els in critical care research.
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