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Medicinal chemistry projects involve some steps aiming to develop a new drug, such
as the analysis of biological targets related to a given disease, the discovery and the
development of drug candidates for these targets, performing parallel biological tests
to validate the drug effectiveness and side effects. Approaches as quantitative study
of activity-structure relationships (QSAR) involve the construction of predictive models
that relate a set of descriptors of a chemical compound series and its biological activities
with respect to one or more targets in the human body. Datasets used to perform QSAR
analyses are generally characterized by a small number of samples and this makes them
more complex to build accurate predictive models. In this context, transfer and multi-
task learning techniques are very suitable since they take information from other QSAR
models to the same biological target, reducing efforts and costs for generating new
chemical compounds. Therefore, this review will present the main features of transfer
and multi-task learning studies, as well as some applications and its potentiality in drug
design projects.
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INTRODUCTION

The drug design process, since the discovery/identification of bioactive compounds until the
approval of its clinical use by a regulatory agency, is very complex and demands time and financial
support (Tufts Center for the Study of Drug Development [CSDD], 2014). There are several well-
known bottlenecks in this process, such as finding out a suitable and validated molecular target,
designing and/or discovering of a lead compound, pharmacokinetic and toxicity optimization,
besides commercial reasons, efficacy and clinical safety (Khanna, 2012; Medina-Franco et al., 2013).
In this scenario, the use of computational techniques in drug discovery is rapidly increasing.

Computer-aided drug design (CADD) techniques are broadly employed in order to reduce costs
and time involved in drug design. Among the important CADD techniques, molecular docking,
similarity search and QSAR studies could be highlighted. Molecular docking and virtual screening
are considered structure-based drug design (SBDD) strategies since it requires 3D structure of a
molecular target and consists of predicting a binding mode of molecules and its binding energy
(Walters et al., 1998; Shoichet, 2004; Andricopulo et al., 2008). As the docking simulations
consider both structures (ligands and targets), its calculations are more computationally expensive.
Considering these aspects, similarity searches and pharmacophore modeling are alternatives
to faster calculations (Brogi et al., 2009; Tresadern et al., 2009) and are defined as ligand-
based drug design (LBDD) strategies since they do not require the biological target structure
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(Turki et al., 2017). Figure 1 illustrates the main steps in a drug
design process, including the use of computational tools.

Another LBDD strategy is known as quantitative structure-
activity relationships (QSAR) and it has been widely employed
in drug design, mainly aiming to predict the biological activity
of a compound set against a specific target to optimize the
binding affinity (Du et al., 2008; Gertrudes et al., 2012). QSAR
models provide accurate predictions of measured endpoints
instead of an independent ranking of biological activity. These
quantitative approaches have also been used in other tasks,
such as optimization of pharmacokinetics and toxicity profile
(Maltarollo et al., 2015; Egeghy et al., 2016; Chemi et al., 2017)
and virtual screening (Brogi et al., 2013; Melo-Filho et al., 2016;
Neves et al., 2016; Zaccagnini et al., 2017).

Several important QSAR studies can be found in literature,
which include the description of successful computational
methods and algorithms (Sliwoski et al., 2014; Raies and Bajic,
2016), validation techniques (Gramatica and Sangion, 2016),
applications (Cherkasov et al., 2014; Fang and Xiao, 2016) as
well-challenges and how those have been addressed (Cronin and
Schultz, 2003; Arthur, 2008; Dearden et al., 2009; Scior et al.,
2009; Wang et al., 2015; Ponzoni et al., 2017).

In many recent studies, machine learning (ML) methods
have been largely applied to QSAR analyses. This growth
has been mainly motivated by the increasing availability of
data in public repositories, the use of numerous and diverse
chemical descriptors and the proposal of accurate predictive
algorithms, such as support vector machines (SVMs) and
artificial neural networks (Gertrudes et al., 2012; Maltarollo
et al., 2013; Mitchell, 2014; Lima et al., 2016). A common
application of ML techniques in CADD refers to forecast
new compound class labels (e.g., “active” versus “inactive”)
using models previously derived from available training sets
(Lavecchia, 2015). In such specific situation, ML techniques
are said to perform a classification learning task. In addition,
other sort of learning tasks can also be considered in
CADD, such as clustering and ranking (Agarwal et al.,
2010).

Despite of the widespread use of ML methods in QSAR
modeling, the success of such approaches critically depends
on the availability of a great amount of data, which remains
challenging in drug discovery. This problem is strongly related
to issues involving the quality of public data sources, including
imprecise representation of chemical structures and inaccurate
activity information (Zhao et al., 2017). Furthermore, the nature
of different experimental protocols can usually lead to data
belonging to different probability distributions, which makes the
use of traditional ML techniques impracticable.

The data sets available in public repositories are usually
obtained from single structure-activity relationship (SAR)
campaigns. This explains the several particular and linear sets of
compounds that are commonly used to generate only specialized
QSAR models. In most of cases, biological activities of two
datasets are measured under different experimental conditions,
making the link among chemical spaces difficult to be analyzed
(Richter and Ecker, 2015). Furthermore, a large chemical space
has activity cliffs naturally: regions in a structure/activity surface

where there is a discontinuous SAR (Cruz-Monteagudo et al.,
2014).

In 2014, a review on QSAR (Cherkasov et al., 2014) stated
that the transferability of QSAR models is one of the challenges
in QSAR modeling, since the traditional approaches have been
typically designed for each target property individually. Aiming
to take advantage of diverse but related available experimental
data, transfer and multi-task learning techniques have been
recently developed. The novelty behind these approaches is
related to their ability to exploit knowledge from other related
tasks to improve the learning performance, especially when a
small data set is available for training.

TRANSFER AND MULTI-TASK LEARNING

For QSAR purposes, the data space under analysis is
characterized by biological and chemical properties. In such
scenario, changes in the distribution of data force the model to be
rebuilt, implying to collect new training data. However, in many
real-world applications, it is expensive or impossible to recollect
data required to reconstruct these models. In such situations,
transfer learning (or knowledge transfer) among related domains
would be desirable (Pan and Yang, 2010).

Transfer learning can be defined as the ability of a system
to recognize and apply the knowledge learned in previous
(source) tasks for the solution of new (target) problems. The
development of such approach was motivated by the fact that
one can apply the knowledge acquired previously to solve new
problems more quickly and with better solutions. The goal
here relies on extracting the knowledge obtained by a model
from one or more source tasks and to apply it to a target
task. However, one of the premises for using transfer learning
technique is that the source and the destination domains must
be related. In this sense, Tan et al. (2015) suggest that such
relationship can be expressed by instances (Bickel et al., 2009)
or characteristics (Satpal and Sarawagi, 2007). If no direct
relationship is found, the forced transfer will not work, resulting
in no improvement or even degenerating the performance in
the target domain (Fitzgerald and Thomaz, 2015). Multi-task
learning is closely related to knowledge transfer, but they have
also a clear distinction. In multi-task approaches, a number of
tasks are learned simultaneously, without involving designated
source and target tasks. Figure 2 illustrates the overall schemes
for transfer and multi-task learning.

The methods used for transfer learning can be summarized
into four categories, depending on which aspect of knowledge will
be transferred, i.e., “what to transfer” (Pan and Yang, 2010). The
first category refers to instance-based transfer learning, which
assumes that some data from the source set can be selected for
training in the target set by re-weighting. Importance sampling
and instance reweighting are the two most commonly techniques
used (Dai et al., 2007). The second category refers to transfer
learning methods by feature representation, which focuses on
encoding the structural information carried by molecules into
a numerical representation that can be effectively exploited
by learning processes in other related problems. In this case,
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the intuitive idea consists in learning a suitable representation
of characteristics for use in the target set, i.e., the transfer
learning is coded in the representation of the new characteristics
(Raina et al., 2007). The third category refers to the transfer
learning techniques by parameters (Lawrence and Platt, 2004),
in which it is assumed that the source and the target tasks share
some parameters or prior distributions of the hyper-parameters
of the respective QSAR models. In this case, knowledge can
be transferred between the tasks by discovering these shared
parameters or priors. The last category consists of methods that
deal with the problem of relational knowledge transfer, which
refers to transfer learning in related domains (Mihalkova et al.,
2007). In this condition, the knowledge can be transferred by
mapping the data from the source set to the destination one. The
statistical methods of relational learning are the most applied in
this case (Mihalkova et al., 2007; Davis and Domingos, 2009).
A scheme illustrating how the transfer learning approaches can
be applied to obtain predictive models is presented in Figure 3.

To apply transfer learning techniques, it is assumed that two
sets of related data are available and the knowledge will be
transferred from the dataset with the largest volume to the set
with the least amount of available data. However, this assumption
in the chemical datasets is not always sufficient, requiring the
opinion of an expert to define the source datasets. To overcome
this limitation, Girschick et al. (2012) proposed an approach to
select a source dataset in a repository containing target-related
sets by following a data-driven methodology. The main idea
behind such proposal is based on calculating a measure for
the activity overlap between the target set and each related set
available in PubChem database. As result, a ranking of all related
sets according to their similarity to the target set is obtained.
In order to find the similarity values, Tanimoto coefficient is
calculated using the categorization of the chemical compounds
(active/inactive) in each dataset. Therefore, the objective is to
select the set that has the distribution of instances (compounds)
closest to the distribution (number of instances categorized as
active and inactive) of the target set.

One can find out many situations where transfer learning adds
benefits, for example, molecules could be classified as active or
inactive according to a biological data for a defined endpoint
(e.g., IC50 values). For this classification task, it is initially
necessary to collect several experimentally tested samples and,
next, to train a classifier for the collected data with their respective
labels. Since the probability distribution of the comments on
other endpoints can be very different, a new classifier has to
be trained to each dataset in order to maintain a satisfactory
performance. To reduce this effort, it would be desirable to
use the knowledge from a classification model that is already
trained on some related endpoints to improve the classification
performance of other tasks with small samples or datasets (Turki
et al., 2017). Table 1 illustrates examples of transfer learning in
drug design.

In general, transfer learning approaches have shown to be
promising for combining the knowledge previously obtained
in related tasks into a single predictive model, whether for
classification, regression, or grouping (Pan and Yang, 2010). In
particular, researches in medicinal chemistry with focus in drug
discovery have been benefited with the use of transfer learning, as
can be seen in previous studies (Girschick et al., 2012; Rosenbaum
et al., 2013; Saha et al., 2016). Next, applications of transfer
and multi-task learning in medicinal chemistry studies will be
presented.

SOME APPLICATIONS OF TRANSFER
AND MULTI-TASK LEARNING

Many machine learning methods are based on the assumption
that similar drugs may share the same side effects, but measuring
the similarity of these drugs is still a challenge. However,
the use of data from various sources (similar drugs) provides
important information for the analysis of side effects and should
be integrated for obtaining a highly accurate prediction. Zhang
et al. (2016) discussed the problem of predicting side effects

FIGURE 1 | Main steps involved in drug design, highlighting the use of computational approaches.
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FIGURE 2 | General framework used to plan a study using (A) transfer learning techniques and (B) multi-task learning.

caused by drugs through linear neighbor approaches and the
integration of data from various sources. The authors argued
that auxiliary data can bring additional and diverse information
(such as drug substructures, drug targets, drug transporters, drug
enzymes, drug pathways) that should be integrated to the side-
effect prediction, aiming at improving its performance. Analyses
on multi-label classification showed that the proposed transfer
learning approaches achieved better performance than state-of-
art-methods (Pauwels et al., 2011; Liu et al., 2012; Cheng et al.,
2013) applied to benchmark datasets.

The task of relating chemical structure to biological activity
in QSAR studies is usually based on the notion of chemical
similarity to predict the molecular behavior of close compounds.
So, techniques that provide similarity measures among chemical
compounds are increasingly important (Floris et al., 2014).
Lately, relevant solutions have been proposed, which comprise
distance learning (Biehl et al., 2014) and inductive transfer
(Garcke and Vanck, 2014) methods. Distance learning aims
at learning an appropriate distance measure to reflect the
underlying relationship between instances in the training set,
while inductive transfer refers to the process of transferring
knowledge learned from one task into another related task.
Girschick et al. (2012) presented an adapted transfer approach,
which combines distance learning and inductive transfer by
learning the distances on a related task and then transferring
them to the target learning task. Additionally, the authors

FIGURE 3 | Schemes used for applying transfer learning approaches.

developed a method for selecting a related task that can be used
as source task for transfer learning. This technique consists in
applying an activity overlap similarity measure to two datasets to
find out a suitable source task. This approach was evaluated on
five distinct datasets found in PubChem BioAssay (Wang et al.,
2009) repository. The results showed that both proposals worked
well for large and small amounts of training data.

The multi-task learning approach (Caruana, 1998) is
considered to be closely related to transfer learning, since it
attempts to learn multiple tasks simultaneously even when they

TABLE 1 | Examples of potential applications of transfer learning methods in drug design.

Transfer learning approach Concept Application in drug design

Instance-based Uses the same ML technique for modeling but apply some
changes to the parameters of the target model.

Source and target datasets have the same endpoint (e.g.,
same molecular target) but the training data can be colleted
at different experimental conditions.

Feature representation Based on some mathematical transformations of data. Source and target datasets have different but related
endpoints, e.g., same classes of molecular target (kinases,
nuclear receptors, proteases, etc.).

Parameters It is assumed that both datasets share some properties. Source and target datasets have the same or related
endpoints.

Relational knowledge transfer Based on technique for mapping the data in the target domain. The endpoints of the source and target datasets are
different but the domains (the independent variable in QSAR
models) are related; e.g., cellular permeability and log P.
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are different. Rosenbaum et al. (2013) introduced two multi-
task methods and evaluated the performance of such approaches
by inferring multi-target QSAR models on a subset of human
kinome. The authors assumed that the taxonomical relationship
of the kinase targets should correspond to the relatedness of
the QSAR problems on these targets. The multi-task techniques
were compared to SVMs models independently trained for each
target and an SVM model that assumed all targets to be identical.
The results demonstrated that the multi-target learning can over
perform baseline (pure SVM) methods if knowledge can be
transferred from a target with a lot of data to a similar target with
little domain knowledge.

Varnek et al. (2009) applied different inductive transfer and
multi-task learning approaches to model tissue-air partition
coefficients. The authors found that these techniques improved
the prediction accuracy of the obtained models when compared
to single task learning. Finally, this study indicated that inductive
transfer learning is very suitable when single modeling is unable
to generate reliable QSAR models using diverse data sets and with
small amount of samples.

Brown et al. (2014) presented some challenges involved with
chemogenomic data, since high-throughput assays give us a
large number of information from multi-ligand and multi-target
data (Pereira and Williams, 2007). So, the authors assert that
computational techniques, in particular inductive transfer and
explicit learning, can help to construct more robust models when
compared to target-specific (classical) QSAR ones.

The study of Zhang et al. (2013) discussed the use of single-
and multi-task learning to construct QSAR models for predicting
the binding affinity of a compound database by estrogen receptors
(ERs), which are involved with endocrine disruption by chemicals
and the construction of predictive models can contribute to
design safer substances. The authors concluded that multi-task
learning provided better results for a small dataset (ERβ ligands)
than single learning, indicating that this approach can be
considered as a good tool to understand the action mechanism of
endocrine disruption and to predict the ER activity of unknown
compounds as endocrine disrupting chemicals.

Another interesting application of multi-task techniques was
performed by Liu et al. (2011), which used multi-task learning
to construct multi-target QSAR models employing three human
immunodeficiency virus (HIV) inhibitor datasets together with
other six subsets containing two hepatitis C virus (HCV)
inhibitors. The main conclusions of this study included the fact
that the integration of all databases (HIV and HCV) improved
the rate of the discovery of lead HIV-HCV inhibitors, helping
the design of new co-inhibitors for these important infections.
Other achievement is related to the successful use (considering
efficiency in convergence speed and learning accuracy) of a
multi-task learning technique to construct multi-target QSAR
models.

DISCUSSION

The main issue of transfer and multi-task learning approaches
is to employ the knowledge generated (e.g., features, subset of

variables, weights of equations) from available ML models and
other datasets in the construction of models for related endpoints.
In this sense, it is possible to use different datasets with the
same biological activities but measured at different experimental
conditions. Other important consequence of applying transfer
and multi-task learning is the decrease on computational costs
related to the faster convergence obtained by using the knowledge
derived from a model previously built from a related endpoint.

From a literature review taking into to account the transfer
learning applications on medicinal chemistry, one can note
that there is still a great potentiality to be explored in this
sense. Other emerging approaches as deep learning methods
(Zhang et al., 2017), which basically use complex neural networks
architectures, also have promising applications in the era of big
data.

Among the main challenges on applying transfer and multi-
task learning methods is that they require an artificial intelligence
expert to code them since there are no chemical and/or
pharmaceutical packages with a graphical user interface. Depend
on the source data and on the learning method, transfer and
multi-task learning could be also considered as “black-boxes,”
making the interpretability of QSAR models difficult. And,
finally, the transfer of knowledge could be inappropriately
employed if the assumption of “equivalent” endpoints is not valid.

CONCLUSION

Nowadays one can observe increasing number of applications
of transfer and multi-task learning in medicinal studies.
There are also current challenges in the QSAR field that
comprise the integration of different datasets (even from
different experiments) aiming the same or similar endpoints
(Maltarollo et al., 2017) and the development of universal
QSAR models using very large datasets (Alves et al., 2017).
Therefore, good examples of dataset that could be benefited
from transfer and multi-task learning are: (i) compounds
with same endpoint measured under different experimental
conditions; (ii) antimicrobial activities against genetically similar
microorganisms; (iii) compounds with the same mechanism of
action in homologous targets and high degree of similarity in the
binding pocket; (iv) non-specific endpoints as toxicity against a
cell line or permeability rates determined by different models.
In this complex scenario, transfer and multi-task learning
techniques can be considered powerful tools for drug design.
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