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Aeromonas species obtained from different 
farmed aquatic species in India and Taiwan 
show high phenotypic relatedness 
despite species diversity
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Abstract 

Objectives:  Aeromonads cause severe diseases in farmed aquatic organisms. Herein, we examined 28 isolates caus‑
ing disease in farmed aquatic organisms from India (n = 24) and Taiwan (n = 4) to gain insight of their genotypic and 
phenotypic properties.

Results:  API 20NE biochemical phenotyping showed ≥ 90% similarity classifying all isolates as Aeromonas hydroph-
ila. 16S rRNA genotyping showed ≥ 98% homology among all isolates with A. sobria (NR119044.1ATCC), A. veronii 
(MK990549.1), A. caviae (NR029252.1) and A. hydrophila (MG984625.1ATCC) and other reference strains. In contrast, 
gyrB showed a higher intraspecies diversity (≥ 96%) than 16S rRNA delineating the 28 isolates into three groups. 
Group-I consisted of seven Indian isolates clustered with A. sobria (MK484163.1ATCC), group-II comprised of five 
Indian and two Taiwanese isolates clustered with A. veronii AF417626.1ATCC while group-III had 11 Indian and three 
Taiwanese isolates grouped with A. hydrophila (AY987520.1 and DQ519366.1) reference strains. None of our isolates 
clustered with A. caviae (AJ868400.1ATCC) reference strain. These findings suggest that A. sobria, A. veronii and A. 
hydrophila could be the etiological agents of diseases observed in farmed fish and soft-shelled turtles (Pelodiscus 
sinensis) examined in this study. Overall, our findings accentuate the importance of combining phenotyping with 
genotyping for correct taxonomic classification of Aeromonas spp. in Aquaculture.
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Introduction
Aeromonads cause diseases characterized by severe hem-
orrhages and septicemia in farmed aquatic organisms 
[1]. Identification of Aeromonas species infecting aquatic 
organisms call for phenotype and genotype characteriza-
tion. While phenotyping based on biochemical tests is 
widely used for bacteria characterization, it sometimes 

produces conflicting results due to extreme diversity 
between and within species rendering genotyping to 
be a better option [1]. Although 16S rRNA is the most 
widely used molecular marker for genotyping due to its 
reliability in determining inter- and intragenic genea-
logical interrelationships between bacteria species [2], 
its variable regions vary in size and organization result-
ing in poor intraspecies resolution. Thus, housekeeping 
genes like gyrB with a mean synonymous substitution 
rate four times faster than 16S rRNA are more reliable for 
intraspecies genotyping than 16S rRNA [3]. Herein, we 
wanted to identify Aeromonas species causing diseases 
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in farmed organisms in India and Taiwan using gyrB and 
16S rRNA, and API 20 NE biochemical characterization.

Main text
Material and methods
Sample collections
Fish and soft-shelled turtles submitted to Aquatic Ani-
mal Health Centers in India and Taiwan accompanied 
by clinical and pathology reports were used in this study. 
Of the 24 samples from India, samples from North India 
were from Cyrprinus carpio, Clarias batrachus and Oreo-
chromis niloticus collected from eight different farms 
while samples from South India were from Labeo rohita, 
Catla catla, Cirrhinus mrigala, and Carassius auratus 
collected from 20 different farms. Samples from Taiwan 
were from Hyperprosopon ellipticum, O. niloticus, and 
Pelodiscus sinensis collected from six different farms. 
Swabs from internal organs such as kidney, muscle, liver, 
and heart were used for bacteria isolation in trypticase 
soy agar (TSA) and trypticase soy broth (TSB).

Bacterial isolation
A total of 33 isolates obtained from India and Taiwan 
(Additional file  1: Table  S1) were initially cultured on 
TSA and TSB for bacteria isolation before culture on 
Aeromonas isolation agar (AIA) and Rimler Shotts (RS) 
selective medium (Sigma-Aldrich, USA). Characteris-
tic single green colonies from AIA and yellow colonies 
from RS medium were streaked on TSA for pure colony 
isolation.

Phenotypic characterization
Morphology examination was done after Gram staining 
by microscopy. All isolates were cultured on 5% sheep 
blood agar (SBA) for hemolysis examination. Biochemi-
cal tests were done using the API20 NE kit (BioMérieux, 
Marcy l’Etoile, France).

Genotype characterization
Bacteria genomic DNA was extracted as described [4]. 
PCR was performed using the AccuStart Taq DNA Poly-
merase HiFi (Quanta, Biosciences) using 16S rRNA and 
gyrB primers (Additional file  2: Table  S2) as previous 
described [5]. Purified PCR products were sequenced 
on commercial basis by GATC-Biotech (GATC-Biotech, 
Germany). Sequences were used to generate 16S rRNA 
and gyrB phylogenetic trees in MEGA7 bioinformat-
ics software [6]. The evolutionary history for each tree 
was inferred using the Maximum Composite Likeli-
hood method [7] as described in our previous study [8]. 

Genetic distances were computed using Kimura’s two-
parameter value [7].

Results
Clinical and gross pathology observations
Clinical signs were characterized by lethargy, poor 
swimming behavior and reduced feed intake. Pathol-
ogy was characterized by different conditions such as 
hemorrhages, ulceration, and fin rot in fish (Additional 
file 5: Figure S1). High mortalities were reported on fish 
and soft-shelled turtle farms.

Phenotypic characterization of Indian and Taiwanese isolates
Morphological, hemolysis, motility and biochemi-
cal results are shown in Additional file 1: Table S1. Of 
the 33 isolates that produced colonies on TSA, only 
28 isolates (84.84%, n = 33) grew on AIA and RS selec-
tive media exhibiting characteristic of green and yellow 
colonies, respectively (Additional file 1: Table S1, Addi-
tional file 6: Figure S2 (1, 2)). In addition, the 28 isolates 
(84.84%, n = 33) showed β-hemolysis while five (15.15%, 
n = 33) had no hemolytic zones on 5% SBA (Additional 
file 6: Figure S2 (3)). Microscopic examination showed 
Gram-negative vibrio shaped bacteria characteristic of 
Aeromonas spp.

Of the 33 isolates examined using the API-20NE 
kit, 28 isolates showed characteristic properties hav-
ing an overall score of 6,566,654 leading to classifica-
tion of these isolates as A. hydrophila [9]. Despite so, 
phenotypic similarities and differences were observed 
among the 28 isolates classified as A. hydrophila based 
on the API-20NE 21-biochemical tests. All 28 isolates 
were positive for 15 and negative for four tests giving a 
similarity of 90.48% (n = 21 API-20NE tests) (Table 1). 
Major differences between isolates were based on 
d-arabinose (ARA) and malic acid (MLT) and were 
classified into four major categories based on ARA/
MLT (−/+, +/−, +/+, −/−) utilization (Additional 
file 3: Table S3). These results are summarized in Addi-
tional file  3: Table  S3, which shows that isolates from 
two species L. rohita and C. carpio (India) had a −/+ 
ARA/MLT utilization, with only one isolate from India 
being positive (+/+) for both sugars. All isolates from 
C. catla, C. batrachus, and C. mrigala had +/− ARA/
MLT utilization. The Taiwanese H. ellipticum and most 
of the O. niloticus isolates from India were positive for 
both ARA/MLT (+/+). On the other hand, P. sinensis 
and C. auratus isolates were ARA/MLT negative (−/−). 
In summary, these observations suggest that utiliza-
tion of these sugars could be influenced by host species 
adaption.
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Genotype characterization based on 16S rRNA and gyrB 
genes
The 16S rRNA and gyrB PCR products generated 
840 bp and 580 bp amplicons from all isolates, respec-
tively (Additional file 4: Table S4).

Phylogenetic analysis of  16S rRNA  Of the 33 isolates 
obtained from TSA, three were characterized as Entero-
bacter cloacae while two were characterized as Acino-
bacter spp. using 16S rRNA sequencing. The remaining 
28 isolates had ≥ 98% nucleotide identity similarities 
(E-value = 0.0) with A. hydrophila MG984625.1ATCC, 
A. hydrophila_subsp_dhakensis AJ508765.1, A. caviae 
NR_029252.1ATCC, A. sobria NR_119044.1ATCC, A. 
aquatica NR_136829.1, A. crassostreae LT630761.1, A. 
taiwanensis FJ230077.1, and A. veronii MK990549.1ATCC 
reference strains (Fig. 1). The 16S rRNA phylogenetic tree 
put all 28 isolates in two groups of which 17 were clustered 
with A. sobria NR_119044.1ATCC, A. veronii MK990549.1 
ATCC and A. aquatica NR_136829.1 reference strains. 
The remaining 10 isolates were clustered with A. hydroph-
ila (MG984625.1ATCC and NR_074841.1ATCC), A. 
hydrophila_subsp_dhakensis AJ508765.1 and A. caviae 
(NR_029252.1 ATCC) reference strains that included two 

Taiwanese P. sinensis. Note that the 16S rRNA tree put 
A. hydrophila (NR_074841.1ATCC and MG984625.1) 
and A. hydrophila_subsp_dhakensis AJ508765.1 as highly 
homologous with A. caviae NR_029252.1ATCC while 
the A. crassostreae (LT630761.1) and A. taiwanensis 
(FJ230077.1) reference strains were in between groups I 
and II (Fig. 1). All isolates were distantly related with A. 
schubertii (CQ845452.1) with a nucleotide identity dispar-
ity of 2.4% and further separated from the Pseudomonas 
euroginosa (NR_114471.1) outgroup with a nucleotide 
identity disparity of 15%.

Phylogenetic analysis of  gyrB gene  Of the 33 isolates 
examined, only 28 isolates that were positive for AIA and 
RS growth on selective media produced gyrB sequences. 
The gyrB tree put the 28 isolates in three major groups 
(Fig. 2). Group I consisted of seven Indian isolates put close 
to the A. sobria MK484163.1 reference strain while Group 
II comprised of five Indian and two Taiwanese isolates 
(H. ellipticum and O. niloticus) clustered with A. veronii 
AF417626.1ATCC. Group-III consisted of 10 Indian iso-
lates grouped with A. hydrophila AJ868394.1ATCC and A. 
hydrophila_subsp. dhakensis JN11805.1A while four iso-
lates comprising of two Taiwanese P. sinensis and Indian 

Table 1  API-20 NE characterization of Aeromonas hydrophila isolates from India and Taiwan

The bold values indicate the similarity while the red shows differences between isolates

API 20 NE result: identification: (+) positive; (−) negative, full form of all the test are NO3 (potassium nitrate), TRP (l-tryptophane), GLU (d-glucose), ADH (l-arginine), 
URE (urea), ESC (Esculin ferric citrate), GEL (Gelatin), PNPG (4-nitrophenyl-β-d-galactopyranoside), GLU (d-glucose), ARA (l-arabinose), MNE (d-mannose), MAN 
(d-mannitol), NAG (N-acetyl-glucosamine), MAL (d-maltose), GNT (potassium gluconate), CAP (capric acid), ADI (adipic acid), MLT (malic acid), CIT (trisodium citrate), 
PAC (phenylacetic acid) and OX (oxidase test)
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isolates grouped with the A. hydrophila AY987520.1ATCC 
reference strains. We found a nucleotide identity similarity 
of ≥ 94.0% among all isolates together with all Aeromonas 
reference strains. Contrary to the 16S rRNA phylogenetic 
tree, the gyrB tree shows that all isolates were distantly 
related with the A. caviae (AJ868400.1ATCC), A. tai-
wanensis (FJ807272.1), A. aquatica (HG970927.1) and A. 

crassostreae (LT630719.1). Similarly, all isolates were dis-
tantly related with A. schubertii (AJ868402.1ATCC) and P. 
euroginosa (FJ652723.1ATCC) outgroup with nucleotide 
identity disparity of 13% and 30.4%, respectively.

Fig. 1.  16S rRNA phylogenetic tree. The overall genetic distance (nucleotide identity) divergence for all 28 isolates varied between 0.000 and 0.020 
(98.0–100% similarity) while divergence of our isolates with A. schuberti was 0.024 (2.4%). The genetic distance divergence between our isolates and 
Pseudomonas aeruginosa used as an out group was estimated at 0.153 (15.3%)
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Discussion
The main finding from this study is that farmed fish and 
soft-shelled turtle from India and Taiwan were infected 
by different Aeromonas species. Clinical signs of leth-
argy and poor swimming behavior, and pathology char-
acterized by hemorrhages, fin loss and tail rot seen in 
this study are in line with previous reports [10–12]. For 
the soft-shelled turtle, previous studies show reduced 
growth rate, softening of the dorsal shell and acute mor-
talities [13, 14]. Altogether, these observations show that 

Aeromonas species cause disease in a wide host range in 
aquaculture.

Growth on selective media, motility, β-hemolysis and 
morphological properties showed that only 28 out of 33 
isolates examined produced phenotypic traits charac-
teristic of A. hydrophila [15–17]. All isolates classified 
as A. hydrophila by API-20NE were positive for 15 reac-
tions that included oxidase and indole; glucose, maltose, 
and mannose fermentation; nitrate reduction; arginine, 
d-mannitol, N-acetyl-glucosamine and d-maltose hydrol-
ysis; gas and acetoin production from glucose; and, lysine 

Fig. 2  gyrB phylogenetic tree. The overall genetic distance (nucleotide identity) divergence for all fish and soft-shelled turtle isolates (Pelodiscus 
sinensis) from India and Taiwan varied between 0.000 and 0.047 (95.7–100% similarity). The genetic distance divergence between our isolates and A. 
schuberti was 0.130 (13.0%). The variability between our isolates and P. euroginosa used as an outgroup were estimated at 0.304 (30.4%)
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decarboxylation in line with other scientists who found 
similar properties in fish isolates [18, 19]. In addition, 
all isolates were negative for urea, esculin ferric citrate, 
trisodium citrate and phenylacetic acid being in line with 
Martin et al. [19] who reported similar findings from fish 
isolates. However, differences in arabinose and malic acid 
reactions grouped the 28 isolates into four major groups 
based on species of origin (Additional file  3: Table  S3) 
pointing to possibilities of host species adaption in differ-
ent environments. Despite so, biochemical analysis show 
that the 28 strains had a high phenotypic similarity (90%, 
n = 21 biochemical reactions).

In line with previous studies showing that the genus 
Aeromonas is one of the most tightly defined genera 
because of high 16S rRNA intra-species similarities 
(97–100%) [20, 21], our findings show a high similarity 
(≥ 98%) among A. caviae (NR_029252.1ATCC), A. sobria 
(NR_119044.1ATCC) A. veronii (MK990549.1ATCC), A. 
crassostreae (LT630761.1), A. taiwanensis (FJ230077.1) 
A. hydrophila_subsp_dhakensis (AJ508765.1) and A. 
hydrophila (NR_074841.1ATCC and MG984625.1 
ATCC) reference strains. We also found a high intra-spe-
cies similarity (≥ 98%) among the 28 isolates from nine 
different aquatic organisms from India and Taiwan sug-
gesting that our isolates were closely related with the A. 
hydrophila, A. caviae, A. sobria and A. veronii reference 
strains based on 16S rRNA classification. On the contrary, 
the gyrB tree showed a higher disparity (≤ 6.0%) among 
the reference strains than the 16S rRNA tree (≤ 2.0%) as 
shown that it delineated isolates homologous with the A. 
sobria (MK484163.1), A. veronii (AF417626.1ATCC), and 
A. hydrophila (AJ868394.1ATCC) reference strains into 
separate clusters. Our findings also show that the gyrB 
tree separated group I isolates clustered with A. sobria 
(MK484163.1) from group-II isolates clustered with A. 
veronii (AF417626.1ATCC). It also separated groups I 
and II isolates from group-III isolates that were grouped 
with A. hydrophila subsp_<<<dhakensis (JN711805.1A) 
and A. hydrophila reference strains (AY987520.1ATCC 
and AJ868394.1ATCC) indicating that A. veronii and A. 
sobria isolates were different from A. hydrophila isolates. 
In addition, the gyrB tree clearly separated our isolates 
were from A. caviae (AJ868400.1ATCC), A. taiwanensis 
(FJ807272.1), A. crassostreae (LT630719.1) and A. aquat-
ica (HG970927.1) reference strains indicating that none 
our isolates belonged to these species unlike 16S rRNA, 
which showed that our isolates were homologous with 
these reference strains. We also found a high disparity 
between our Aeromonas spp. isolates and A. schuberti 
(AJ868402.1ATCC) with a five times higher disparity 
in the gyrB tree (13.0%) than the 16S rRNA tree (2.4%). 
Altogether these findings show that gyrB has a higher 
intraspecies differentiation capacity than 16S rRNA. 

As for interspecies differentiation, the gyrB tree (30.4%) 
showed a higher differentiation capacity of Aeromonas 
spp. from P. euroginosa than the 16S rRNA tree (15.0%). 
In summary, these findings are in line with previous stud-
ies that show that gyrB has a higher intra- and interspe-
cies differentiation capacity than 16S rRNA [5, 22–24].

Our findings show that farmed fish and soft-shelled 
turtle from India and Taiwan were infected by different 
Aeromonas species. Phenotyping based on API 20NE 
showed a high similarity (> 90%, n = 28) with all isolates 
classified as A. hydrophila. Genotyping showed species 
diversity of which gyrB phylogenetic analysis gave better 
intra- and interspecies differentiation than 16S rRNA.

Limitations
Major limitations are that we could not to determine 
whether differences in arabinose and malic acid reactions 
that grouped the 28 isolates in four groups based on spe-
cies of origin (Additional file  3: Table  S3) is influenced 
by environmental host species adaption due to sample 
size limitation. Genotyping based on two genes (16S 
rRNA and gyrB) could be a limiting factor for intraspe-
cies differentiation for large sample sizes, but multi-loci 
sequence types (MLST) incorporating several house-
keeping genes might have a higher resolution. Future 
studies should use large sample sizes and include several 
Reference species.
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Rimler Shotts; TSA: Trypticase soy agar; TSB: Trypticase soy broth; SBA: Sheep 
blood agar.
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Additional file 5: Figure S1. Fish infected by Aeromonas species. A 
Hemorrhages on body surfaces including the tail, eyes, mouth, gill 
operculum and fins in goldfish. B Hemorrhages on body surfaces and fin 
in (rohu) Labeo rohita. C, D Loss of fins in rohu (L. rohita). E Hemorrhages 
in lower abdomen in rohu (L. rohita). F Hemorrhages on the fins of Clarias 
batrachus. 
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Additional file 6: Figure S2. Aeromonas colonies on Aeromonas isolation 
agar (AIA), Rimler Shotts (RS) agar and 5% sheep blood agar (5% SBA). 
Figure S2. (1) Aeromonas spp. colonies showing characteristic green color 
on AIA agar. (2) Aeromonas spp. colonies showing yellow colonies on RS 
agar while, (3) shows Aeromonas spp. on 5% sheep blood agar (5% BSA) 
exhibiting β-hemolysis zones around the colonies.
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