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The “westernization” of global eating and lifestyle habits is associated with the growing

rate of chronic diseases, mainly cardiovascular diseases, cancer, type 2 diabetesmellitus,

and respiratory diseases. The primary prevention approach is to make nutritional and

behavioral changes, however, there is another important determinant of our health that

only recently has been considered and is the presence of beneficial microorganisms and

their products in our gastrointestinal tract. Microorganisms living in our body can alter the

fate of food, drugs, hormones, and xenobiotics, and recent studies point to the use of

microorganisms that can counteract the harmful effects of certain compounds introduced

or produced endogenously in our body. This review considers the effects of the western

lifestyle on adiposity, glucose metabolism, oxidative markers and inflammation profile,

emphasizes on the studies that have investigated bacterial strains and products of their

metabolism that are beneficial under this lifestyle, and examines the screening strategies

that recent studies are using to select the most promising probiotic isolates. In addition,

we consider the relevance of studying the microbiota of metabolically healthy people

under a western lifestyle for the understanding of the key components that delay the

development of chronic diseases.
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INTRODUCTION

Our modern societies have settled on large urban arrangements that have changed behavior
and alimentary patterns. The establishment of new alimentary habits has been influenced by
industrialization and technological advances which have minimized the time for preparing and
consuming meals, reduced the cost of livestock, dairy, and sugar-sweetened products, vegetable
oils, and flours, and increased the availability of these foods, especially, to low-income families
(Drewnowski and Popkin, 1997). Nowadays, the trend in nutritional epidemiology is the analysis of
dietary patterns (i.e., through food-frequency questionnaires) to assess habits in food consumption.
In this line, several studies have focused on identifying the main dietary factors that are common
to the modern diet. For instance, Hu et al. (1999) identified a “western dietary pattern” through
factor analysis of dietary patterns among cohorts in the United States. The authors described this
dietary pattern as a diet with a “higher intake of processed meat, red meat, butter, high-fat dairy
products, eggs, and refined grains”. Likewise, Slattery et al. identified a similar dietary pattern with
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“high levels of red meat, processed meat, fast food, refined grains,
and sugar- containing foods, and low levels of vegetables (other
than potatoes) and fruits, with the predominant fruit being
canned fruit” (Slattery et al., 1998; Hu et al., 1999). Importantly,
the “western diet” is no longer restricted to western societies,
globalization and urbanization are increasing the worldwide
exposition to this dietary pattern. For example, a Japanese study
found a “westernized Japanese pattern” associated with “high
intakes of bread, meat, processed meat, fruit juice, coffee, black
tea, soft drinks, sauces, mayonnaise, and dressing” (Nanri et al.,
2012). Overall, the “western diet” can be understood as a dietary
pattern with a high intake of refined sugars, refined vegetable
oils, and livestock products, and low intake of fresh fruits and
vegetables (Cordain et al., 2005).

Concerns with the modern alimentary pattern can be traced
back to the scientific literature of 1939, when Weston Price
published his findings on modern degeneration related to the
modernized diet (Price, 1939). Currently, not only the modern
dietary habits are of concern but also low-activity high-stress
occupations, sedentarism, alcohol binge drinking, and smoking.
These behavior and alimentary patterns will be defined from
now on as the “western lifestyle” (CDC, 2012; Parry and Straker,
2013; WHO, 2014). This lifestyle is increasingly being associated
with several conditions, including: obesity, Alzheimer’s disease
(Kanoski and Davidson, 2011), cardiovascular disease, type
2 diabetes mellitus (Bazzano, 2005), non-alcoholic fatty liver
disease (NAFLD) (Trovato et al., 2015), hypertension (Geleijnse
et al., 2004), osteoporosis (Jehle et al., 2006), autoimmunity
(Manzel et al., 2014), and cancer (Adlercreutz, 1990). There are
several risk factors for developing chronic diseases, including
genetic, environmental, demographic, social, and other factors
that are not the scope of this review, instead the objective of this
review is to relate the research made in the fields of microbiology,
immunology, and nutrition to explain the role of gut microbiota
as a risk factor of “western lifestyle”-related chronic conditions,
and then the strategies that are being developed to shift the gut
microbiota from a risk factor toward a more protective state that
helps ameliorate the effects of this lifestyle.

THE HEALTHY WESTERN MICROBIOTA

The concept of the human microbiota, as first described by
Joshua Lederberg, is defined as “the ecological community of
commensal, symbiotic, and pathogenic microorganisms that
literally share our body space” (Lederberg and McCray, 2001).
Major efforts are being made worldwide in order to understand
the composition and functional states of the healthy gut
microbiota. So far, projects like the Human Microbiome Project
Consortium among others (Eckburg et al., 2005; Qin et al.,

Abbreviations: BMI, Body mass index; HFAD, high-fat diet; HFUD, high-fructose

diet; H2S, hydrogen sulfide; IL-1ra, IL-1 receptor antagonist; IL-10, interleukin-

10; IL-1β, interleukin-1β; IL-6, interleukin-6; IBD, inflammatory bowel disease;

IBS, irritable bowel syndrome; LPS, lipopolysaccharides; NASH, Non-alcoholic

steatohepatitis; NF-κβ, Nuclear Factor kappa beta; SCFA, short chain fatty acid;

sTNF-R, soluble TNF-α receptor; TLR, Toll like receptors; TNF-α, tumor necrosis

factor-α; TMAO, trimethylamine-N-oxide; ω-3 PUFAs, ω-3 polyunsaturated fatty

acids; ω-6 PUFA, ω-6 polyunsaturated fatty acids.

2010; Huttenhower et al., 2012) have found that the gut
microbiome of healthy individuals varies significantly and only
dominant bacterial phyla have been consistently described,
these are Firmicutes, Bacteroidetes and Actinobacteria, with
Proteobacteria and Verrucomicrobia also present in lower
abundance. Other studies also evidence that the microbiome
of healthy and non-healthy states can be distinguished, as it is
the case for ulcerative colitis, Crohn’s disease (Qin et al., 2010),
chronic fatigue syndrome (Frémont et al., 2013), rheumatoid
arthritis (Zhang et al., 2015), type I diabetes (Brown et al.,
2011), and type II diabetes (Larsen et al., 2010); nevertheless, one
study warns that the patient’s treatment can exert changes in the
microbiota (Forslund et al., 2015).

Although not a single marker can be identified as
representative of a healthy gut microbiome, a higher proportion
of butyrate-producing and mucin-degrading bacteria has been
mentioned in some studies (Brown et al., 2011; Joossens et al.,
2011; Erickson et al., 2012). Butyrate is a short chain fatty acid
produced mainly by bacterial fermentation of non-digestible
fiber in the colon, and a correct balance of a butyrate-producing
microbiota may induce the synthesis of mucin in the gut
epithelium thus maintaining gut integrity (Finnie et al., 1995;
Brown et al., 2011). Studies have shown that butyrate can enhance
the assembly of tight junction proteins through regulation of
AMP-activated protein kinase (AMPK), however the mechanism
of AMPK activation is unknown (Peng et al., 2009). Butyrate also
has anti-inflammatory and anti-carcinogenesis effects, mainly by
two mechanisms: activation of GPCRs (GPR41 and GPR43) and
inhibiton of histone deacetylase (HDAC). Some of the effects
of butyrate that have been observed are enhancement of the
expression of certain pro-apoptotic genes in malignant cells and
suppression of the pro-inflammatory pathway of Nuclear Factor
kappa beta (NF-κβ) (Vinolo et al., 2011). It is estimated that
butyrate producers represent approximately 25% of all human
fecal bacteria (Louis et al., 2010). Meanwhile, Bifidobacteria
is another important group for colon health, they represent
about <5% of the microbiota in adult subjects. In disease
states like Clostridium difficile associated diarrhea, a 3 log10
reduction of this group of bacteria can occur (Hopkins et al.,
2001). Bifidobacteria contributes to colon health through the
production of organic acids, like acetate and lactate, that are then
used by butyrate-producing bacteria. Thus, a high abundance of
butyrate-producers, mucin-degraders, and Bifidobacteria could
be an indicator of good health.

Another common feature in some studies is greater gut
diversity in healthy states. In lean twins, a greater bacterial
diversity has been observed compared to their obese twins
(Turnbaugh et al., 2009), in patients with morbid obesity
subjected to a gastric bypass an increased richness of gut
microbiota was also observed after the surgery along with positive
health outcomes (Kong et al., 2013), and another study analyzed
the microbiota of non-colic and colic infants finding a higher
microbiota diversity in non-colic infants during the first weeks
after birth (de Weerth et al., 2013). Hence, a high bacterial
diversity can be another indicator of a healthy gut microbiota.

In terms of western diet, Yatsunenko et al. observed that
American microbiomes were enriched with genes degrading
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simple sugars and amino acids (Yatsunenko et al., 2012).
As mentioned earlier, a western diet is characterized by
a higher intake of processed meat and red meat, thus
individuals following this diet may benefit from a Bacteroides-
rich microbiota instead of a Prevotella-rich microbiota. This last
type of microorganisms produces more trimethylamine from L-
carnitine, a nutrient in red meat, which is then converted to pro-
atherosclerotic trimethylamine-N-oxide (TMAO), increasing the
risk of atherosclerosis. A study by Lozupone et al. evidenced
that the immune dysfunction of HIV-infected individuals
compromises their ability to select for bacteria that match their
diet, thus HIV-positive individuals following a western diet,
instead of having a Bacteroides-richmicrobiota have a Prevotella-
rich microbiota, which is normally present in individuals
consuming a plant-based diet, in consequence, these HIV-
positive subjects have an increased incidence of several health
risks, including cardiovascular disease (Koeth et al., 2013; Tang
et al., 2013; Lozupone et al., 2014). Therefore, a Bacteroides-
rich microbiota is of benefit under a western diet, as it has been
associated with reduced cardiovascular risk.

In order to reveal the key components that make a healthy
western microbiota, studies at the strain-level are needed.
Evidence points that different strains have distinct effects, as
it is the case with strains belonging to a genus enriched
in people following a western diet, Lactobacillus (Armougom
et al., 2009; Million et al., 2012; Poutahidis et al., 2013). For
example, the administration of Lactobacillus reuteri ATCC PTA
4659 was associated with weight decrease in mice, whereas
the administration of L. reuteri L6798 was associated with
weight gain (Fåk and Bäckhed, 2012). Differential effects have
also been observed on the type of immunological response
that the strain elicits, for example, Lactobacillus salivarius
CECT5713 induced the anti-inflammatory cytokine IL-10, while
Lactobacillus fermentum CECT5716 induced pro-inflammatory
cytokines (Díaz-Ropero et al., 2007). Studying the intestinal
microbiota at the strain-level has been proved challenging
due to the great variability at this taxonomic level among
individuals and the lack of reliable, easy to use tools for accurate
identification of bacteria at strain level, however, these studies
indicate that the insights obtained at the phylum-level are limited
and that the understanding of the functionality of strains can help
delineate the boundaries of a healthy gut microbiota.

Metabolic Healthy Subjects under a
Western Lifestyle
In order to better understand the healthy western microbiota,
metabolic healthy individuals following a western lifestyle must
be investigated. One potential group of people to be examined
is metabolically healthy obeses. The prevalence of obesity in the
United States has increased by 75% since 1980 along with the
acquisition of a western diet, and is associated with an increased
incidence of cardiovascular disease, type 2 diabetes mellitus,
hypertension, stroke, dyslipidemia, osteoarthritis, and some
cancers (Burton and Foster, 1985; Ogden et al., 2007). However,
∼10–30% of obese individuals are metabolically healthy and even
have a lifelong health (van Vliet-Ostaptchouk et al., 2014). The

physiological factors that characterized a metabolically healthy
obese are decreased visceral and liver fat, number ofmacrophages
in adipose tissue, mean adipocyte size, circulating C-reactive
protein; while having an increase in serum adiponectin, and
adipocyte insulin sensitivity (Klöting et al., 2010). The genetic
background might play an important part in this scenario, as it
has been observed that some ethnic groups at a higher body mass
index (BMI) accumulate less liver fat, a factor that affects the
metabolic outcome of the individual (Naukkarinen et al., 2014).
A study revealed that liver fat content is higher among Japanese
than non-Hispanic whites despite a lower mean BMI, and the
difference becomes more robust with a small increase in BMI;
this might explain why obesity-related complications in Asians
occur at a lower BMI (Azuma et al., 2009).

In African Americans, high rates of fructose malabsorption
have been associated with reduced liver fat (Walker et al.,
2012). African-Americans also appear to be more resistant
to hypertriglyceridemia (high blood levels of triglycerides)
associated with insulin resistance (Guerrero et al., 2009).
Geographical factors might be also involved; migrants from
lower-to-higher chronic disease areas (i.e., Japaneses that migrate
to the United States) acquire a higher risk of developing a
chronic disease (Marmot et al., 1975). But even under a similar
background, differences are observed. Naukkarinen et al. studied
16 Finnish pairs of identical twins in which one twin was obese
and the other lean, they found that despite all twin pairs being
of the same age, had similar age of onset of obesity and weight
difference, half of the obese co-twins were metabolically as
healthy as their lean co-twins while the other half of the obese co-
twins exhibited a typical response to obesity, this was increased
insulin production and resistance, dyslipidaemia, fatty liver, and
higher blood pressure; they also observed that the one factor that
best predicted the metabolic outcome was the level of liver fat
(Naukkarinen et al., 2014).

It is now recognized that the gut microbiota can influence
liver fat in the host, thus the microbiota might be one of
the factors modulating the individual susceptibility to chronic
disease. A study that observed an association of microbiota
and liver fat accumulation demonstrated that gut microbiota
directly induced NAFLD in mice. The authors performed fecal
transplantations from mice that developed, or not, liver steatosis
(responders and non-responders, respectively) during a 16 week
period of high-fat diet (HFAD) to receiver mice. The responder-
receiver mice developed a higher level of liver steatosis and had
higher levels of branched-chain fatty acids from bacterial amino
acid fermentation than non-responder-receiver mice (Newgard,
2012). Similarly, non-alcoholic steatohepatitis (NASH) (severe
hepatic steatosis and liver inflammation) patients had an
increase in ester compounds and endogenous alcohol most likely
produced from bacterial metabolism compared to patients with
simple steatosis (fatty liver) and healthy volunteers. It is worth
mentioning that healthy subjects and obese non-NASH patients
had similar blood-ethanol concentrations (Raman et al., 2013;
Zhu et al., 2013; for a review see Boursier and Diehl, 2016), thus
indicating that even under an obese state, non-NASH patients
may harbor a microbiota whose functionality resembles the one
on a healthy state. In addition, the administration of probiotics
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can exert a positive effect on liver fat accumulation, which
will be mentioned later. One potential mechanism for liver fat
accumulation is that bacteria can suppress the expression of a
lipoprotein lipase inhibitor, the fasting-induced adipose factor
(Fiaf), thus increasing the lipase activity in the gut and affecting
the outflow of free fatty acids to the liver (Bäckhed et al., 2007).
In order to advance our understanding of the factors influencing
metabolic health during a western diet, it is important to explore
the microbiome of metabolically healthy individuals following a
western diet which stay healthy at an advanced age, such studies
might reveal components of the microbiome that can counteract
the accumulation of liver fat, protecting the host from further
health outcomes.

THE WESTERN LIFESTYLE AND
INFLAMMATION

Nowadays in the modern societies, an unbalanced diet, stress,
and smoking can onset the inflammatory response daily, leading
to a chronic low-grade systemic inflammation. Inflammation is
the process through which the body limits pathogen invasion
and controls tissue damage after injury. It is mediated by many
soluble factors essential to signal immune cells to eliminate
the aggressor and initiate tissue repair. Among these factors
are secreted polypeptides called cytokines, which include tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-
6 (IL-6), interleukin-10 (IL-10), IL-1 receptor antagonist (IL-
1ra), and soluble TNF-α receptor (sTNF-R). TNF-α and IL-1β
are pro-inflammatory cytokines, IL-6 has both anti- and pro-
inflammatory properties, while IL-10, IL-1ra, and sTNF-R are
anti-inflammatory cytokines. In acute inflammation, the levels
of cytokines rapidly increase several fold and decrease when
the infection is controlled or the injury is healed. However,
acute inflammation does not always subside, and can become
a chronic low-grade inflammation characterized by a two- to
three-fold increase in the concentrations of cytokines and C-
reactive protein, a molecule produced by the liver in response to
inflammation (Petersen and Pedersen, 2005).

One way the western lifestyle can cause inflammation is by
increasing the number of compounds and microbial products
with inflammatory capability (Figure 1). Among these are:
lipopolysaccharides (LPS) or endotoxins, D-lactate, acetaldehyde,
hydrogen sulfide, toxic products of bacterial protein metabolism,
and oxidative radicals, as described below. A role of antibiotics is
also discussed.

Lipopolysaccharides (LPS)
LPS are part of the outer membrane of Gram-negative
bacteria and are one of the most important compounds
that can induce a low-grade inflammation. LPS is bound by
Toll like receptors (TLR) in cell surfaces, specifically TLR-4.
Particularly in intestinal epithelial cells, these receptors mediate
the inflammatory response triggering different mechanisms
depending on its membrane location, apical or basolateral.
Apical TLR are normally exposed to luminal antigens, including
bacteria and their LPS, and their stimulation results in a

homeostatic response and tolerance but not inflammation. In
contrast, basolateral TLR are exposed to antigens only if these
have crossed important epithelial barriers, and are potentially
infectious. Therefore, basolateral TLR stimulation triggers the
activation of the transcription factor NF-kβ, one of the most
important mediators of the pro-inflammatory response (Wells
et al., 2011). Extra-luminal LPS can also reach the bloodstream,
and subsequently, bind TLR on the surface of other cells,
like blood vessel, muscle, joint, adipose, and hepatic Kupffer
cells. Their activation affects processes like insulin signaling,
adipose tissue differentiation, lipogenesis, and it has been
suggested that the interaction LPS-adipocyte–macrophage can
amplify the low-grade inflammation to the level of influencing
metabolic disorders (Muccioli et al., 2010). Thus, inflammation
is a mechanism vital to set a prompt response to pathogens,
however, LPS can onset a low-grade inflammatory response
that may alter the metabolic status of the host by unknown
molecular mechanisms (Nakarai et al., 2012). LPS are being
increasingly associated with a number of conditions summarized
in Table 1.

Several behaviors associated with the western lifestyle can
affect the levels of plasmatic LPS. Among these are sedentarism,
smoking, stress, and an unhealthy diet. Lira et al. showed
that sedentary people had higher levels of plasmatic LPS than
highly trained people at rest (Lira et al., 2010). Pace et al.
observed that cigarette smoke increased the expression of TLR-
4 and LPS binding (Pace et al., 2008). Furthermore, it has
been demonstrated that stress hormones stimulate the growth
of LPS-containing bacteria such as Yersinia enterocolitica and
Escherichia coli, and indeed, stress hormones achieved a 100,000-
fold increase in viable E. coli in the cecum of mice within 24 h
and promote the synthesis of an autoinducer of bacterial growth
(Lyte and Ernst, 1992; Lyte et al., 1996; Lyte and Bailey, 1997;
Freestone et al., 2008). Meanwhile, Cani et al. observed that a 4-
week HFAD chronically increased plasma LPS concentration two
to three times (Cani et al., 2007).

Among the factors that increase the abundance of plasmatic
LPS, diet is the best studied. It is recognized that HFADs induce
high levels of LPS in the blood through the stimulation of
chylomicron (droplets of fat) formation in intestinal epithelial
cells, this facilitates LPS transcellular transport across the
gut epithelium and subsequently, LPS reach the bloodstream
(Ghoshal et al., 2009). However, several investigations point
that not every type of HFADs increases the concentration
of plasmatic LPS. HFADs consisting of oils rich in ω-6
polyunsaturated fatty acids (ω-6 PUFA), like safflower oil,
cause a markedly increase in the concentration of plasmatic
LPS and pro-inflammatory cytokines compared to diets rich
in coconut oil or fish oil, which instead are protective against
a LPS challenge (Mascioli et al., 1988; Sadeghi et al., 1999).
Meanwhile, a high-fructose diet (HFUD) promotes a more
pronounced increase in plasmatic LPS concentration than
diets rich in glucose. The mechanism for this is unknown,
but evidence suggests that HFUD effects are related to the
gut microbiota, since observations that oral non-absorbable
antibiotics (antibiotics that act locally in the gut) can prevent
the increase of plasmatic LPS, while the knockout of the LPS
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FIGURE 1 | Comparison of a system suffering from western-related conditions (right, in red) and a system with amelioration of western-related

conditions (left, in orange). One aspect of a western lifestyle is the higher intake of ω-6 PUFA (depicted as FFA), this enhances the formation of chylomicrons

allowing the translocation of LPS, these then activate basolateral TLR which initiates a pro-inflammatory response, one overall consequence is the alteration of the gut

epithelium and its permeability (depicted as deteriorated epithelium and compromised tight junctions), exacerbating inflammation by allowing the translocation of more

LPS, pro-inflammatory cytokines, FFA, among other luminal compounds (1). LPS/ pro-inflammatory cytokines/ FFA can enter portal and systemic circulation, one

consequence is the alteration of fat metabolism, thus enhancing fat accumulation in liver (2), and in adipose tissue, adipocytes increase in size, FFA synthesis is

enhanced (depicted as FFA in circulation), and an elevated pro-inflammatory state occurs (depicted as increased infiltration of macrophages and production of

pro-inflammatory cytokines) (3). The western lifestyle includes higher intake of simple sugars and red-meat, lower intake of antioxidants (depicted as presence of

oxidants), and sedentarism (depicted as low production of sIgA), some of the consequences are lower-capacity for antigen neutralization (depicted as LPS not bound

to sIgA) and damage to the DNA of epithelial cells (depicted as DNA strand breakage) (4). For the amelioration of these conditions, a person can take different

approaches, these include exercise (depicted as high production of sIgA), intake of dietary nutrients (i.e., polyphenols and ω-3 PUFAs) (depicted as antioxidants),

probiotics, prebiotics, and SCFA (depicted as fiber, bacterial active compounds and probiotics) (5). Some of the effects of these approaches include the

reestablishment of gut epithelium permeability and a decrease in LPS translocation, TLR activation, chylomicron formation, presence of LPS/cytokines/FFA in portal

and systemic circulation (6), liver fat (7), adipocyte size, FFA synthesis, macrophage infiltration in adipose tissue (8), and an overall amelioration of the inflammatory

state (depicted as a higher concentration of anti-inflammatory cytokines compared to pro-inflammatory cytokines [6 and 8]). FFA, free fatty acids. For more details see

the text.
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TABLE 1 | Conditions associated with high levels of plasmatic LPS.

Disease/Condition Association with LPS

Depression and neurodegenerative diseases Peripheral inflammation can chronically activate brain microglia to produce elevated pro-inflammatory factors (Qin

et al., 2007; Maes et al., 2013; Suffredini and Noveck, 2014).

Cardiovascular disease and atherosclerosis Macrophages with a pro-inflammatory profile induced by TLR accumulate in blood vessel walls eventually forming

a plaque (Wiedermann, 1999; Caesar et al., 2010).

Chronic fatigue syndrome Serum levels of antibodies directed against LPS correlate to the level of fatigue (Maes and Leunis, 2008).

Cancer LPS have been shown to increase the inflammatory activity of immune cells that generate oxidative radicals

incrementing the chance of DNA damage in proliferating cells (Coussens and Werb, 2002), and they also increase

the adhesiveness and metastatic capacity of cancer cells (Hsu et al., 2011).

Type 2 diabetes mellitus LPS decreased insulin sensitivity in healthy subjects that had a reduced response to insulin 24 h after a LPS

infusion protocol (Mehta et al., 2010).

Obesity LPS are identified as a triggering factor since a 4-week treatment of LPS in mice resulted in a similar whole-body,

liver, and adipose tissue weight gain as in a HFAD (Cani et al., 2007).

Autism The higher the level of LPS, the worse the social interaction of the patient (Emanuele et al., 2010).

Systemic lupus erythematosus disease LPS increase systemic nucleosome release due to an enhancement of apoptosis and a decrease in the clearance

of apoptotic cells (Licht et al., 2001).

HIV-1 LPS lead to neurological dysfunctions since the increase of cytokine production affects the permeability of the

blood-brain barrier allowing the trespassing of the virus into the brain (Dohgu and Banks, 2008).

Retinal pathologies LPS are an underlying factor for their progression due to the sensitivity of the retinal pigment epithelium cells to

inflammatory stress (Leung et al., 2009).

Autoimmune Joint Inflammation An oral administration of LPS can exacerbate arthritis in animal models and antibiotics can suppress the

recurrence of the disease (Yoshino et al., 1999).

receptor TLR-4 greatly decreases lipid peroxidation, expression
of TNF-α, and accumulation of fat in the liver that occurs in
fructose-fed mice (Di Luccia et al., 2015). In humans, HFUD
is also associated with NAFLD (Bergheim et al., 2008; Ouyang
et al., 2008). The distinct effects of different fats and sugars
might explain some of the variability of diet response among
studies.

Diet-Dependent Products of Bacterial
Metabolism
Bacterial products of metabolism released in our gut depend
heavily on diet, host secretions and digestive enzymes, local
conditions of pH, oxygen, and hydrogen, gut transit time, and
the composition and activity of the microbiota, among other
factors (Salonen and de Vos, 2014). Undigested dietary residues
that arrive to the large intestine are the main substrates of
bacterial metabolism, along with diet-independent substrates
like endogenous host secretions. Undigested carbohydrates are
fermented mainly to short-chain fatty acids (SCFAs) (such as
butyrate, acetate, and propionate) and gases (mainly carbon
dioxide, hydrogen, and methane) (Flint et al., 2012). However,
an excessive consumption of carbohydrates can also increase
the concentration of toxic compounds derived from microbial
metabolism, as it is the case of D-lactate, which is produced
during carbohydrate fermentation by D-lactic acid bacteria. This

compound inhibits the transport of L-lactate and pyruvate,
both essential for mitochondrial energy production (Ling
et al., 2012). Several conditions have been associated with
high concentration of D-lactate, among these are chronic
fatigue syndrome, diarrhea, short bowel syndrome, and diabetes
(Uribarri et al., 1998; Ewaschuk et al., 2005; Sheedy et al.,
2009). Another toxic compound that has been associated with
the excessive consumption of carbohydrates and alcoholic
drinks is acetaldehyde. This compound is produced by ethanol-
oxidizing bacteria and yeast, and is formed during ethanol
metabolism. When acetaldehyde is metabolized, oxidative
radicals are generated, altering the permeability of the intestinal
epithelium facilitating the translocations of luminal contents to
the bloodstream (Atkinson and Rao, 2001). Acetaldehyde is also
a known carcinogenic compound (Salaspuro, 1996; Wright et al.,
1999).

While carbohydrates are fermented in the proximal colon,
amino acids are fermented in the distal colon and this results
in branched-chain fatty acids and potentially toxic metabolites
such as ammonia, phenols, indoles, amines, TMAO, and volatile
sulfur compounds (den Besten et al., 2013), some of which
are associated with the increased incidence of colorectal cancer
(Hughes et al., 2000; Russell et al., 2011) and atherosclerosis
(Koeth et al., 2013) in high-red meat diets, fresh or processed.
In the case of ammonia, higher levels of this compound in the
blood can enter the brain and cause conditions like hepatic
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TABLE 2 | Summary of beneficial factors under a western lifestyle.

Beneficial factor Benefits Benefited population

Exercise Exercise reduces pro-inflammatory state, liver fat, protects

against insulin resistance, and increases the levels of SCFAs

and sIgA (Schmitz et al., 2002; Starkie et al., 2003;

Matsumoto et al., 2008; Nichol et al., 2008;

Campos-Rodríguez et al., 2016).

Beneficial in the general population (its effects are under study

for some conditions) (Gleeson et al., 2011).

Dietary polyphenols Polyphenols function as antioxidants, strengthen intestinal

barrier function, maintain beneficial bacterial strains, and

prevent endotoxemia and the development of diabetes (Sies

et al., 2005; He et al., 2012; Cowan et al., 2013; Anhê et al.,

2015; Wang et al., 2016).

Beneficial in the general population (Manach et al., 2005).

ω-3 polyunsaturated fatty acids ω-3 PUFA can reverse some of the inflammatory effects of

ω-6 PUFA, like immune cell infiltration and NF-kβ activation,

and enrich Lactobacillus spp. and Bifidobacteria spp.

(Thompson and Spiller, 1995; Ghosh et al., 2013).

People with high ω-6 PUFA intake (Ghosh et al., 2013).

Prebiotics Prebiotics increase abundance of Bifidobacteria,

butyrate-producing and mucin-degrading bacteria. They have

been observed to reduce body weight gain, dyslipidemia,

inflammation, hypertension, and insulin resistance (Marcil

et al., 2003; Tappenden et al., 2003; Galisteo et al., 2008;

Delzenne et al., 2013; Kimura et al., 2013; Park et al., 2015).

Beneficial for the general population, as long as the individual

has a microbiota with the capacity of degrading the prebiotic

(Chambers et al., 2015).

SCFAs SCFAs prevent weight gain, abdominal adiposity, liver fat, and

reduced insulin resistance (Chambers et al., 2015).

These compounds have been observed to be beneficial in

gastrointestinal disorders and overweight adults, but might be

beneficial in other conditions not yet studied (Segain et al.,

2000; Chambers et al., 2015).

PROBIOTICS

L. curvatus HY7601 and L.

plantarum KY1032

These strains prevent weight gain, and lower plasma glucose,

insulin, triglycerides, oxidative stress levels, liver mass, and

liver cholesterol (Park et al., 2013a,b).

People following a HFAD and HFUD (Park et al., 2013a,b).

A. muciniphila This strain reduces plasmatic LPS, adiposity, insulin

resistance, body weight, and hyperglycemia. It increases

adipocyte differentiation and lipid oxidation, and prevents the

thinning of the mucus layer (Everard et al., 2013).

People following a HFAD and/or with low abundance of

mucin-degrading bacteria (Everard et al., 2013).

B. uniformis CECT 7771 This strain reduces total body weight gain, intestinal lipid

absorption, liver fat, levels of cholesterol and triglycerides. It

improves glucose metabolism, insulin and leptin sensitivity,

and immune function. A Bacteroides-rich microbiota has

been associated with reduced production of

pro-atherosclerotic TMAO (Gauffin Cano et al., 2012).

People following a HFAD, and/or with a high inflammatory

profile, and/or a high intake of red-meat (Gauffin Cano et al.,

2012).

L. reuteri JBD30 l This strain absorbs FFAs and increases fecal fat excretion

(Chung et al., 2016).

People following a HFAD (Chung et al., 2016).

L. fermentum ME-3 This strain reduces post-prandial oxidative stress (Kullisaar

et al., 2011).

People with low antioxidant intake (Kullisaar et al., 2011).

L. acidophilus strains NCFM and

N-2

These strains lower the production of free amines and the

activity of cecal bacterial ß-glucuronidase, nitro-reductase,

and azoreductase enzymes (Goldin and Gorbach, 1984a).

People with a high red-meat intake (Goldin and Gorbach,

1984a).

B. bifidum, L. plantarum 8PA3,

and L. rhamnosus GG

These strains improve liver function and lower

alcohol-induced endotoxemia and hepatic steatosis (Kirpich

et al., 2008; Wang et al., 2011).

People with high alcohol-intake (Kirpich et al., 2008; Wang

et al., 2011).

L. plantarum 299v This strain reduces systolic blood pressure, leptin, fibrinogen,

IL-6, and monocytes adhesion to vein endothelial cells

(Naruszewicz et al., 2002).

Heavy smokers (Naruszewicz et al., 2002).
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encephalopathy. Ammonia is a concern in subjects with chronic
diseases in the thyroid gland, kidneys, lungs, and liver, and it
is been increasingly associated with diabetes, extreme obesity
(Bengmark, 2009), and tumor promotion (Hughes et al., 2000).
Interestingly, the evidence suggests that white meat (poultry
and fish) do not have the same detrimental effects of red
meat. A possible explanation is the higher content of dietary
haem in red meat, which will provide a source of iron for
some proteins that can form toxic nitrosating agents from
nitric oxide under anaerobic conditions (Wade and Castro,
1990).

Another toxic compound of bacterial protein or carbohydrate
metabolism is hydrogen sulfide (H2S). This is produced by
sulfate-reducing bacteria during the oxidation of a wide range
of substrates found in the large intestine (Gibson et al., 1991).
In western countries there is a high incidence of people with
a sulfate-reducing bacteria, 50–70% compared to 10–20% of
rural black Africans. The H2S produced by this group of
bacteria can cause DNA damage in susceptible subjects with
genetic predisposition that compromises DNA repair, as it
is observed in patients suffering from ulcerative colitis and
colorectal cancer (Attene-Ramos et al., 2006). The concentration
of these toxic compounds of bacterial protein and carbohydrate
metabolism in the intestinal lumen might be the result of
interplay between the microbiota capacity to produce them
and the host capacity to clear them up; in addition, the
metabolic effect of these compounds would depend on the host
susceptibility.

Oxidative Radicals
Oxidative radicals are normally produced in high concentrations
during food digestion and are also generated during cigarette
smoking. Ingestion of food with antioxidants can control
the exposure to these compounds, consequently diets with
low levels of antioxidants will not subside the constant
oxidative stress that occur in the gut and lung epitheliums
(van der Vaart et al., 2004; Bloomer and Fisher-Wellman,
2010; Caesar et al., 2010). Overnutrition also increases
the oxidative stress in the endoplasmatic reticulum, this
activates a mediator of inflammation normally inactive in
the hypothalamus, the kinase IKKβ, which regulates NF-κβ

through the phosphorylation of its inhibitor IkBα (Zhang
et al., 2008). Oxidative stress also increases the activity of the
PI 3-kinase and the myosin light chain kinase promoter that
regulate the opening of the intestinal tight junction barrier.
Thus, oxidative stress mediates the enlargement of the spaces
in the gut epithelium allowing the translocation of normally
non-invasive bacteria or their toxic products and components,
which will induce the activation of NF-κβ perpetuating a
vicious cycle of NF-κβ activation and impairment of the
tight junction barrier (Sheth et al., 2003; Maes and Leunis,
2008).

In summary, the NF-κβ pathway that mediates inflammation
can be activated by several cellular stresses, including LPS
and compounds that generate cellular damage, like D-lactate,
acetaldehyde, and H2S. Importantly, the activation of NF-
κβ in parts of the body different from the gastrointestinal

tract might eventually alter the permeability of the intestinal
epithelium, facilitating the translocation of luminal materials,
including LPS, which will exacerbate the low-grade inflammation
state.

Antibiotics
The use of antibiotics in the modern era, including the
extensive and inappropriate use in humans and animals,
has changed the gut microbiota and this has diverse health
implications. Broad-spectrum antibiotics can impact the gut
microbiota causing a dysbiosis (“a pathological imbalance
in a microbial ecological niche” Jones et al., 2014) which
can alter the microbiota capacity to prevent the colonization
and growth of pathogens and pathobionts with inflammatory
capability. Two meta-analyses, one in >56,000 patients with
C. difficile infection and the other in >7000 inflammatory
bowel disease (IBD) patients showed that antibiotics were a
high risk factor for the development of these diseases (Furuya-
Kanamori et al., 2014; Ungaro et al., 2014). Depending on
the class of antibiotic, the dosage, time of administration, and
other antibiotic-independent factors, like genetic predisposition,
sex, diet, physical activity, disease, and environmental toxicants,
antibiotics can exert effects on the weight (underweight and
overweight states) and metabolic profile (pro-diabetic and
anti-diabetic effect) of an individual (for a review see Cox
and Blaser, 2015). Antibiotic use carries other risks, like the
dissemination of bacterial resistant genes and the alteration
of the well-established host-microbiota symbiosis through
the eradication of important susceptible strains (Blaser and
Falkow, 2009). Recently, Moeller et al. demonstrated the
cospeciation of certain symbiotic bacterial strains with hominids,
including humans (Moeller et al., 2016). This unique set of
symbionts might provide beneficial health effects to the host
and could be under selective pressure by the modern use of
antibiotics.

APPROACHES THAT COUNTERACT THE
WESTERN LIFESTYLE

The approaches that can effectively counteract the effects of
the western lifestyle are the ones that mitigate the translocation
of LPS, prevent toxic microbial metabolism, and modulate
the pro-inflammatory response and oxidative stress. Among
these approaches are: exercise, dietary compounds, probiotics,
prebiotics, and short chain fatty acids (SCFAs) (Figure 1 and
Table 2), as described below.

Exercise
Regular moderate doses of physical activity can ameliorate
the effect of an LPS insult. In addition, it has been shown
that exercise: controls the levels of pro-inflammatory cytokines,
is associated with less liver fat (Starkie et al., 2003; Nichol
et al., 2008), protects against insulin resistance (Schmitz
et al., 2002), and increases the levels of SCFAs. The main
SCFAs are butyrate, acetate and propionate, and these have
anti-carcinogenic as well as anti-inflammatory properties and
are essential for colon health (Matsumoto et al., 2012).
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Exercise can also modulate the microbiota, mice who exercised
had lower intestinal and systemic bacterial loads than the
group of sedentary mice, and had higher total and specific
intestinal secretory immunoglobulin A (sIgA) which are the
antibodies that control luminal antigens (Campos-Rodríguez
et al., 2016).

Dietary Compounds
Dietary compounds can also be introduced to prevent the
negative effects of a western lifestyle. Among these are: dietary
polyphenols and ω-3 PUFAs. Polyphenols can be found in wine,
cocoa, cranberry, grape, curcumin, propolis, coffee, and tea; they
function as antioxidants (Sies et al., 2005), strengthen intestinal
barrier function (Wang et al., 2016), prevent endotoxemia
(presence of LPS in the blood), the loss of some beneficial
bacterial strains, and the development of diabetes (He et al., 2012;
Cowan et al., 2013; Anhê et al., 2015). The other compounds
are ω-3 PUFA, which are found in fish and olive oil, their
addition to a high ω-6 PUFA diet can reverse some of the
inflammatory effects of ω-6 PUFA, like immune cell infiltration
and NF-kβ activation (Ghosh et al., 2013). It is possible that
the beneficial effects of some of these dietary compounds
are exerted through the modulation of the microbiota. For
example, the administration of cranberry extract and grape
polyphenols is associated with an increased abundance of
the beneficial genus Akkermansia even under a high sucrose
and/or HFAD, while ω-3 PUFA have been shown to enrich
Lactobacillus and Bifidobacteria (Thompson and Spiller, 1995;
Ghosh et al., 2013; Anhê et al., 2015; Roopchand et al.,
2015).

Probiotics
A probiotic can be defined as “a live microorganism that,
when administered in adequate amounts, confers a health
benefit on the host” (FAO/WHO, 2002). Several recent studies
have evaluated the benefits of probiotic supplementation in
the absence of lifestyle changes (Doron and Gorbach, 2006).
One example is the study of Park et al. who observed that
mice following a HFAD for 8 weeks and supplemented with
Lactobacillus curvatus HY7601 and Lactobacillus plantarum
KY1032 for another 10 weeks gained 38% less weight than
the unsupplemented controls (Park et al., 2013a). The same
group also demonstrated that L. curvatus HY7601 and L.
plantarum KY1032 at high (1010 cfu/d) or low dosage (109 cfu/d)
lowered plasma glucose, insulin, triglycerides, and oxidative
stress levels in rodents fed a HFUD, while only at high doses
lower liver mass and liver cholesterol were achieved (Park et al.,
2013b).

The bacteria Akkermansia muciniphila and Bacteroides
uniformis have also been evaluated under a HFAD. Everard
et al. showed that A. muciniphila reduced plasma levels
of LPS, adiposity, insulin resistance, body weight (without
changing food intake), hyperglycemia, increased adipocyte
differentiation and lipid oxidation. The supplementation of
live cells of A. muciniphila also prevented the thinning of
the mucus layer that occurred when mice were fed a HFAD
(Everard et al., 2013). Meanwhile, Gauffin Cano et al. (2012)

showed that an oral administration of B. uniformis CECT
7771 significantly reduced total body weight gain, liver fat,
levels of cholesterol and triglycerides. Furthermore, B. uniformis
CECT 7771 improved glucose metabolism, insulin and leptin
sensitivity, and immune function of macrophages and dendritic
cells. The authors also measured the number of fat micelles
per enterocyte as an indicator of intestinal lipid absorption
which contributes to adiposity, and B. uniformis CECT 7771
also achieved a significant reduction in this aspect (Gauffin
Cano et al., 2012). It was also demonstrated, in meat-fed
rats, that Lactobacillus acidophilus strains NCFM and N-2
promoted a significantly lower production of free amines (Goldin
and Gorbach, 1984a) and lowered significantly, in rats and
subjects, the activity of cecal bacterial ß-glucuronidase, nitro-
reductase, and azoreductase enzymes which are responsible for
the generation of potential precarcinogenic compounds (Goldin
and Gorbach, 1984b).

Studies have not only evaluated probiotic effects under a
particular nutritional environment but have examined their
effect on the treatment of alcohol-drinking and smoking
induced diseases. Several studies have shown an improvement
of alcohol-induced liver injury in mice and human subjects.
For example, Kirpich et al. performed a pilot study evaluating
the effect of a 5-day probiotic supplementation consisting
of Bifidobacterium bifidum and L. plantarum 8PA3 on 66
alcoholic individuals, the subjects under the probiotic treatment
had significantly lower alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) activity than those treated
with standard therapy (abstinence plus vitamins) (Kirpich
et al., 2008). Then again, the same group demonstrated
that a Lactobacillus rhamnosus GG supplementation during
the last 2-weeks of a 8-week diet containing 5% alcohol
significantly improved liver function and reduced alcohol-
induced endotoxemia, and hepatic steatosis in mice (Wang
et al., 2011). Meanwhile, Naruszewicz et al. determined that
the administration of L. plantarum 299v to heavy smokers
for 6 weeks with no changes in lifestyle led to the significant
reduction in systolic blood pressure, leptin, fibrinogen, IL-
6, and monocytes adhesion to vein endothelial cells, thus
reducing their risk of cardiovascular disease (Naruszewicz et al.,
2002).

Prebiotics and SCFAs
Prebiotics are non-digestible fiber that promotes the growth
of beneficial microorganisms in the gastrointestinal tract.
Some examples are: inulin, fructooligosaccharides, resistant
starch, pectin, among others. These are metabolized to
SCFAs, mainly propionate, acetate and butyrate, which as
mentioned earlier exert many beneficial health outcomes.
SCFAs activate the SCFA receptor GPR43 that reduces insulin
sensitivity in adipose tissue and hence its fat accumulation,
thereby reducing the uptake, synthesis, and oxidation of
toxic fatty acids in other tissues (Kimura et al., 2013; Park
et al., 2015). They also increase proliferation and inhibit
apoptosis of intestinal cells (Tappenden et al., 2003), hinders
intestinal secretion of chylomicron into the circulation
(Marcil et al., 2003), and limits inflammation perhaps
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through inhibition of the NF-κβ pathway (Delzenne et al.,
2013). Galisteo et al. analyzed several studies that showed
that prebiotics reduce all the abnormalities clustered in the
metabolic syndrome, including: body weight gain, dyslipidemia,
inflammation, hypertension, and insulin resistance (Galisteo
et al., 2008).

One drawback of prebiotics is that they can cause intestinal
tract discomfort in individuals with limited microbial capacity
to ferment the prebiotic. Thus, novel approaches to deliver
the benefits of prebiotics have been developed. Chambers
et al. (2015) designed an improved prebiotic compound
linked to a SCFA, propionate, which exploits the benefits of
prebiotics while reducing the amount to be administrated.
SCFAs have many health benefits, but if they are supplemented
orally, they will be absorbed in the upper part of the small
intestine where their benefits are limited. In contrast, this
new compound ensures the delivery of the SCFA directly
to the colon and at the same time, reduces the patient
complains about prebiotics (e.g., gas production and bloating).
Only 10 g of the inulin-propionate ester achieved a 2.5-fold
increase in colonic propionate, this in consequence, prevented
weight gain, abdominal adiposity, liver fat, and reduced
insulin resistance significantly more than in the prebiotic-
only control group (Frost et al., 2013; Chambers et al.,
2015).

Probiotics and prebiotics are already been used clinically
for the improvement of fatty liver (Ma et al., 2013), minimal
hepatic encephalopathy (Liu et al., 2004), diabetes (Asemi
et al., 2014), abdominal adiposity (Kadooka et al., 2010),
chronic fatigue syndrome (Maes and Leunis, 2008), diarrhea,
and Clostridium difficile disease (McFarland, 2006), among
others. Their supplementation is one alternative that is
simple, safe, and that improves several health parameters
simultaneously.

MECHANISM-BASED SCREENING
STRATEGIES FOR THE IDENTIFICATION
OF BENEFICIAL STRAINS

There is great interest in developing commercial probiotic
formulations that include new beneficial strains. Thus, several
studies focus on different screening strategies to find promising
strains that can favorably shape host pathways. These strains
can act directly or indirectly on the cells of the immune system,
epithelial cells, adipocytes, beta pancreatic cells, and can also
control pathobionts. For instance, Gauffin Cano et al. screened
for the immunomodulation capabilities among different strains
of Bacteroides spp., they carefully selected for a specific strain
that had the lowest inflammatory potential on macrophages in
vitro, specifically, low TNF-α and high IL-10 production (Gauffin
Cano et al., 2012). Poutahidis et al. (2013) also demonstrated
that L. reuteri protected the host from obesity through an
immunomodulatory mechanism, specifically, L. reuteri had an
effect on the IL-10-dependent function of CD4+ T cells.
Interestingly, the researchers could replicate the phenotype of
the probiotic-supplemented mice in naïve recipient rodents

by transferring only the purified CD4+ T cells (Poutahidis
et al., 2013). Meanwhile, Ito et al. screened the inhibitory
activity of 49 lactic bacterial strains on lipid peroxidation in
vivo and in vitro (Ito et al., 2003). While Kullisaar et al.
measured the capacity of L. fermentumME-3 to reduce oxidative
stress, blood triglyceride levels, and lipoprotein status post-
prandially (2 h after a meal) in a randomized double-blind
placebo-controlled study with 100 healthy subjects (Kullisaar
et al., 2011). Lastly, Chung et al. (2016) screened for a FFAs-
absorbing strain, L. reuteri JBD30 l, in a fecal sample of a healthy
lean subject. The administration of this strain to experimental
animals and human subjects under a clinical trial lowered the
concentration of FFAs in the fluid of the small intestine thus
increasing fecal fat excretion, the efficacy was comparable to
the one obtained for orlistat, a FDA-approved pharmaceutical
that also increases the content of fat in feces (Chung et al.,
2016).

There are other reportedmechanisms that can guide screening
studies, among these are the increment in the expression
of lectins against Gram-positive bacteria, e.g., A. muciniphila
produces RegIIIγ (Everard et al., 2013); the inhibition of T cell
activation, e.g., S. boulardii produces a <3 kDa protein that has
this effect (Thomas et al., 2011); production of phosphatases
that can dephosphorylate LPS, as it has been observed also in
S. boulardii (Buts et al., 2006); upregulation of the expression of
cytoprotective heat shock proteins that increase the protection
against oxidative damage and gut barrier loss in intestinal
cells, e.g., Bacillus subtilis produces a quorum-sensing signal
molecule, the competence- and sporulation-stimulating factor,
which induces the heat shock protein Hsp27 (Fujiya et al.,
2007); inhibition of the hydrogen peroxide-induced epithelial
barrier disruption, e.g., L. rhamnosus GG produces two soluble
proteins, p40 and p75, that control this aspect (Seth et al.,
2008); inhibition of NF-kβ pathway (Petrof et al., 2004); and
enhancement of SCFA production (Kimura et al., 2013; Park
et al., 2015).

CONCLUSIONS

The western lifestyle causes the overproduction of inflammation
signals and underprovides the means to block them, driving
the body into a chronic low inflammation state. To avoid
some negative consequences, people can introduce light
exercise, simple dietary compounds, probiotics, prebiotics
and/or SCFAs into their daily routine. Interestingly, several
recent studies have proved that the effects of probiotics and
prebiotics can even be exploited under a HFAD and smoking
conditions, providing a way to extend the health of a person
with a western lifestyle. The presence of probiotics in dairy
products has made them well accepted and recognized by
their health benefits on the gastrointestinal tract, and given
that the clinical evidence points that they also have benefits
on the lipid and glucose metabolism, gut permeability, mood,
and immune system, it is foresighted that this field will keep
introducing new probiotic strains to the market, perhaps
specific formulations depending on the desired benefit. We
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proposed that for the advancement of this field, it is important
to understand if there is a microbiological component that is
extending the health of asymptomatic lean, overweight and
obese people following a western diet, and the factors that
increase the fitness of these strains in the western microbiome.
Ultimately, considering that in western countries the most
prevalent diseases are inflammatory in nature, it will be
important that in the near future, inflammation markers would
be routinely screened in the clinical setup and anti-inflammatory
probiotics administered as an alternative preventive
measure.
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