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Abstract

Introduction

In bone and joint infections (BJIs), bacterial toxins are major virulence factors: Panton—Val-

entine leukocidin (PVL) expression leads to severe local damage, including bone distortion

and abscesses, while α-hemolysin (Hla) production is associated with severe sepsis-related

mortality. Recently, other toxins, namely phenol-soluble modulins (PSMs) expressed by

community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain

USA300 (LACWT) were shown to have ex vivo intracellular cytotoxic activity after S. aureus
invasion of osteoblasts, but their in vivo contribution in a relatively PVL-sensitive osteomye-

litis model remains poorly elucidated.

Materials and Methods

We compared the outcomes of experimental rabbit osteomyelitises induced with pvl+hla+-

psms+ LACWT and its isogenic Δpsm derivatives (LAC Δpsmα and LAC Δpsmαβhld) using
an inoculum of 3 × 108 CFUs. Mortality, hematogenous spread (blood culture, spleen and

kidney), lung and bone involvements were assessed in two groups (non-survivors of severe

sepsis and survivors sacrificed on day (D) 14).

Results

Severe sepsis-related mortality tended to be lower for Δpsm derivatives (Kaplan—Meier

curves, P = .06). Non-survivors’ bone LAC-Δpsmα (6.9 log10 CFUs/g of bone, P = .04) or

-Δpsmαβhld (6.86 log10 CFUs/g of bone, P = .014) densities were significantly higher than

LACWT (6.43 log10 CFUs/g of bone). Conversely, lung Δpsmαβhld CFUs were significantly

lower than LACWT (P = .04). LAC Δpsmα, Δpsmαβhld and WT induced similar bone dam-

age in D14 survivors, with comparable bacterial densities (respectively: 5.89, 5.91, and
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6.15 log10 CFUs/g of bone). Meanwhile, pulmonary histological scores of inflammation

were significantly higher for LAC Δpsmα- and Δpsmαβhld-infected rabbits compared to

LACWT (P = .04 and .01, respectively) but with comparable lung bacterial densities.

Conclusion

Our experimental results showed that deactivating PSM peptides significantly limited bacte-

rial dissemination from bone during the early phase of infection, but did not affect local

severity of USA300 rabbit osteomyelitis.

Introduction
Since 1990, extensive spread in the United States of the community-associated methicillin-
resistant Staphylococcus aureus (CA-MRSA) USA300 clone has been responsible for severe
infections, including bone and joint infections (BJIs), especially in children [1]. BJIs represent
up to 38% of pediatric CA-MRSA infections in the United States [2]. The global severity of
CA-MRSA BJIs has been linked to local musculoskeletal involvement, including extraosseous
abscesses, and the frequent need for surgical management [3,4], and systemic complications
including severe sepsis and dissemination to the lungs [5,6].

Numerous CA-MRSA virulence factors have been identified [7], some of which appeared to
play a specific role in the course of osteomyelitis. Panton—Valentine leukocidin (PVL), a
phage-borne pore-forming toxin highly prevalent in CA-MRSA, was able to induce local com-
plications, e.g. bone deformation and muscular abscesses in a rabbit osteomyelitis model [8].
PVL involvement in this context was further supported by the epidemiological association of
PVL expression and clinical methicillin-susceptible S. aureus BJI severity [1]. CA-MRSA over-
expression of another pore-forming toxin, α-hemolysin (Hla), was also shown to contribute to
BJI pathogenesis [9]. We previously showed that Hla was associated with systemic complica-
tions, like severe sepsis-related mortality in CA-MRSA rabbit osteomyelitis [10].

In addition to PVL and Hla, secreted peptides called phenol-soluble modulins (PSMs) have
been identified as key virulence factors that are also strongly expressed in staphylococci and
CA-MRSA [11]. PSM-encoding genes appear in three distinct loci on the S. aureus chromo-
some. PSMs encoded by the first two loci have been designated PSMα and β. The third PSM
locus encodes the δ-toxin; its open-reading frame is part of the RNAIII effector of the staphylo-
coccal accessory-gene regulator (agr), a major two-component system coupled to a density-
sensing cassette controlling the expression of most S. aureus virulence factors. All PSM-encod-
ing genes are under agr control, either through the AgrA-mediated regulation pathway for
psmα and β, or as a consequence of the co-transcription with RNAIII, as for hld [12]. Thus,
PSM expression is tightly coupled with staphylococcal quorum sensing through agr.

Several PSM biological functions impact pathogenesis and, possibly, the course of S. aureus
osteomyelitis. PSMs are small peptides with amphipathic properties, allowing them to destabi-
lize lipid bilayers at high concentrations. This activity has been linked to receptor-independent
cytotoxicity to host cells, including neutrophils and osteoblasts, the bone-forming cells [13,14].
Moreover, receptor-dependent proinflammatory activation of neutrophils by PSMs was found,
resulting from PSM detection by the neutrophil formyl-peptide receptor 2 (FRP2) [15]. Finally,
PSMs can assemble into amyloid-like fibrillae, which contribute to stabilizing staphylococcal
biofilms [16,17] and induce a tolerogenic phenotype in dendritic cells, contributing to bacterial
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interference [12] and cell-cycle disruption [18]. These cytotoxic, proinflammatory and biofilm-
enhancing properties could suggest PSM involvement in the in vivo outcome of osteomyelitis.

In previous in vivo studies on PSMs using a model of skin-and-soft-tissue infection, the
LAC psmα-deleted strain, but not the other psm-deleted strains, was significantly less able to
cause skin lesions in mice [11]. Also, Kobayashi et al demonstrated that PSMα and Hla contrib-
uted to the pathogenesis of USA300 skin infections in rabbits [19], whereas PSMα peptides had
no impact in a PVL-negative ST72 CA-MRSA strain in a mouse model of skin infection [20].
Moreover, PSMs have been shown to facilitate dissemination from an infected catheter in a
mouse model of biofilm-associated infection [21]. Furthermore, in a rabbit model of experi-
mental endocarditis, Spaulding et al showed that deactivating PSMs delayed lethal sepsis but
did not prevent mortality or valve lesions [22] and, thus, that they do not play a major role in
infective endocarditis.

Concerning BJIs, PSMα expression was associated with extensive bone damage inducing the
death of infected human osteoblasts in an ex vivomodel of intracellular infection [14], whereas
in a murine osteomyelitis model, PSMs enhanced cortical bone destruction [23]. Addressing in
vivo PSM BJIs requires using a model sufficiently close to the human situation in terms of PVL
susceptibility. In particular, murine models used in previous studies of PSM involvement in
CA-MRSA osteomyelitis could not account for the PVL effect, because murine immune cells
respond poorly to PVL [24], unlike those of rabbits that are highly PVL-sensitive [25]. Hence,
disease outcomes as a function of PVL may differ between these species.

In this context, we sought to determine the contribution of PSMs to local and systemic oste-
omyelitis severity in a PVL-sensitive rabbit model of acute BJI, using the highly virulent
USA300 CA-MRSA strain LAC, which expresses PSMs, Hla and PVL, and its isogenic deriva-
tives lacking PSM expression.

Materials and Methods
We used the clinical S. aureus Los Angeles County wild-type strain (LAC-WT), and its isogenic
Δpsm derivatives (LAC Δpsmα and LAC Δpsmαβhld, respectively), all kindly provided by
Frank Deleo, as for our previous studies. The strains were created and originated in Dr.
Michael Otto’s laboratory and were previously described [11].

The Δpsm derivatives were constructed via allelic replacement with a spectinomycin-resis-
tance cassette of the psmα and psmβ operons, as previously described [26], and by disrupting
codon usage within the hld gene inside RNAIII to disable δ-toxin. Technical difficulties and
cost prevented us from verifying modifications/confirming plasmid transfer with a gene-
recomplementation assay.

Microorganisms were stored at –80°C until use. Prior to the experiments, bacteria were cul-
tured in casein hydrolysate and yeast extract medium (CCY) at 37°C with shaking for 18 h.
After centrifugation, the supernatants were passed through 0.22-μm filters, and the pellets were
washed and resuspended in phosphate-buffered saline (PBS). All inocula were quantified by
optical density (OD), then serial dilutions were plated on tryptic soy agar (bioMérieux, Paris,
France).

Norden’s method [27] was used to induce osteomyelitis in female New Zealand white rab-
bits, weighing between 2 and 3 kg, housed in individual cages with ad libitum access to food
and water, in compliance with French legislation on animal experimentation and with the
approval of the Animal Use Committee of Maisons-Alfort Veterinary School. Rabbits were
anesthetized by intramuscular injection of 25 mg/kg each of ketamine (Virbac, Carros, France)
and 2% Xylazine (Bayer Santé, Division Santé Animal, Loos, France). An 18-gauge needle was
inserted percutaneously through the right tibial metaphysis into the medullary cavity to
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aspirate 0.4 mL of bone marrow. Infection was induced by direct injection of 0.1 mL of a scle-
rosing agent (3% sodium-tetradecyl sulfate), followed by 0.2 mL of inoculum (3 × 108 colony-
forming units (CFUs)) and 0.1 mL of saline to rinse the syringe. Fentanyl-patch analgesia was
given for 7 days following surgery.

Animals were assigned to receive either LAC Δpsmα (n = 24) or LAC Δpsmαβhld (n = 24) to
evaluate the in vivo impact of PSMs. Nineteen LAC-WT—infected rabbits served as controls.

Macroscopic Appearance and Bacterial Densities in Bone and Lungs
Animals were monitored daily for general and local signs of osteomyelitis (mobility, leg
appearance) and were weighed on inoculum and sacrifice days. Moribund animals (immobile,
unable to be aroused from a recumbent position and unable to access food or water) were
euthanized by rapid intravenous injection of pentobarbital. Otherwise, rabbits were observed
until day (D)14 post-infection to assess PSM impact on the osteomyelitis time course.

Before death, venous blood was drawn for culture and serum samples were stored at –20°C
for later antibody-profile determination.

On the day of death, lungs, right leg, spleen and kidneys were removed. Both lungs were
weighed and visually examined. Left lungs were stored at –80°C until determination of bacterial
densities and right lungs were embedded in paraffin for histological examination (scored 0–4:
none, minimal, mild, moderate, severe, respectively) for diffusion, edema, congestion, hemor-
rhages, thrombi, inflammation, megakaryocytes, infarcts, abscesses, pleural involvement and
bacterial density. Spleen and kidneys were crushed and cultured on blood agar to determine
their infection status. Macroscopic appearance of the right leg was noted and photographed,
and the upper third of the tibia was frozen for subsequent quantitative culture, as previously
described [10].

Serum-Antibody Assay
Anti-PVL and -Hla antibodies were detected with specific enzyme-linked immunosorbent
assays (ELISAs). Antibody levels are expressed as arbitrary units per mL (AU/mL), as previ-
ously described [10]. Anti-PSM antibodies could not be quantified.

Statistical Analyses
Percentages of hematogenous spread (positive blood, kidney and/or spleen cultures), bone
deformations and abscesses were compared using Student’s t-test. Non-parametric Mann—
Whitney U-tests were used to compare tibial bacterial counts and 2-way ANOVA with Tukey’s
multiple comparisons tests for histological scores.

The Kaplan—Meier method was used to estimate survival mortality, with inoculation as
time 0 and censoring at sacrifice on D14. Percentages of survivors were compared with the log-
rank (Mantel—Cox) test (Fig 1).

Survivors’ antibody-titer changes between D0 and D14 were analyzed with paired Welch’s
t-test after log10 transformation.

Results
We inoculated 48 rabbits with 3 × 108 Δpsmα (n = 24) or Δpsmαβhld (n = 24) CFUs; the two
that died immediately post-anesthesia (1 each in Δpsmα or Δpsmαβhld group) were excluded.
Nineteen LAC-WT—inoculated rabbits served as controls.

D1 blood cultures were positive for 50% of the LAC-WT—infected rabbits tested vs. 65% of
Δpsmα-infected (P = .47) and 61% of Δpsmαβhld-infected animals (P = .72).
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Ten (52%) LAC-WT—infected rabbits died of severe sepsis with disseminated infection
between D0 and D7 (median: 4 days) compared to five (22%) of the Δpsmα and seven (30%) of
Δpsmαβhld groups (P = .03 and .11, respectively), with respective median survival of 5 and 4
days (P = .53, non-significant (NS)). The lack of significantly different mortality rates between
Δpsmαβhld and WT groups, as opposed to the significantly different Δpsmα group, was likely
attributable to random fluctuation and small sample size rather than to a real difference
between Δpsmα and Δpsmαβhld groups. Indeed, Kaplan—Meier survival curves (Fig 1) showed
a trend towards lower mortality of Δpsmα- and Δpsmαβhld-infected rabbits (P = .06).

Most non-survivors had positive spleen (80% of Δpsmα vs. 100% of Δpsmαβhld and LAC
WT, NS) and kidney (100% of all groups) cultures. Macroscopic examination of all non-survi-
vors’ lungs found red and congestive lesions, as in the LAC-WT group. Their lung histological
scores confirmed the comparability of Δpsmα and Δpsmαβhld vs. LAC-WT infections. How-
ever, LAC-WT bacterial lung densities were higher (8.19 (interquartile range (IQR), 7.55–8.23)
log10 CFUs/g than Δpsmαβhld (6.39 (IQR, 6.27–6.48) log10 CFUs/g P = .04), but comparable to
Δpsmα (6.79 (IQR 5.62–7.10) log10 CFUs/g, P = .25).

All non-survivors had infected bones, with median bacterial densities of 6.9 (IQR 6.85–
6.96) log10 Δpsmα CFUs/g and 6.86 (IQR, 6.81–7.38) Δpsmαβhld log10 CFUs/g vs. 6.43 (IQR,
6.29–6.58) log10 LACWT CFUs/g of bone (P = .04 and .014, respectively) (Fig 2A). As for
LAC-WT—infected rabbits, rare microabscesses were found at the inoculation site (0% Δpsmα,
20% Δpsmαβhld vs. 20% LACWT, NS) but no cortical deformation (NS).

Survivors were sacrificed on D14 to evaluate bones and organs (Fig 3).
D14 Δpsmα- and Δpsmαβhld-infected survivors did not differ from LAC-WT—inoculated

rabbits for hematogenous dissemination: 17%, 19% vs. 11% spleen-positive cultures (NS) and
34%, 44% vs. 11% positive kidney cultures (NS). Histological scores were comparable except
for higher lung inflammation in Δpsmα (P = .04) and Δpsmαβhld (P = .01) than LAC-WT
infections (Fig 2B), while mean (±SD) lung bacterial densities were comparable for the three
groups (2.31 ± 1.04, 2.21 ± 0.39 vs. 2.03 ± 1.18 log10 CFUs/g, respectively; NS).

Unexpectedly, Δpsmα and Δpsmαβhld vs. LAC-WT strains, respectively, induced similar
bone deformities (39% and 43% vs. 67%; P = .73 and .41), muscle abscesses (83% and 75% vs.

Fig 1. Kaplan—Meier survival curves compared with the log-rank (Mantel—Cox) test. Severe sepsis-
related mortality tended to be lower for Δpsmα (��) and Δpsmαβhld (- -) (P = .06) vs. LACWT (–).

doi:10.1371/journal.pone.0157133.g001
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89%; NS), and bone bacterial density (5.89 (IQR, 4.71–6.63) log10 CFUs/g and 5.91 (IQR, 4.82–
6.83) log10 CFUs/g) vs. (6.15 (IQR, 2.47–6.73) log10 CFUs/g) (P = .95 and .82) (Fig 2A).

D14 survivor’s titers were significantly higher than on D0 for anti-PVL (6.4-fold increase,
95% CI 2.9, 14.1; P = 3.5 × 10−5, paired t-test of log10 values) and anti-Hla antibodies (41.3-fold

Fig 2. Comparisons of osteomyelitis parameters observed in Δpsmα (●○)-, Δpsmαβhld▲△)- and
with LAC-WT (◆◇)–infected non-survivors (black) and D14 survivors (white). (A) Median bacterial bone
densities, expressed in log10 CFUs/g of bone. The Δpsmα- or Δpsmαβhld-infected non-survivors differed
significantly from those infected with LACWT. (B) Mean histological scores (0–4: none, minimal, mild,
moderate, severe) for lung involvement. The bacterial densities in Δpsmαβhld-infected non-survivors differed
significantly from those infected with LACWT (*P = .017), whereas inflammation was more severe in
Δpsmαβhld- and Δpsmα-infected D14 survivors than those infected with LACWT (**P = .04 and ***.01,
respectively).

doi:10.1371/journal.pone.0157133.g002
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increase, 95% CI 18.1, 96.8; P = 2.9 × 10−10), thereby confirming a significant immune response
towards the two toxins. Survivors’ and non-survivors’D0 anti-PVL and anti-Hla antibody
titers were similar (Fig 4).

Discussion
Our experimental model closely reproduces features of severe acute osteomyelitis seen in chil-
dren with about half of the LAC-WT—infected rabbits dying within 7 days of severe sepsis,
bacteremia, and high bone and lung bacterial densities associated with histological lung lesions,
while D14 survivors developed severe bone infections with deformation and abscesses.

Fig 3. Macroscopic findings after challenge with a high inoculum of CA-MRSA USA300. (A) Pulmonary hemorrhages demarcated
by hyperemic regions in both lungs. (B) Abscesses in the left lung indicating disseminated infection. (C) White circled muscle abscess in
the right leg. (D) Bone marrow filled with pus indicating osteomyelitis. (E) Splenomegaly with necrosis observed after disseminated
sepsis.

doi:10.1371/journal.pone.0157133.g003
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Our main results demonstrated that, during the early first phase of acute disseminated
severe sepsis, deactivating PSMs tended to limit sepsis-attributable mortality, albeit not signifi-
cantly. Δpsmαβhld-infected non-survivors had more bone CFUs than LAC-WT—infected
non-survivors. In contrast, the former non-survivors had lower lung CFUs. This result can

Fig 4. Serum anti-PVL—and -Hla—antibody titers in a rabbit model of S. aureus LAC experimental osteomyelitis. Survivors’ and
non-survivors’ Initial anti-PVL (A) and -Hla titers (C) did not differ significantly. Survivors had significantly higher anti-PVL (B) and -Hla (D)
antibody levels between D0 (inoculation) and D14 (sacrifice) (P < .001). Welch’s t-test analyses of paired (B, D) or unpaired (A, C) log10
values.

doi:10.1371/journal.pone.0157133.g004
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appear to be inconsistent with the bacterial lung histological score. However, bacterial enumer-
ation by CFU counting is more reliable because (i) based on a larger sample size (tissue homog-
enate of a large piece of tissue) and (ii) assessing living but not dead cells.

These findings agree with the previously described role of PSMs in facilitating bacterial dis-
semination from an infected catheter in a mouse model [21, 28], a biofilm-associated infection
like BJI. Conversely, during the second phase of subacute osteomyelitis (D14), deactivating
PSMs did not modify bone CFUs, abscesses or deformities, in contrast to what could have been
anticipated based on previous in vitro and ex vivo observations of PSMs’ osteoblast cytotoxici-
ties [14].

The impact of PSMs (mainly PSMα) during the early phase of severe sepsis could be due to
elevated production of agr-dependent toxins, including Hla and PSMs [29], especially by the
LAC-WT strain. Although PSM deletion resulted in lower mortality, the effect was not signifi-
cant, in contrast to previous observations with Hla [10].

Alternatively, the absence of PSMs’ effect on bone damage in D14 survivors could be
explained by two hypotheses. First, agrmight be less expressed during this late phase of osteo-
myelitis, considered a localized biofilm infection [29]. That possibility underlines the need to
study the impact of virulence factors in a subacute osteomyelitis model (D14) with long-term
animal survival [14]. Second, a potential PSM effect could have been masked by the impact of
PVL, which plays a major role by enhancing rapid local spread of rabbit osteomyelitis with
extraosseous infection extension, especially muscle abscesses [8], or by other toxins, e.g. Hla,
which has been associated with severe sepsis-related mortality [10]. PSMs are by far the most
abundant protein secreted by S. aureus (70–80%), much more than Hla or PVL [30]. Our
results do not exclude a possible PSM effect on osteomyelitis caused by PVL-negative S. aureus
isolates. A double-mutant strain Δpvl–Δpsmαβhld would have helped test this hypothesis, but
we were unsuccessful in constructing one.

Our results do not corroborate those of Cassat et al, who showed that PSMα significantly
limited bone remodeling in mice after creation of a cortical defect in the femur and local inocu-
lation of 1 × 106 LAC-WT or Δpsmα1–4 CFUs [23]. However, it should be stressed that their
model of post-traumatic localized osteomyelitis is far from what was encountered in children
with primary CA-MRSA osteomyelitis [1,2,4,5,31].

Finally, because PSMs were shown to play a proinflammatory role by inducing neutrophil
activation and cytokine release through the through human formyl-peptide receptor-2 (FPR2)
pathway, the higher pulmonary inflammation scores for Δpsmα and Δpsmαβhld groups were
also unexpected [15]. Our results cannot be explained by the comparable lung bacterial densi-
ties of Δpsmαβhld and LAC-WT groups. FPR2 is known to be expressed by several epithelial
tissues including human, mouse and rat lungs. However, FPR expressed by rabbits is only 68%
homologous to FPR2. Also, FPR2 can be triggered by different ligands and induce pro- or anti-
inflammatory responses [32]. Therefore, we think the pulmonary inflammation seen in experi-
mental rabbit osteomyelitis might involve other pathways and cytokines, which would support
our results.

In conclusion, our results showed that deactivating PSMs prevented bacterial dissemination
from bone during the early stage of the infection, but did not impact the local severity of rabbit
USA300 osteomyelitis during the later stage. In agreement with our earlier work on PVL and
Hla involvements in CA-MRSA osteomyelitis [8,10], these new findings confirmed that PVL
expression in a susceptible host, e.g. rabbit, is the major cause of abscesses and bone damage,
potentially masking PSM effects. Nevertheless, PSMs and their modulation by the staphylococ-
cal PSM-degrading protease aureolysin might remain important bone-damaging factors in
PVL-insensitive hosts [23] and perhaps in PVL-negative S. aureus. This strong dependence of
staphylococcal osteomyelitis pathophysiology on host susceptibility factors and the infecting
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strain’s toxin-gene content are exemplary of the difficulties that must be overcome to improve
our understanding of this disease. Beyond the pathogenic role of toxins, other bacterial factors
related to quorum sensing and hypoxic response in poorly oxygenated bone tissue are likely
equally important to establish bone infection, as recently demonstrated by comparisons of S.
aureus genes essential to infection in abscess and osteomyelitis models [33,34]. Among the
intricate array of staphylococcal virulence factors known to contribute to osteomyelitis so far,
Hla is the only one that: measurably influences local and systemic outcomes, even in the pres-
ence of PVL [10]; is common to virtually all S. aureus lineages [35]; and is already targeted by a
monoclonal antibody being tested in a clinical trial (study identifier NCT02296320) to treat S.
aureus infection [36]. In this context, it seems reasonable to designate Hla as a more promising
target than PSMs to treat severe CA-MRSA osteomyelitis, in agreement with recent conclu-
sions drawn from a mice model of skin and soft tissue infection [20].
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