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Introduction
Matched case-control (MCC) studies are a common design for 
epidemiological studies due to their potential gains in effi-
ciency and avoidance of confounders. The general design of 
MCC studies is to group individuals with the outcome of 
interest (“cases”) and those without (“controls”) based on fea-
tures such as age and sex. In omics studies, often the goal of 
MCC studies is to identify biomarkers that are highly corre-
lated with the case/control labels that can lead to a better 
understanding of the cause of the disease. Despite the large 
number of studies using this design, the number of methods 
that account for the pairing has grown very slowly and almost 
always assume a linear relationship between sample features 
and the outcome of interest. Furthermore, most of the popular 
methods used to analyze MCC studies perform poorly when 
the covariate space is high dimensional or when the effects are 
highly nonlinear.

Although other methods have been proposed,1,2 a majority 
of methods used to analyze MCC studies while controlling for 
covariate information are based on conditional logistic regres-
sion (CLR).3 Conditional logistic regression is similar to 
standard logistic regression but controls for the matching 
design by estimating the effects of each covariate conditional 

on the paired design.4 As such, CLR is able to identify covari-
ates whose linear effects are associated with each patient’s case-
control status without flagging spurious relationships due 
solely to the paired nature of the study.

In its original form, CLR was designed to handle modestly 
sized covariate datasets and is not well suited to handle the 
volume or veracity of data present in an ’omics-type analysis. To 
remedy this, several variations of standard CLR have been pro-
posed to deal with high-dimensional datasets.5–9 However, 
based on these published results, CLR and its many variants 
still struggle to accurately differentiate the cases from the con-
trols, particularly when there are nonlinear effects, the noise is 
sufficiently large or the number of inputs is too large.7

Modern classification techniques such as random forests 
(RF),10 support vector machine11 (SVM), and naive Bayes 
(NB) can successfully model such complicated input/output 
relationships but do not account for the matched design of 
MCC studies and require modification to be used in these situ-
ations. That is, applying these methods without accounting for 
the paired nature of the study likely accounts for their poor 
performance relative to CLR, which does account for the pair-
ing.8,12–15 More recently, Dimou et al16 proposed a paired SVM 
approach to identify damaged regions of the brain, but the spe-
cialized kernel they proposed is not applicable to general clas-
sification problems with binary outcomes.
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In this article, we show that by preprocessing the data, any 
number of linear and nonlinear classification algorithms can be 
used to appropriately analyze data generated by MCC studies. 
This method is a general framework which, for the first time, 
makes a much larger set of classification algorithms available to 
researchers analyzing MCC study data. The new group of clas-
sification algorithms resulting from this method, called condi-
tional classification algorithms, are designed specifically to 
analyze MCC studies. Using artificially generated data, we 
show when and by how much the proposed conditional classi-
fication algorithms outperform their standard counterparts. 
We also identify situations in which they will outperform CLR. 
In the next section, we describe the proposed preprocessing 
technique. We then demonstrate how classification and varia-
ble selection accuracies improve in a simulation study. Finally, 
we employ our methods along with CLR to a large cohort 
study on The Environmental Determinants of Diabetes in the 
Young (TEDDY) to understand the ramifications on messy 
and high-dimensional real-world ’omics data.

Methods
In this section, we describe the data processing step that defines 
the proposed set of conditional classification algorithms. The 
theoretical derivations that prove the validity of the proposed 
approach are given in the supplemental material. We then 
describe the methods used to generate and analyze the artificial 
data. Finally, the TEDDY study is described including the data 
cleaning steps and how it was analyzed.

Conditional classif ication algorithms

To make a standard classification algorithm conditional, it 
must account for the paired structure of the MCC study. We 
propose centering the within pair data by its mean to address 
the paired data structure. For example, consider a single protein 
measured on 4 individuals that are split into 2 case-control 
pairs. The protein abundance for the case and control in pair 1 
is 750 and 500, respectively, while that same protein has abun-
dance 500 and 250, respectively, for pair 2. Because the abun-
dance for the control in pair 1 is the same as the case in pair 2, 
standard classification algorithms would not identify this pro-
tein as significant. After pair correction, however, any classifi-
cation algorithm would identify this protein as significant 
because the pair-corrected abundance values are 125 and −125 
for the case and control, respectively, in both pairs.

Put mathematically, this is equivalent to the common statis-
tical practice of projecting a feature matrix into the null space 
generated by the matrix of pair indicators. Let n  denote the 
cohort size, which is composed of p  disjoint and equally sized 
strata, ie, pairs, of MCC subjects. Let m  denote the size of 
each strata and K  denote the number of features. Define the 
matrix of strata indicators Z I= p p m× ⊗1 , where I p p×  is a 
p p×  identity matrix, 1m  is an m-dimensional column vector 

of ones and ⊗  is the Kronecker product. Then, Z  is a n p×  
matrix where the ( , )i j th  element is a 1 if subject i  is in strata 
j  and is 0 otherwise. The projection matrix associated with Z  

is P Z Z Z Z IZ = = /1( ) ( )T T T−
× ⊗p p m m m1 1 , which is a n n×  

block diagonal matrix with m m×  blocks where every element 
is 1 /m . To project the n K×  feature matrix X  into the null 
space of Z , pre-multiply X  by I PZn n× − . Define the case-
control corrected feature matrix X*  as X I P XZ

* = ( )n n× − .
We define any classification algorithm trained using the 

pair adjusted features X*  as a conditional classification algo-
rithm. We refer to training the same classification algorithm on 
the raw features X  as the standard classification algorithm. In 
the “Results” section, we empirically compare the conditional 
and standard classification algorithms. In the context of 1:1 
case-control studies, both linear discriminant analysis (LDA) 
and the Gaussian NB classifier are guaranteed to return one 
case and one control per strata; no such guarantee exists for the 
standard versions of those classifiers. In addition, we show that 
CLR is a special case of the proposed set of paired classification 
algorithms. We do this by showing the CLR likelihood is unaf-
fected by the pair correction and that the maximizer of the 
CLR likelihood also maximizes the pair-corrected logistic 
regression (up to a scaling factor). See the supporting informa-
tion for details on these two theoretical results.

Figure 1 shows a simulated example that clearly demon-
strates the value of the conditional classification approach over 
CLR and standard machine learning for data with complicated 
structure. This example includes only two features to allow for 
easy visualization, but could be extended to large feature spaces. 
Consider a 1:1 case-control dataset with two features, xijk , 
where i  indicates the pair i n= 1, , , j ∈ {1, 2}  indicates the 
person within each pair and k∈ {1, 2}  indicates the feature 
number. Let X  represent the full feature matrix and Xi  be the 
2 2×  submatrix of X  that has all the information for case-
control strata i . Each submatrix Xi  is created by
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where ri1 [0.4,0.7] Unif , r ri i2 1= − , φ π1 [0, 2 ) Unif , and 
µk N (0,5)  for k = 1, 2 . The response label for each indi-
vidual in pair i , yij , is set to 0  (control) if φi1  is in the second, 
fourth, fifth, or seventh octant of the feature space shown in 
Figure 1B and 1  (case) otherwise. This design ensures that 
each pair is composed of one case and one control.

A set of 100 case-control pairs generated in this fashion is 
plotted in Figure 1A where the dot color indicates case-control 
status and the black lines connect individuals in the same pair. 
In its raw form, the data are noisy and difficult to classify. For 
this dataset, a CLR model with coefficients for xij1 , xij 2  and 
x xij ij1 2  returns a misclassification rate of 43%. A standard 
SVM with a radial basis function performs slightly worse with 
a misclassification rate of 47%. A large proportion of the errors 



Stanfill et al 3

committed by the SVM are due to the fact that both individu-
als in each strata are given the same label. However, after the 
pair correction is applied (Figure 1B), the differences between 
cases and controls are clearly visible through the dividing 
boundary between the two strata, which is also clearly nonlin-
ear. In fact, the conditional NB classifier and the conditional 
SVM with a linear kernel both perform worse than the CLR 
when applied to the corrected data (misclassification rates 
greater than 43% for this dataset). A conditional SVM with a 
radial basis function and a conditional random forest (CRF), 
however, achieve misclassification rates of 3% and 4%, respec-
tively. In addition, the fitted class labels generated by these 
methods consist of one case and one control per pair. To illus-
trate the results of the conditional SVM with a radial basis 
function, Figure 1C is a plot of the decision boundary learned 
by the conditional SVM with a radial basis function kernel 
when applied to this dataset.

In terms of variable importance, the P-values associated 
with regression coefficients of the CLR indicate that X1  is an 

important feature, P-value .002, while X 2  and the interaction 
of the two variables are not statistically significant, P-values of 
.59 and .07, respectively. Conversely, removing either variable 
from the conditional support vector machine (CSVM) or CRF 
dramatically decreases model performance, indicating both 
variables are important in differentiating the cases from the 
controls. This indicates that CLR is not able to identify impor-
tant features if their relationship with the outcome of interest 
is highly nonlinear whereas the CSVM and CRF models are.

Although this is a small toy example, it illustrates the poten-
tial gains in classifier accuracy and biomarker discovery by 
incorporating nonlinear classifiers into the domain. In the next 
section, we describe a much larger simulation study to empiri-
cally investigate the potential gains of conditional classifiers.

Simulation study

The simulation scenario implemented here is motivated by 
Balasubramanian et al.8 Each simulated dataset consists of 200 

Figure 1. A single dataset from the 2 variable simulation study is plotted in its raw form (A) and after controlling for the case-control design (B). A SVM 

with a radial-basis kernel function was trained to the pair corrected data, and the decision boundaries closely align with the true boundaries between 

classes (C). SVM indicates support vector machine.
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1:1 case-control pairs and 225 features, thus using the notation 
from the previous section, p = 200 , m = 2 , n = 400  and 
K = 225 . The first 25 features are significant biomarkers while 
the remaining 200 features are noise. The features for each pair 
were drawn from the bivariate normal distribution
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where δk  and ρk  are the mean shift and within pair correla-
tion, respectively, associated with feature k K= 1,..., . For this 
study we allowed the magnitude of the mean shift to take 3 
possible values | | {0.125,0.25,0.5}δk ∈  for k = 1, , 20  and 0  
otherwise. Within each dataset, the sign of each feature was 
allowed to be positive or negative with equal probability; there-
fore, biomarkers that are both over-expressed and under-
expressed in the case samples relative to their controls are 
considered. We considered 4 possible values of the biomarker 
within pair correlations: ρk ∈ {0,0.1,0.4,0.8}  for k <= 20  and 
0  otherwise. For each combination of δk  and ρk , 2000 data-
sets were created and 7 different classification algorithms were 
fit to each dataset: logistic regression (LR), NB, SVM with a 
radial basis function kernel (SVM-RBF), SVM with a linear 
kernel (SVM-Lin), RF, LDA, and random penalized condi-
tional logistic regression (RPCLR).8 Random penalized condi-
tional logistic regression is different from the other 6 methods 
in that only a conditional version exists and it cannot be used to 
predict an individual’s case/control label. Therefore, we will 
only compare it to the other 6 methods in terms of variable 
importance accuracy and not predictive accuracy. Furthermore, 
because we cannot assess its predictive accuracy in the context 
of the TEDDY data, it will not be applied to those data.

To assess the impact of the proposed preprocessing step, 
conditional and standard versions of each method, except 
RPCLR, were applied to every dataset. See Table 1 for specifics 
on the implementation of each method. In terms of the tuning 
parameters associated with each of the algorithms, cross-vali-
dation (CV) was used to choose the tuning parameters for the 

regularized CLR model. The width of the Gaussian kernel 
used by the SVM-RBF model was set to the median of the 
squared Euclidean distances between the input features.21 The 
number of trees included in the RF model was set to 500 and 
the number of variables to consider at each node was the largest 
integer less than the square root of the total number of features. 
For RPCLR, the number of variables included in each model 
was set to 7 and the number of bootstrap replicates was set to 
2000, as recommended by the authors.8

We used predictive accuracy to determine which method 
should be used to identify important biomarkers. In this con-
text, prediction is the labeling of individuals within a group 
that was not used to estimate the parameter values. The predic-
tive accuracy of each method was quantified by computing the 
proportion of individuals whose classes were predicted cor-
rectly in a 5-fold CV framework. The exact procedure is sum-
marized as follows:

1. Case-control pairs are randomly split into 5 disjoint 
groups numbered 1 through 5;

2. For each group g = 1, ,5 :
(a) Train each classification algorithm using all the data 

except group g;
(b) Predict the class labels for individuals in the testing 

set, group g .
3. Compare the true class labels to the predicted class 

labels in 2b to compute the proportion of individuals 
that were classified correctly.

The significance of each feature was quantified by a variable 
importance metric computed on each of the training sets and 
then averaged across the 5 folds. The metrics used depend on 
the method applied (last column of Table 1). These metrics 
were used to quantify the importance of each feature. Receiver 
operating characteristic (ROC) curves based on the true impor-
tance labels and the variable importance metrics were created to 
assess the accuracy of each method, which was summarized 
using the area under the curve (AUC). Therefore, each 

Table 1. The 6 classification methods used were implemented in the program R17; the specific functions (and packages) used are 
given below as well as the different variable importance methods used for each method.

METHOD R FUNCTION (PACKAGE) VARIABLE IMPORTANCE MEASURE

LDA lda (MASS18) Magnitude of the scalings of the discriminant functions

CLR clogitL1 (clogitL119) Standardized regression coefficient magnitude

Naive Bayes naiveBayes (e107120) KL distance between the conditional distribution of each feature given the target class

Both SVMs ksvm (kernlab21) 1D sensitivity analysis measure based on average absolute deviation from the median22

RF ranger (ranger23) Gini index

RPCLR GetVarImp (RPCLR24) Average change in out of bag AIC with and without each variable

Abbreviations: AIC, Akaike information criterion; CLR, conditional logistic regression; KL, Kullback Leibler; LDA, linear discriminant analysis; RF, 
random forests; RPCLR, random penalized conditional logistic regression; SVM, support vector machines.
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method’s variable selection accuracy is measured by this AUC 
value, which lies in the range [0,1]  with larger values being bet-
ter, and a value of 0.5 corresponds to an uniformative classifier.

TEDDY study

The TEDDY study25 is a large prospective study with the goal 
of discovering factors that initiate the autoimmune response 
and destruction of the pancreatic beta cells, leading to the 
development of type 1 diabetes (T1D). TEDDY was formu-
lated into a nested case-control study to enable biomarker 
studies, pairing on: clinical center, sex, and family history of 
T1D,26 which resulted in 418 case-control pairs for analysis. 
TEDDY is particularly interested in understanding the envi-
ronmental factors that trigger islet autoimmunity (IA), thus 
the metabolomic, lipidomic, and genetic single-nucleotide 
polymorphism (SNP) data at the time point of autoimmunity 
are evaluated.

After a 2log  transformation of the ’omics data, 5 preproc-
essing steps were applied to each data source that effectively 
determines a starting number of features: weighted coefficient 
of variation (CoV),27 percent missingness, near zero variance 
(NZV), univariate pairwise significance tests, and pairwise 
correlation. We remove features within a source if the weighted 
CoV is greater than 200%. We define weighted CoV as

n cov n cov
n n

case case control control

case control

* *+
+

where ncase  and ncontrol  are the number of nonmissing values for 
cases and control, respectively, within in a time point and

cov s
x

cov s
xcase

case

case
control

control

control
=|100 * | =|100 * |

We also remove any features that were more than 10% 
missing and use RF imputation28 to impute those that were 
less than 10% missing. Next, we remove features that had very 
few unique values relative to the number of samples or a much 
greater frequency of the most common value relative to the 
second most common value.29 Before significance tests, the 
lipid data are handled specially to remove redundant informa-
tion by eliminating different adducts for the same lipid. For 
the negatively ionized lipids, we simply removed all Cl– 
adducts because they tend to ionize poorly. The positively ion-
ized lipids depend on the lipid class in terms of which adduct 
to keep. For the non-LPC and non-PC classes, we retained 
the NH4 adduct because it was consistently greater in peak 
intensity. For the ceramides class, we used the H adduct as the 
other (H2O) adduct is a degradation of the lipid due to in 
source fragmentation. Finally, for the LPC and PC classes, we 
used the most common adduct (H) as the other (Na) was 
rarely noted. Next, for all data types but the SNPs, univariate 
paired t-tests were applied to each feature and all features with 
P-value less than .20 were retained.

Four criteria were used to filter the SNPs: missingness, minor 
allele frequency (MAF), the Hardy-Weinberg test for equilib-
rium (HWE), and CLR. Missingness, MAF, and HWE testing 
were performed using PLINK version 1.90.30 SNPs with miss-
ingness less than 1%, MAF less than 0.2, P-values from the 
HWE test less than .001, and conditional logistic regression 
P-values less than .006 were retained for the analysis. The .006 
P-value threshold was chosen to parallel the 0.2 threshold used 
for the other data sources. That is, because there are roughly 33 
times more SNPs than other data types, the SNP threshold was 
set to 0.2/33 ≈ 0.006. As a final step of the data cleaning pro-
cedure, all biomolecules that have pairwise correlations greater 
than 0.9 were removed one-by-one to minimize redundancy in 
the final dataset. These steps ensure that each feature does not 
have an excessive relative variability, does not have an excessive 
amount of missing data, and contains enough variability and 
significance to potentially distinguish cases from controls.

The same 5-fold CV approach used in the simulation study 
was used for the TEDDY data to assess each method’s predic-
tive accuracy. However, instead of implementing 5-fold CV 
once per dataset, the CV method was repeated 200 times per 
data source to account for the uncertainty of the CV procedure 
itself. Feature importance was assessed using a single analysis 
of the full dataset with each method according to the feature 
importance metrics reported in Table 1. As mentioned previ-
ously, RPCLR will not be applied to these data because we 
cannot assess its predictive accuracy.

Results
Simulation study

Scatter plots of the 2000 classification accuracy values for each 
classification method are shown in Figure 2 for | |= 0.125δ  
and all values of the within pair correlation ρ . Random penal-
ized conditional logistic regression cannot be used as a classifi-
cation algorithm so it is not included. The accuracy values for 
the conditional and standard versions of each method are plot-
ted on the x- and y-axes, respectively. The red points represent 
datasets for which the standard version of that method was 
more accurate than its conditional counterpart while the con-
verse is true for the black points. Within each method, the 
cloud of points are closest to the identity line when the within 
correlation is zero or small (top two rows). This indicates the 
conditional methods behave most similarly to their standard 
counterparts for small values of ρ . As the within pair correla-
tion grows (move down each column), the cloud of points 
move to the right indicating the conditional methods get more 
accurate when ρ  increases. The cloud of points do not move 
up; however, indicating the performance of the standard meth-
ods do not change as a function of ρ .

These conclusions are supported by Table 2, which gives 
the percent of datasets in which the standard method was 
preferred to the conditional method for each algorithm and 
combinations of δ  and ρ . The number of times the stand-
ard method is preferred decreases differently for each of the 
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algorithms. This implies the sensitivity of each algorithm to 
the paired structure varies depending upon how the algo-
rithm performs classification. In particular, the linear dis-
criminative algorithms (LDA, LR, and SVM-Lin) require a 
stronger within pair correlation for the conditional method to 
clearly outperform its standard counterpart. The nonlinear 
discriminative algorithms (RF and SVM-RBF) separate 
themselves more quickly and by a larger margin as the corre-
lation increases. Finally, the linear generative algorithm (NB) 
separates itself from the onset and creates the widest gap for 
large values of ρ .

Also apparent from Table 2 is the relationship between | |δ  
and the conditional method accuracies. In particular, the fact 
that the standard method is preferred so infrequently with 
large | |δ  implies the importance of accounting for the paired 
structure is more important when the within pair difference is 
larger, as expected.

An analogous representation of the variable selection accu-
racy is given in Figure 3. Similar to the classification accuracy 
results, the conditional and standard methods cluster most 
closely around the identity line for small values of ρ  and then 
drift to the right, which indicates the conditional method 
improves in accuracy more quickly than the standard method 
as a function of ρ . Unlike the accuracy results, however,  
the cloud of points also moves upward as a function of ρ , 

Figure 2. Scatter plots of the classification accuracies for all conditional (x-axis) and standard (y-axis) methods and values of ρ  when | |= 0.125δ . The 

color of each point indicates which version, standard (red) or conditional (black), of each method is more accurate for each simulated dataset. LDA indicates 

linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RBF, radial basis function; RF, random forests; SVM, support vector machine.

Table 2. Percentage of simulated datasets in which the 
standard version of the classification algorithm outperformed 
the conditional version in terms of classification accuracy by 
δ  and ρ  combination.

| |δ ρ LDA LR SVM-
LIN.

RF SVM-
RBF

NB

0.125 0 8.8 53.2 14.6 3.4 2.5 0.1

 0.1 6.3 48.5 12.7 2.5 1.9 0.1

 0.4 2.8 29.6 7.4 0.6 0.5 0

 0.8 0.1 0.8 0.2 0 0 0

0.25 0 6.5 12.9 12.4 0.5 0.5 0

 0.1 3.4 7.4 8.2 0.1 0.3 0

 0.4 0.1 0.2 1.1 0 0 0

 0.8 0 0 0 0 0 0

0.5 0 2.2 0 3.9 0 0.1 0

 0.1 0.9 0 1.6 0 0 0

 0.4 0 0 0 0 0 0

 0.8 0 0 0 0 0 0

Abbreviations: LDA, linear discriminant analysis; LR, logistic 
regression; NB, Naive Bayes; RBF, radial basis function; RF, random 
forests; SVM, support vector machine.
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implying the standard method also becomes more accurate at 
identifying the important biomarkers as ρ  increases. Therefore, 
the standard methods are better able to identify which features 
should be used to classify the data as ρ  increases, but they are 
no better at performing the actual classification (Figure 2). 
Finally, the algorithms appear to improve in accuracy at approx-
imately the same rate as a function of ρ . That is, there is no 
clear distinction between the linear and nonlinear discrimina-
tive or generative algorithms with respect to accurate variable 
selection.

Finally, we compare all of the conditional methods by their 
average variable selection accuracies in Table 3. As expected, 
the accuracy of all methods improves when δ  and/or ρ  
increases. One existing method, RPCLR, was the most accu-
rate method in one instance ( )δ ρ= 0.125 = 0.1and  and was 
in the top 3 in 9 out of 12 scenarios. The proposed conditional 
Naive Bayes (CNB) and CRF approaches are most frequently 
in the top 3, followed by the CLDA and CSVM-RBF meth-
ods. We can therefore conclude that the proposed methods are 
comparable or outperform the existing variable selection meth-
ods CLR and RPCLR.

Case study—TEDDY study data
The sample sizes and descriptive feature statistics for each data 
type are reported in Table 4. The within pair differences and 
correlation was computed by taking the average absolute dif-
ference between features and the average correlation between 
feature vectors within each pair, respectively. Because the 
standard classification algorithms do no account for the pair-
ing, we estimated the same quantities for random pairs in the 
dataset to determine how influential the pairing may be on 
algorithm performance. To do this, 10 000 random pairs were 
chosen, the same quantities were computed and then averaged 
across the chosen pairs. Assuming that the mechanism that 
differentiates cases and controls in the TEDDY data is similar 
to the simulation scenario explored in the previous section, 
then the increased correlation and difference between matched 
pairs relative to random pairs leads us to believe the conditional 
methods will outperform their standard counterpart. However, 
the large correlation in the data as a whole could make the dif-
ference between the methods small.

Box plots of the 200 repeated accuracy values are shown in 
Figure 4 for each method and biomolecule. Overall the 

Figure 3. Scatter plots of the variable selection accuracies for all conditional (x-axis) and standard (y-axis) methods and values of ρ  when 

| |= 0.125δ . The color of each point indicates which version, standard (red) or conditional (black), of each algorithm is more accurate for each simulated 

dataset. LDA indicates linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RBF, radial basis function; RF, random forests; SVM, 

support vector machine.
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conditional method of each algorithm (black boxes) is more 
accurate than the standard method (gray boxes). That is, the 
predictive accuracy of each algorithm is improved when the 
paired nature of the study is taken into account compared to 
when it is ignored. In 5 of the 24 comparisons performed, the 
standard method was more accurate than the conditional 
method: LDA for positive lipids (accuracy difference of 0.0015) 
and SNPs (0.035), and SVM with a linear kernel for positive 
lipids (0.029) and negative lipids (0.01). The large correlation 
between random pairs in both types of lipids could explain the 
comparable accuracy.

To make recommendations about when each algorithm 
should be employed in practice, the conditional methods were 
ranked from most (ranked 1) to least (ranked 6) accurate within 
each CV replicate. Those ranks were averaged across the 200 

replicates and plotted in Figure 5 for the different biomole-
cules. Paired t-tests comparing the accuracy measures were 
used within each biomolecule to determine which algorithms 
performed significantly better than the others in terms of pre-
dictive accuracy.

From Figure 5, it is clear that the CSVM-RBF classifier is a 
reliable method to use regardless of data type. Similar to what 
was concluded from Figure 4, CLR and CNB are conversely 
related. That is, CLR is the best method for one type of lipid 
data (negative), a distant second for the SNPs, and is ranked at 
least fourth for the remaining two methods. Conversely, CNB 
is the best method for the other types of lipids (positive), sec-
ond for metabolites, and at least fourth for the remaining data 
types. In general, it appears that CLDA and CSVM-Lin are 
the least favorable for this type of analysis.

To determine which biomolecules were most predictive of 
the case/control status of each individual, the features were 
ranked within each source using a variable importance metric 
appropriate for each classification algorithm (Table 1). A scree 
plot of the variable importance measures was used to separate 
the influential from the noninfluential features according to 
each model. An abridged list of the influential features chosen 
by the CSVM-RBF and CLR methods along with their ranks, 
direction of association (+/-), and published literature con-
necting each biomolecule to IA are given in Table 5.

Discussion
The conditional NB classifier was the most accurate method in 
the simulation study and was one of the top two methods for 2 
of the 4 data types (Figure 5). We hypothesize this is due to the 
fact that NB is a generative rather than discriminative algo-
rithm. As described in Ng et al,31 generative algorithms have 
larger asymptotic classification error limits than discriminative 
classifiers, but have the potential to reach that error limit sooner 
than their discriminative counterparts. Thus, the consistent 
performance of the conditional NB algorithm could be due to 
the rather limited number of individuals in the TEDDY study 
relative to the complicated biology associated with IA as being 
learned by noisy ’omics feature sets. Similarly, even though the 
difference between cases and controls in the simulation study 
was rather simple, the small number of important features rela-
tive to unimportant ones made the signal difficult to detect.

Further evidence to support this hypothesis is that the 
CSVM-RBF was the second most accurate method in the 
simulation study and one of the top two classifiers for all data 
types. Because the SVM-RBF is a nonlinear classifier, it is able 
to model the complicated ’omics to disease relationship much 
better than the discriminative methods that rely on linear sepa-
rators, ie, CLR, CLDA, and CSVM-Lin. This is particularly 
true for the metabolites in which the difference between the 
conditional and standard versions of each linear discriminative 
method is small even though they exhibit the largest between 
strata discrepancy (Table 4), which is a counterintuitive result 
given the strong pairing information.

Table 3. Average variable selection accuracy for each method.

METHOD | |δ ρ = 0 ρ = 0.1 ρ = 0.4 ρ = 0.8

CLR 0.6573 0.668 0.726 0.883

CLDA 0.653 0.668 0.7423 0.9442

CNB 0.6621 0.6752 0.7432 0.939

CRF 0.125 0.6602 0.6733 0.741 0.934

CSVM-Lin. 0.652 0.667 0.741 0.9442

CSVM-RBF 0.654 0.669 0.7441 0.9521

RPCLR 0.656 0.6811 0.738 0.929

CLR 0.881 0.898 0.937 0.977

CLDA 0.869 0.891 0.945 0.993

CNB 0.9041 0.9251 0.9711 1.0001

CRF 0.25 0.9003 0.9202 0.9682 1.0001

CSVM-Lin. 0.866 0.888 0.942 0.992

CSVM-RBF 0.875 0.898 0.951 0.998

RPCLR 0.9012 0.9113 0.9633 1.0001

CLR 0.980 0.982 0.987 0.993

CLDA 0.959 0.965 0.980 0.996

CNB 0.9991 1.0001 1.0001 1.0001

CRF 0.5 0.9991 1.0001 1.0001 1.0001

CSVM-Lin. 0.956 0.962 0.978 0.996

CSVM-RBF 0.965 0.969 0.981 0.999

RPCLR 0.9991 0.9993 1.0001 1.0001

Abbreviations: CLDA, conditional linear discriminant analysis; CLR, 
conditional logistic regression; CNB, conditional Naive Bayes; 
CRF, conditional random forests; CSVM, conditional support vector 
machine; RBF, radial basis function; RPCLR, random penalized 
conditional logistic regression.
The top 3 methods for each ρ  and | |δ  combination are denoted 
with superscripts 1, 2, and 3.
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Table 4. Feature set sizes, summary statistics, within mean absolute pair differences, within correlations (cor.), and random pair 
differences correlations for each data type based on the 504 samples.

STATISTIC METABOLOMICS POSITIVE LIPIDOMICS NEGATIVE LIPIDOMICS SNPS

# Features (K) 170 277 252 236

Minimum –0.079 3.585 4.807 0.000

Maximum 23.149 23.564 21.428 2.000

Mean 10.416 14.766 13.097 1.296

Median 9.899 14.432 12.784 1.000

Standard deviation 3.142 2.854 2.211 0.685

Within pair difference 1.880 1.099 1.043 1.519

Random pair difference 1.497 0.549 0.430 0.687

Within pair correlation 0.938 0.984 0.984 –

Random pair correlation 0.749 0.968 0.967 –

Abbreviation: SNP, single-nucleotide polymorphism.
The random pair distance and correlation was computed by randomly sampling 10 000 pairs of random individuals from the dataset and computing 
their pairwise correlation and mean absolute distance. Within pair correlations for SNPs are not reported because of their discrete nature.

Figure 4. Box plots of the 200 repeated 5-fold cross-validation accuracies for the 4 different data types and 6 different classification algorithms. LDA 

indicates linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RBF, radial basis function; RF, random forests; SVM, support vector 

machine.
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One of the most important components of paired classifica-
tion methods is the ability to select biomarkers that can lead to 
a better understanding of the diseases being studied. Unlike 

standard machine learning, these methods are not designed to 
predict the class of a single case or control as the model is 
dependent on the pairing. In terms of the variables selected by 
the different methods (Table 5), CLR and CSVM-RBF 
selected the same 2 metabolites as the 2 most important fea-
tures: α-tocopherol and apidic acid. α-tocopherol is a vitamer 
of vitamin E whose exact role in the progression of IA is still 
being studied,40 but has been shown to protect against its pro-
gression.38,39 Our results similarly indicate that α-tocopherol is 
negatively associated with IA progression. The role of adipic 
acid in type 2 diabetes has previously been studied,41,42 but this 
is the first time it has been shown to play an active role in IA. 
Our results agree and suggest that large amounts of adipic acid 
are associated with a higher incidence of IA. Both methods 
found these 2 metabolites to be highly important and agreed 
on the direction of association is testament to the proposed 
methods validity with real data.

Both methods indicate that hydroxybutanoic acid is posi-
tively correlated with IA, which agrees with previously pub-
lished studies that indicate it is an early marker for glucose 
intolerance.45,46 Creatinine, a waste-product created by the 
breakdown of muscle, was ranked highly by both methods 

Figure 5. The average rank of each conditional method for each data 

type where the algorithm with the lowest rank was the most accurate 

within each repeated cross-validation (CV) run. CLDA indicates 

conditional linear discriminant analysis; CLR, conditional logistic 

regression; CNB, conditional Naive Bayes; CRF, conditional random 

forests; CSVM, conditional support vector machine; RBF, radial basis 

function; SNP, single-nucleotide polymorphism.

Table 5. An abridged list of the influential metabolites and lipids identified by the CSVM-RBF and CLR methods along with notes 
and references for biomolecules that have been previously linked to T1D and/or IA.

SOURCE BIOMOLECULE CSVM-RBF RANK CLR RANK REFERENCES

Lipids Acylcarnitine — 3(+) 32

 Glccer — 3(−) 33

 Ceramide 13(−) — 34

 pc_36_5_4_29_824_54 20(−) 5(−) 35

 fa_16_1_2_71_253_22 6(+) 6(+) 36,37

Metabolites α-Tocopherol 1(−) 2(−) 38–40

 Adipic acid 2(+) 1(+) 41,42

 Glucose 3(−) 28(−)  

 Creatinine 7(+) 3(+) 43

 Heptadecanoic acid — 4(+) 44

 Hydroxybutanoic acid 8(+) 11(+) 45,46

 Leucine 10(−) — 47

 Isothreonic acid 20(−) — 48

 Glycerol galactoside — 23(−) 49–51

SNP (Gene) rs7158663 (Meg3) 10(−) 34(−) 52

 rs17388568 (ADAD1) — 19(−) 53,54

 rs4580644 (CD38) — 20(+) 55,56

Abbreviations: CLR, conditional logistic regression; CSVM, conditional support vector machine; IA, islet autoimmunity; RBF, radial basis function; 
SNP, single-nucleotide polymorphism; T1D, type 1 diabetes.
The direction of the association is indicated by the “+” symbol for factors that are larger in the case group relative to controls and “–” when the 
opposite is true.
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(CSVM-RBF 7; CLR 3) and is a commonly used marker for 
kidney function in that higher levels of creatinine in the blood 
or urine indicate decreased kidney function. Islet autoimmun-
ity and hypoglycemia are closely linked with kidney function; 
therefore, increased creatinine levels would be expected among 
individuals with IA relative to healthy control due to compro-
mised kidney function. As such, creatinine could be positively 
correlated with IA like our analysis suggests.

In terms of lipids, there is less agreement between the 2 
methods, but several results consistent with the literature have 
been identified. Conditional logistic regression found acylcar-
nitine, identified among the positively ionized lipids, to be 
highly important to model performance and that it is positively 
correlated with IA progression. Previous studies also found 
that C3 and C4 acylcarnitines were significantly more abun-
dant in patients with IA and T2D relative to their controls.32 A 
highly significant biomarker identified among the positively 
ionized lipids was hexosylceramide (annotated as glccer), which 
is negatively associated with IA progression according to both 
our results and a previous study that found the activation of 
natural killer T cells by a variant of alpha-galactosylceramide 
prevents the onset and recurrence of autoimmune IA. It is also 
possible that the hexosylceramide is a glucosylceramide because 
both molecules are isobaric and indistinguishable by mass 
spectrometry. Inhibition of glucosylceramide synthesis has 
been associated with an improvement of insulin tolerance.57 
The CSVM-RBF found ceramide to be negatively associated 
with IA progression, which is supported by the literature.34 In 
general, high levels of some fatty acids, such as FA (16:1), have 
been found to be risk factors for IA,36,37 a result supported by 
both methods. Finally, some ω-3 polyunsaturated fatty acids, 
such as pc_36_5_4_29_824_54, have been found to be nega-
tively associated with IA, which is again confirmed by our 
results.

The SNPs interrogated in this report are from the 
ImmunoChip, a custom genotyping array based on robust 
genome-wide association study (GWAS) results obtained from 
12 autoimmune diseases. The SNPs listed in Table 5 consist-
ently point to the insulin component of T1D. The CSVM-
RBF method highly ranked rs7158663, a SNP located on the 
maternal expressed gene 3 (Meg3) on chromosome 14q32.2, 
while CLR ranked it rather low. You et al52 showed that the 
downregulation of Meg3 is associated with impaired glucose 
tolerance and decreased insulin secretion in mice. Our results 
are validated in the TEDDY cohort, where decreased Meg3 
expression is associated with development of islet autoimmun-
ity or T1D. Conditional logistic regression highly ranked 
rs17388568 and rs4580644, SNPs that are located in the aden-
osine deaminase domain containing 1 (ADAD1) gene on 
chromosome 4q27 and in introns of the cluster of differentia-
tion 38 (CD38) gene on chromosome 4p15.32. The rs17388568 
SNP has been identified as a risk factor for T1D in the 
Wellcome Trust Case Control Consortium53 as well as in a 

follow-up study.54 The rs4580644 SNP is predicted to influ-
ence regulation based upon effects on enhancer and histone 
marks and DNAase hypersensitivity. CD38 plays a key role in 
insulin secretion and has been shown to differentiate individu-
als with and without T1D; in particular, anti-CD38 autoanti-
bodies have been suggested as new diagnostic biomarkers in 
autoimmunity in diabetes.55,56

On the whole, we have demonstrated that a wide range of 
classification algorithms can be used to correctly analyze and 
interrogate features of nested case-control studies provided the 
study design is accounted for with a prior data transformation. 
Through a simulation study and analysis of the TEDDY data, 
we have demonstrated that CLR is limited in the types of rela-
tionships it can model and can typically be outperformed by 
more sophisticated classification algorithms like SVM and NB. 
In particular, CLR and CSVM-RBF agreed on several poten-
tial biomarkers for IA, but the CSVM-RBF identified several 
other potential markers that have not been previously identi-
fied. We believe this demonstrates the potential to identify 
more meaningful biomarkers through the use of more analyti-
cal methods than just CLR.
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