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It is important that antibiotics prescriptions are based on antimicrobial susceptibility data to ensure 
effective treatment outcomes. The increasing availability of next-generation sequencing, bacterial 
whole genome sequencing (WGS) can facilitate a more reliable and faster alternative to traditional 
phenotyping for the detection and surveillance of AMR. This work proposes a machine learning 
approach that can predict the minimum inhibitory concentration (MIC) for a given antibiotic, 
here ciprofloxacin, on the basis of both genome-wide mutation profiles and profiles of acquired 
antimicrobial resistance genes. We analysed 704 Escherichia coli genomes combined with their 
respective MIC measurements for ciprofloxacin originating from different countries. The four most 
important predictors found by the model, mutations in gyrA residues Ser83 and Asp87, a mutation in 
parC residue Ser80 and presence of the qnrS1 gene, have been experimentally validated before. Using 
only these four predictors in a linear regression model, 65% and 93% of the test samples’ MIC were 
correctly predicted within a two- and a four-fold dilution range, respectively. The presented work does 
not treat machine learning as a black box model concept, but also identifies the genomic features 
that determine susceptibility. The recent progress in WGS technology in combination with machine 
learning analysis approaches indicates that in the near future WGS of bacteria might become cheaper 
and faster than a MIC measurement.

Antibiotics are an essential resource in the control of infectious diseases; they have been a major contributor to 
the decline of infection-associated mortality and morbidity in the twentieth century. However, the recent rise of 
antimicrobial resistance (AMR) threatens this situation1. Bacterial AMR is associated with a higher likelihood 
of therapeutic failure in case of infections. Accurate and fast prediction of AMR in bacteria is needed to select 
the optimal therapy.

With the increasing availability of next-generation sequencing, bacterial whole genome sequencing (WGS) is 
becoming a feasible alternative to traditional phenotyping for the detection and surveillance of AMR2–4. However, 
data analysis remains the weak point in this approach; fast and scalable methods are required to transform the 
ever-growing amount of genomic data into actionable clinical or epidemiological information5. Machine learning 
is a promising approach for this kind of data analysis.
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AMR can be predicted in numerous ways. In addition to classic and highly standardized phenotypic testing 
of resistance, several methods of resistance prediction have been developed. Most novel methods use a genetic 
or genomic approach, although transcriptomic approaches have been investigated as well6–8. An important factor 
in the choice of the resistance prediction method is the microorganism under study. For example, the CRyPTIC 
consortium managed to predict resistance to four first-line drugs in Mycobacterium tuberculosis, using only 
known mutations extracted from WGS9. However, M. tuberculosis displays little-to-no horizontal gene trans-
fer and low genomic evolution rate10, which makes it feasible to predict resistance only on the basis of known 
mutations11. For other bacteria, more advanced analysis methods such as machine learning need to be applied 
to allow for accurate prediction.

Machine learning has been applied to predict resistance from WGS data in several settings. To date, these 
methods have been restricted mostly to assign bacteria to binary categories, i.e. susceptible or non-suscepti-
ble8,12–18. Clinical breakpoints used to define susceptible and non-susceptible categories can change over time 
based on various protocols. Such binary categories do not allow following trends in subtle changes in susceptibil-
ity. Minimum inhibitory concentration (MIC) measures offer an adequate resolution to follow if susceptibility is 
changing in a population, which is useful for epidemiological purposes. Therefore, a resistance prediction method 
would preferably output a continuous estimate of resistance similar to MIC, instead of binary classification (S/R), 
as a number of studies already proposed19–22.

Additional issues should be considered when developing a reliable and useful prediction model. Genotypes are 
often geographically clustered23. This implies that if a prediction model is trained on data from one country, this 
model might not be generalizable to data from another country. Data from multiple countries are thus needed. A 
combinations of chromosomal mutations and acquired resistance genes may influence antimicrobial resistance 
together, it might be not enough to focus only on the point mutations or the acquired genes. Therefore, different 
data types need to be combined to obtain a biologically relevant set of input data. Lastly, while machine learning 
is able to analyse highly complex patterns of features, the model would preferably output generally understand-
able data. Among others k-mer profiles have been used to predict resistance20,21.

In this study, we focus on predicting a quantitative measure of ciprofloxacin resistance (MIC) for a geographi-
cally diverse population of E. coli using machine learning. We chose to study ciprofloxacin resistance in E. coli 
because of three reasons: 

1.	 Ciprofloxacin resistance in E. coli has been studied intensively
2.	 Ciprofloxacin resistance in E. coli can be caused by a range of different chromosomal and plasmid-mediated 

mechanisms24

3.	 Ciprofloxacin is commonly used in the treatment of E. coli infections across the globe.

In our selection of machine learning models, an important criterion was that high-scoring features could be 
extracted from the model. This would allow us to explore the reasoning behind each prediction and thus to inter-
pret and understand the model. Also, if the trained model relies only on a few genomic features, when genetating 
predictions for new samples, it is enough to determine those few genomic attributes, WGS is not necessary.

Results
Our dataset consists of a phylogenetically diverse collection of E. coli strains, see Fig. 1. Strains in the test and 
train group are present throughout the whole phylogeny, although the groups are present predominantly in 
different parts of the phylogeny.

We trained a random forest model using genome-wide mutation profiles alongside the ResFinder-based 
profiles of acquired resistance genes. We ranked the predictors proposed by the model itself, see Supplementary 
Table S1. The model performed with high accuracy on the training set leave-one-country-out cross-validation 
using four predictors, see Supplementary Fig. S1. The addition of more features did not improve significantly the 
cross-validation results, therefore we kept only the first four, allowing for a simple and understandable model. 
We also trained a linear regression model on this restricted dataset.

Using these four predictors with the linear regression model, 264 out of the 266 test data samples were cor-
rectly classified at susceptible/non-susceptible level, 65% and 93% of the corresponding MIC values were correctly 
predicted within a two- and a four-fold dilution, see Table 1. All the four genetic features are experimentally 
proven to play an important role in ciprofloxacin resistance24.

These 4 predictors are the following:

•	 gyrA mutation at amino acid #87
•	 gyrA mutation at amino acid #83
•	 parC mutation at amino acid #80
•	 qnrS1 gene

All of the predictors above are binary (presence/absence) therefore there are 24 = 16 different possible predic-
tion for any sample based on these features, see Supplementary Table S2. A linear regression model fitted on 
the log2 values of the MIC measurements could achieve similar performance as a more complex random forest 
model, see Fig. 2. Linear regression is preferred due to its simplistic nature. Having a random forest regressor 
with hundreds of decision trees and thousands of genomic features as predictors it is difficult to understand why 
the model made that particular prediction, leaving doubts of its clinical usefulness.
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There are several previous works on predicting ciprofloxacin resistance for E. coli at susceptible/non-suscep-
tible level. This makes a limited comparision possible between the presented method and the methods published 
in the literature. Limitation comes from the fact that the susceptible/non-susceptible outcome from the meas-
urements are based on breakpoints which are not always reported. Also, some papers use disk diffusion test. 
Keeping these limitations in mind it is still worthy to compare our method to others. Pesesky et al.13 reported 
AUC of 0.9652–0.9786, while Hyun et al.18 reported 0.98 AUC. Moradigaravand et al.12 reported 0.97 precision 
and 0.81 recall while our linear model achieved 1.0 AUC, see Table 1 and 1.0 precision with 0.987 recall, see 
Supplementary Fig. S2.
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Figure 1.   Midpoint-rooted phylogenetic tree of the 704 E. coli samples that had ciprofloxacin MIC 
measurement. It is clearly visible that the test data is clustered separately from the training data suggesting the 
generalization power of our model. Nodes with lower than 80% bootstrap support are collapsed.

Table 1.   Number of features, R 2 score, Pearson correlation (R), Major Error (ME), Very Major Error (VME), 
area under the receiver operating curve (AUC), Accuracy within a two/four-fold dilution (ACC-2, ACC-4) and 
Mean Absolute Fold Error (MAFE) on the unseen test data. For the AUC, ME, VME the data was binarized 
using 1 mg/L threshold. The number of features were selected according to the performance using leave-one-
country-out validation on the training data, see Supplementary Fig. S1. aNumber of samples. bCalculated on 
the log2 values. cThe lower the better.

Model N_feat R2 b Rb MEa,c VMEa,c AUC​ ACC-2 ACC-4 MAFEc

Random forest 4 0.932 0.966 1 0 1.000 0.658 0.944 0.883

Random forest 15 0.902 0.951 5 0 0.996 0.680 0.914 0.915

Linear regression 4 0.918 0.959 0 2 1.000 0.650 0.929 0.954
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Discussion
Here, we present an accurate method for predicting ciprofloxacin resistance for E. coli. With no built-in prior 
knowledge on which chromosomal mutations and which acquired resistance genes might be important, using a 
data-driven approach, we managed to create a machine learning model that was not only accurately predicting 
the susceptible/non-susceptible labels but also accurately predicting at MIC level. Additionally, the highlighted 
features of our approach could be narrowed down to four biologically understandable features, making the 
method simpler and therefore applicable to clinical microbiology practice.

It was previously shown that accurate ciprofloxacin susceptible/non-susceptible binary prediction is possible 
for E. coli3,12,17. For some other bacteria-antibiotic combinations even MIC level predictions were performed19–22. 
This study goes beyond by not only predicting MIC level ciprofloxacin resistance for E. coli, but also highlighting 
the underlying reasoning behind the predictions. Furthermore, this study is one of very few that includes the 
presence or absence of genes located on mobile genetic elements (MGEs), in combination with chromosomal 
point mutations, in the machine learning algorithm. This is a crucial step since particularly in Gram-negative 
microorganisms such as E. coli, AMR is often encoded by genomic determinants located on MGE, or a combi-
nation of chromosomal and MGE encoded determinants, as is demonstrated in our study for ciprofloxacin. In 
addition, this study used data from different countries and regions thus ensuring potential variation in determi-
nants that may contribute to ciprofloxacin resistance are represented in the data set.

Notably, a linear regression model based on only the four most important features of the random forest model 
performed nearly as well as the full model. These features comprise two gyrA mutations, one parC mutation and 
the presence of the qnrS1 gene. All features have been associated with ciprofloxacin resistance before24. In addi-
tion, the presence of a single determinant versus combinations of multiple of the four determinants predicted 
MIC ranges that were comparable to those observed experimentally and in clinical isolates24. For example, the 
single presence of the qnrS1 gene predicted a relatively low MIC but the combination of the qnrS1 gene with a 
single mutation in gyrA increased the predicted MIC substantially (Supplementary Table S2). Our results indicate 
that for prediction of ciprofloxacin susceptibility on the basis of whole-genome sequencing in E. coli, the analysis 
could be limited to only these four determinants.

Figure 2.   Prediction on the unseen test set was generated via random forest and linear regression model using 
the best four predictors. It can be clearly seen that the two models do not differ much in terms of predicted 
values.
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It is worthy to note that the model was trained on all possible mutations. Also all acquired resistance genes 
were considered that appreared in the ResFinder gene database. Neither SNPs, nor resistance genes were pre-
selected for ciprofloxacin during data preparation. Therefore the model could potentially discover novel, currently 
unknown mutation-based resistance encoding mechanisms which may be located in genes that are or are not yet 
known to contribute to resistance. For E. coli the ciprofloxacin resistance determinants that were predicted in 
our machine learning approach have been experimentally verified, but for other antibiotics, our approach could 
detect novel genomic variants associated with resistance.

Our study also has some limitations, which mostly pertain to the dataset. For strains with measured MICs in 
the range of 8–64 mg/L, our model performs worse than for strains with lower MICs. This is most likely due to the 
fact that the majority of resistant strains in our training data have an MIC of 32 mg/L, with only very few other 
resistant MICs. This hampers accurate prediction of MIC for more resistant E. coli. Additionally, our dataset is 
not yet diverse and complete enough to be applied on a wide scale. This is a common problem for many studies 
aiming to predict AMR from WGS data. Solving this would require continuous updating of databases and an 
adequate database structure, the latter we have addressed previously25.

In conclusion, we report a machine learning approach for a quantitative prediction of antibiotic resistance, 
which we applied for prediction of ciprofloxacin resistance in E. coli. In combination with continuous data base 
improvements, our approach could allow machine learning methods to enter routine clinical diagnostic and 
epidemiological practices to continuously improve predictions.

Methods
Data summary.  In this study, 704 E. coli genomes combined with MIC measurement for ciprofloxacin were 
analysed25. Paired-end sequencing was performed on all isolates and the results were stored in FASTQ for-
mat. The isolates originated from five countries, Denmark, Italy, USA, UK, and Vietnam. The MIC distribution 
for these isolates is depicted in Table 2. Out of 704, 266 E. coli genomes had no country metadata available 
and were used as an independent test set. All data were deposited in the AMR Data Hub25 which consists of 
raw sequencing data, ciprofloxacin minimum inhibitory concentrations, and additional metadata such as the 
origin of the samples. All data is publicly available from the SRA EBI database with the following accession 
codes: PRJEB21131, PRJNA266657, PRJNA292901, PRJNA292904, PRJNA292902, PRJDB7087, PRJEB21880, 
PRJEB21997, PRJEB14086 and PRJEB16326.

Download and analysis scripts are available at https​://githu​b.com/patba​a/AMR_cipro​floxa​cin. iTOL phylo-
genetic tree is available at https​://itol.embl.de/tree/14511​72261​14913​91569​48596​9.

Table 2.   The collected and used data in the analysis grouped by country and MIC values. aCountry metadata 
is not available.

MIC (mg/L) Denmark Italy NAa USA UK Vietnam Total

0.010 0 0 9 0 0 2 11

0.012 0 0 0 0 0 1 1

0.015 119 13 42 49 92 0 315

0.016 0 0 0 0 0 2 2

0.023 0 0 0 0 0 1 1

0.030 12 0 6 3 4 0 25

0.060 1 0 7 1 0 0 9

0.120 0 0 11 2 0 0 13

0.125 0 0 0 0 0 6 6

0.190 0 0 0 0 0 10 10

0.250 6 0 22 11 3 16 58

0.380 0 0 0 0 0 5 5

0.500 0 0 6 2 0 11 19

0.750 0 0 0 0 0 1 1

1.000 0 0 5 2 0 5 12

2.000 0 0 3 0 0 1 4

4.000 0 0 2 6 0 1 9

8.000 0 0 30 0 1 2 33

12.00 0 0 0 0 0 1 1

16.00 0 0 23 0 0 0 23

24.00 0 0 0 0 0 1 1

32.00 0 0 72 0 0 45 117

64.00 0 0 28 0 0 0 28

Total 138 13 266 76 100 111 704

https://github.com/patbaa/AMR_ciprofloxacin
https://itol.embl.de/tree/14511722611491391569485969
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All used files are listed at https​://githu​b.com/patba​a/AMR_cipro​floxa​cin/blob/maste​r/meta.tsv with URLs 
provided. Isolates with accession codes and MIC measurements are also available at https​://githu​b.com/patba​a/
AMR_cipro​floxa​cin/blob/maste​r/suppl​ement​ary_meta_table​.csv.

Data preprocessing.  Raw reads were mapped on the ATCC 25922 reference genome (https​://www.ncbi.
nlm.nih.gov/assem​bly/GCF_00074​3255.1) using BWA-MEM v0.7.1726 with default settings. Pileup files were 
generated with bcftools v1.927 with “–min-MQ 50” settings. Single-nucleotide polymorphisms (SNPs) and inser-
tions-deletions (INDELs) were called using bcftools v1.9 with “–ploidity 1-m” flags. Further filtering was applied 
via bcftools v1.9 “ %QUAL >= 50 & DP >= 20 ” flags. Bcftools output data was expressed as either a SNP (value: 
1), an INDEL (value: 5) or no mutation (value: 0) per position in the reference genome. Exact numbers are irrel-
evant, as tree-based methods are not sensitive to the scale. The intention was to differentiate between reference 
alleles, SNPs and INDELs at a given position. Acquired resistance genes were identified using ResFinder v3.228 
with a coverage threshold of 90% and an identity threshold of 90% using a database downloaded on 13th Apr. 
2020. ResFinder was used with KMA v1.1.429. The ResFinder output data was expressed as presence (value: 1) 
or absence (value: 0) of resistance genes. The SNP/INDEL data and ResFinder data were subsequently merged 
which provided a matrix with more than 830,000 columns representing reference genome positions with at least 
one mutation and 175 columns representing detected resistance genes.

Phylogenetic tree generation.  The merged variant call files were converted to a FASTA alignment using 
vcf2phylip v2.0, retaining positions that were called in at least 50% of isolates30. The invariant positions were 
removed from the alignment using snp-sites v2.4.031. The phylogeny was inferred using RAxML v8.2.9 in rapid 
bootstrap mode (-f a) with 100 bootstraps using a General Time Reversible model with Gamma rate heteroge-
neity including Lewis ascertainment bias correction (-m ASC_GTRGAMMA)32. The resulting phylogeny was 
visualized in iTOL33.

Metrics.  We used the following metrics for the evaluation of the model:
AUC-area under the receiver operating characteristics curve—we used the clinical breakpoint for ciprofloxa-

cin, 1 mg/L, based on the Clinical & Laboratory Standards Institure guideline34 to encode whether samples are 
resistant or not.

R2score-coefficient of determination

where yi is the measured value for sample i, ŷi is the predicted value for sample i, y is the mean of the measured 
values.

R-Pearson correlation coefficient

where cov is the covariance and σ is the standard deviation.
ME-major error—when the sample is non-resistant by measurement, but it is predicted to be resistant. Non-

resistant and resistant labels are derived from MIC via thresholding.
VME-very major error—when the sample is resistant by measurement, but it is predicted to be non-resistant. 

Non-resistant and resistant labels are derived from MIC via thresholding.
ACC-2-accuracy within two-fold dilution—the fraction of the samples with MIC properly predicted within a 

two-fold dilution. If the measured MIC is x, then the prediction is counted as properly predicted within a two-fold 
dilution if it falls to the [x/2;2x] interval. Dilution range is the natural scale for comparison of MIC predictions 
and measurements due to the logarithmic scale of the latter. As the MIC gives additional clinical information 
beyond the binary resistant/non-resistant outcome here we report both ACC-2 and ACC-4.

ACC-4-accuracy within four-fold dilution—the fraction of the samples with MIC properly predicted within 
a four-fold dilution. If the measured MIC is x, then the prediction is counted as properly predicted within a 
four-fold dilution if it falls to the [x/4;4x] interval.

MAFE-mean absolute fold error—The mean absolute difference between the log2 values of the prediction 
and the measurements.

Importance of the validation scheme.  Proper validation is a key element in machine learning as most 
of the models have a large number of parameters which makes it easy for them to memorize the training dataset. 
In image recognition, popular convolutional neural networks can have more than 100 M parameters35. This 
number of parameters is orders of magnitudes larger than the number of pixels of a single image or even the 
number of the images in the whole usual benchmark data sets, such as ImageNet36. Having that many parameters 
it is possible to memorize the training data without generalizing any knowledge to the test data or for future use.

However, with having a proper validation scheme it is possible to fairly estimate the generalization power 
of a model. In many cases simply randomly splitting the samples into two groups to a test and a validation set 
is enough. If the data set is small, cross-validation can help, usually, K-fold cross-validation, where the data set 
is split into K set, each having the same size. Then, the model is trained on using data from K − 1 set and the 
predictions are made for the one set that was not used in the training process. Repeating the process, K times 

R2
= 1−

∑
i(yi − ŷi)

2

∑
i(yi − y)2

,

RX,Y =
cov(X,Y)

σXσY
,

https://github.com/patbaa/AMR_ciprofloxacin/blob/master/meta.tsv
https://github.com/patbaa/AMR_ciprofloxacin/blob/master/supplementary_meta_table.csv
https://github.com/patbaa/AMR_ciprofloxacin/blob/master/supplementary_meta_table.csv
https://www.ncbi.nlm.nih.gov/assembly/GCF_000743255.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000743255.1
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predictions can be generated for the whole data set in a way that the model did not see in training time any of 
the samples for which it is generating predictions. The weights of the model are reset between any two training.

K-fold cross-validation can produce too optimistic results if the samples are clustered. For example, when 
the data collection is biased, bacterial isolates from one country are predominantly resistant whilst isolates from 
other countries are predominantly susceptible to an antibiotic. In addition, genetic signatures are often clustered 
by country23. Due to such clustering, the model may predict the country of origin of the bacterial isolate, which 
may be correlated with the MIC, on both the training and the validation data sets, but it is not guaranteed that 
the same will happen in real-life usage later.

Leave‑one‑country‑out validation.  Here we propose a more strict and reliable validation method. Instead of 
randomly splitting the data into K different folds, we split the folds by country. Using this approach, the model 
is not rewarded if it only learns country-specific attributes. Leave-one-country-out validation was performed 
during the selection of the most important features in the data set, see Supplementary Table S1. The random for-
est model was fitted K = 5 times leaving out one country each time from the training data set. Then the feature 
importances were summed over each fold resulting in the final feature importance rankings.

It worth to look at Supplementary Table S1, which contains the feature importances calculated the way 
described above. For gyrA#87 we have fairly large values for all splits except, when the Vietnam data is left out 
from the training, suggesting that gyrA#87 mutant stains are mainly coming from Vietnam. The high feature 
importance of gyrA#83 for the split when Vietnam data is the test means that for the non-vietnamese data 
gyrA#83 mutation is the most descriptive.

Random forest model.  For tabular data most often tree-like models perform the best. The random forest model 
is an ensemble of numerous (usually hundreds of) decision trees. In the training process, each tree is trained 
separately and each of them uses only a random fraction of the data, which ensures that the decision trees will 
not be identical. For a new sample, the prediction is the average of the prediction of the trees, or for classifica-
tion the category that was predicted the most often by the individual trees. This ensemble technique ends up an 
accurate, robust, scalable model. The prediction error is usually large for each individual tree, but as long as the 
errors of the trees are uncorrelated, averaging their prediction lowers the final error.

Random forest regressor was trained with mean squared error criterion, min_samples_leaf = 1, min_sam-
ples_split = 2, and n_estimators = 200 for the feature selection. For the final evaluation mean squared error 
criterion, min_samples_leaf = 1, min_samples_split = 5, and n_estimators = 100 parameters were used. The 
random seed was fixed. Other parameters remained default. Scikit-learn v0.21.237 was used for fitting the model 
in Python 3.6.5.

Random forest feature importance.  For decision trees the input variables, the features can be sorted by their 
importance. The importance can be defined in various ways; the used scikit-learn v0.21.237 implementation 
calculates the mean decrease impurity averaged over all the trees in the forest38,39. In this approach, the identifi-
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Figure 3.   Workflow of the study. First, a random forest model was fitted to the training data with leave-one-
country-outvalidation. Feature importances of the fitted models are averaged over all the folds and the four best 
features are kept. Then therandom forest model and a linear regression model were fitted on all the training 
samples using only the four best features. Andmodel performances are tested using the independent test dataset.
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cation of the most important predictors becomes feasible even for cases when there are hundreds of thousands 
of features.

Model fitting.  All models were fitted on the log2 values of the MIC, which is the natural scale for the MIC 
measurement. Later the predicted values were converted back to the MIC units.

Study pipeline.  The pipeline of this study is shown in Fig. 3. First, the raw reads were converted to a numeri-
cal table indicating mutations and plasmid related resistant genes. In the second step, a random forest model is 
fitted on the train data via leave-one-country cross-validation. Features importances were averaged over each 
fold. Then the highest-ranking features were kept which significantly reduced the dimensionality of the data. 
Using this low dimensional training data a random forest model and a linear regression was fitted. For fitting the 
models always the log2 MIC values were used as a natural scale for the MIC measurements.

At the last step, the performance of the models was evaluated on the unseen test data using the same restricted 
feature set.
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