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ABSTRACT
We investigated the antifungal susceptibilities and the cyp51 mutant strains among
Aspergillus fumigatus clinical isolates obtained from 10 university hospitals in Korea. Of the
84 isolates examined, two itraconazole-resistant isolates were found with no amino acid sub-
stitution in the cyp51A/cyp51B genes. However, 19 (23.2%) azole-susceptible isolates har-
bored amino acid substitutions: Nine isolates harbored one to five mutations in cyp51A with
high polymorphism, and 11 isolates exhibited the same Q42L mutation in cyp51B. Overall, a
low azole resistance rate and high frequency of cyp51A/cyp51B amino acid substitutions
were observed in the azole-susceptible A. fumigatus isolates in Korea.
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Invasive fungal disease caused by Aspergillus species
has increased in recent years and can be problematic
associated with significant morbidity and mortality
especially in the immunocompromised patients.
Aspergillus fumigatus is the major causative agent of
aspergillosis, and triazole antifungals are recom-
mended as the primary medication for prophylaxis
and treatment [1]. Itraconazole-resistant A. fumiga-
tus was first reported in 1997 and the azole resist-
ance has been increasingly reported worldwide: the
main mechanism of this resistance is changes in the
amino acid sequence of the Cyp51 protein [2–5].
Global surveillance has revealed diversity in the fre-
quencies of triazole-resistance and cyp51A mutations
[6–8]. In Korea, only one azole-resistant A. fumiga-
tus clinical isolate with cyp51A mutations was
reported in 2018 [9], however, surveillance data on
the prevalence of azole resistance remains lacking.
Here, we investigated the antifungal susceptibilities
and mutations in the cyp51A/cyp51B genes of
A. fumigatus clinical isolates from a nationwide
multicentre study conducted in Korea.

In total, 84 A. fumigatus clinical isolates were col-
lected from 10 university hospitals and subjected to
screening for azole resistance. All isolates were
obtained from clinical specimens using routine cul-
ture methods between January 2012 and August
2013. Only one isolate from each patient was

included. All submitted isolates were subcultured on
the potato dextrose agar at 30 �C for three days.
After phenotypical identification, the isolates were
finally identified by partial sequencing of the
b-tubulin and calmodulin genes [10]. In vitro sus-
ceptibility testing for itraconazole, voriconazole,
posaconazole, and amphotericin B was performed
using the reference broth microdilution method,
according to Clinical and Laboratory Standards
Institute (CLSI) document M38-A2 [11]. The min-
imum inhibitory concentration (MIC) endpoint is
the lowest drug concentration that results in com-
plete growth inhibition after 48 h of incubation.
Quality control was performed using A. flavus
ATCC 204304, and A. fumigatus MYA-3626.
Isolates with MICs exceeding epidemiological cutoff
values (ECVs) (1, 1, 0.5, and 2 mg/mL for itracon-
azole, voriconazole, posaconazole, and amphotericin
B, respectively) were considered to be resistant [12].
The target genes, cyp51A/cyp51B, and their pro-
moter regions were sequenced for all 84 isolates, as
described previously [13]. The sequence from
A. fumigatus strain 237 (GenBank accession no.
AF338659) was used as the wild type. Data from
patients’ medical records, including relevant infor-
mation regarding underlying disease, previous or
current antifungal use, and prognosis, were collected
in accordance with the guidelines of, and with the
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approval of, the Institutional Review Board of
Chonnam National University Hospital (IRB
CNUH-2014-290), to elucidate the clinical relevance
of isolates harboring any cyp51A/cyp51B mutation.

Of the 84 isolates, 72 (85.7%) were obtained from
respiratory specimens, and the remaining 12 were
obtained from pus and other fluid specimens. The
total of 84 isolates showed following MIC ranges:
0.25–2mg/mL for itraconazole, 0.25–1 mg/mL for
voriconazole, 0.06–0.5 mg/mL for posaconazole, and
0.125–4mg/ml for amphotericin B (Table 1). Two
(2.4%) and three (3.6%) isolates were resistant to
itraconazole and amphotericin B, respectively. All
isolates were susceptible to voriconazole and posa-
conazole. Sequence analysis of the cyp51A/cyp51B
genes revealed that the two itraconazole-resistant
isolates did not harbor any amino acid substitution,
whereas 19 of 82 (23.2%) azole-susceptible isolates
exhibited one or more substitutions in the cyp51A
or cyp51B genes, as follows: F46Y/M172V/E427K
and/or N248T/D255E were frequently found (n¼ 4),
followed by N248K (n¼ 2), D343N (n¼ 1), M39I
(n¼ 1) and G408V (n¼ 1) in cyp51A; Q42L was
observed in cyp51B (n¼ 11), respectively. Clinical
information associated with the treatment and prog-
nosis of the 14 patients from whom A. fumigatus
isolates with the cyp51A/cyp51B mutations were
recovered is summarized in Table 2. Six strains har-
boring the mutations G408V, M39I, N248K, or
Q42L were associated with probable invasive asper-
gillosis, and all but one patient had poor outcome,
due to mainly underlying disease (haematological
malignancies or idiopathic pulmonary fibrosis) and
irrespective of antifungal therapy (amphotericin B
and/or azoles). Eight strains (those with D343N,
N248K, combinations of three or more mutations,
or Q42L) were obtained from colonized patients
and only two of these patients, who had the severe
underlying disease (idiopathic pulmonary fibrosis or
bacterial peritonitis), died. Previous antifungal
exposure was observed in 4 of 14 patients.

Until now, no surveillance data on the azole
resistance of A. fumigatus clinical isolates in Korea
has been available. We found that the azole resist-
ance rate of the A. fumigatus clinical isolates was
low (2.4%) and seemed to be similar to the current
global prevalence of 3.2%, based on screening con-
ducted in 22 centers in 19 countries [14]. Moreover,
we found no mutation of the cyp51A/cyp51B genes
in the two itraconazole-resistant isolates, raising the
possibility that other resistance mechanisms, such as
efflux pump, exist in these isolates [15]. However,
Lee et al. [9] reported the first Korean case of azole-
resistant A. fumigatus harboring cyp51A mutations
in 2018, suggesting the possibility of the further
emergence of azole resistance since our data were
collected. Our 2-year multicentre data reflect the
nationwide epidemiology at that time; therefore,
continuous surveillance is warranted. Notably, sev-
eral amino acid substitutions in the cyp51A gene
were found in nine susceptible isolates, rather than
in the resistant isolates examined in this study. Four
studies have been conducted to compare cyp51A
mutations between azole-susceptible and -resistant
A. fumigates clinical isolates [7,8,16,17]. In those
studies, several substitutions in position 54, 138, 220
or a duplication in tandem of a 34-bp fragment in
the cyp51A promoter combined with a substitution
of leucine at position 98 for histidine were suggested
to be related to azole resistance, although they were
not found in our study. Instead, the frequency of
cyp51A mutations in azole-susceptible isolates in
those studies ranged widely from 5.5% to 25.1%
[7,8,16,17]. In agreement with our results, F46Y/
M172V/E427K was the most commonly found
mutation in the U.S. surveillance (5.5%) and
Spainish studies (14.0%) [7,16]. In China, however,
N248K (13.1%) was the most common mutation;
F46Y/M172V/N248T/D255E/E427K (1.3%) and
D343N (1.3%) were relatively uncommon [8]. The
diversity of polymorphisms according to geograph-
ical distribution may be due to the genetic diversity
of environmental and airborne isolates [18].

Table 1. Amino acid substitutions in cyp51A, cyp51B and in vitro antifungal susceptibility testing results for 84 A. fumigatus
clinical isolates in Korea.

Category

Minimum inhibitory concentration (lg/mL) Amino acid substitutions in cyp51 genes

No. (%) of isolatesItraconazole Voriconazole Posaconazole Amphotericin B cyp51A cyp51B

Azole-resistant isolates (N¼ 2)
2 0.25–1 0.25 0.5–1 None None 2 (2.4)

Azole-susceptible isolates (N¼ 82)
0.5 0.25–0.5 0.25–0.5 0.5 F46Y/M172V/E427K None 2 (2.4)
0.5 0.5 0.5 2 F46Y/M172V/N248T/D255E/E427K Q42L 1 (1.2)
0.5 0.5 0.25 0.5 F46Y/N248T/D255E/E427K None 1 (1.2)
0.5 0.25–1 0.06–0.5 0.5 N248K None 2 (2.4)
0.5 0.5 0.125 0.5 M39I None 1 (1.2)
0.5 0.25 0.125 0.5 D343N None 1 (1.2)
1 0.25 0.25 0.5 G408V None 1 (1.2)
0.25–1 0.25–0.5 0.125–0.25 0.25–4 None Q42L 10 (11.9)
0.25–1 0.25–1 0.06–0.5 0.125–4 None None 63 (75.0)

Total 0.25-2 0.25–1 0.06–0.5 0.125–4 　 　 84 (100.0)
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Although we did not conduct genotyping of the iso-
lates, Escribano et al. suggested that several poly-
morphisms are linked to certain genotypes [5].
Recent research using whole genome sequencing has
revealed that the AF293 reference genome belongs
to a cluster of strains with the F46Y/M172V/N248T/
D255E/E427K mutation, whereas the A1163 refer-
ence genome belongs to a cluster of wild-type
strains [13]. We found no relationship between the
azole MIC and specific strains harboring any mua-
tion in the cyp51A gene. Overall, caution should be
necessary when interpreting the significance of mua-
tions in the cyp51A gene, considering the back-
ground heterogeneity of A. fumigatus isolates.
Further research may help to elucidate the signifi-
cance of the mutations newly reported in this study,
such as M39I and G408V. Few studies have
addressed mutations in the cyp51B gene from azole-
susceptible isolates, although Diaz-Guerra et al.
reported the Q42L amino acid change in two itra-
conazole-resistant isolates [19]. In the present study,
13.4% of the azole-susceptible isolates, but no azole
resistant isolate, harbored Q42L mutations. This
finding suggests that the Q42L amino acid change is
not directly involved in the azole resistance of A.
fumigatus and that cyp51B mutations are less diverse
than those of cyp51A. We found no relationship
between any clinical prognosis and cyp51A/cyp51B
mutation type. Previous antifungal exposure was
also not correlated strongly with the presence of iso-
lates harboring any mutation in the cyp51A/cyp51B
genes, suggesting that these mutations are caused by
environmental antifungal use, rather than by expos-
ure to azole in vivo.

The current study offers epidemiological data on
antifungal susceptibilities and the occurrence of
mutations in cyp51A/cyp51B in clinical isolates of A.
fumigatus from Korea. Overall, the rate of occur-
rence of antifungal resistance in A. fumigatus
remains low in Korea. Caution should be taken,
however, in accepting the interpretation that azole
resistance is conferred by mutation of the cyp51A
gene, considering the high degree of polymorphism
found among azole-susceptible isolates.
Epidemiological surveillance of antifungal resistance
of A. fumigatus should be continued.
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