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Abstract

DNA has been the predominant information storage medium for biology and holds great promise 

as a next-generation high-density data medium in the digital era. Currently, the vast majority of 

DNA-based data storage approaches rely on in vitro DNA synthesis. As such, there are limited 

methods to encode digital data into the chromosomes of living cells in a single step. Here, we 

describe a new electrogenetic framework for direct storage of digital data in living cells. Using an 

engineered redox-responsive CRISPR adaptation system, we encoded binary data in 3-bit units 

into CRISPR arrays of bacterial cells by electrical stimulation. We demonstrated multiplex data 

encoding into barcoded cell populations to yield meaningful information storage and capacity up 

to 72 bits, which can be maintained over many generations in natural open environments. This 

work establishes a direct digital-to-biological data storage framework and advances our capacity 

for information exchange between silicon- and carbon-based entities.

INTRODUCTION

DNA is a ubiquitous molecule in biology that stores life’s heritable information. In the 

digital era, DNA is also poised to become a next-generation universal data medium1 due to 

its high-density storage capacity (petabytes per gram)2, long-term stability even in harsh 

environments (half-life of >500 years)3, and low risk of technical obsolescence due to 

expanding interest in DNA4. Data storage in DNA has technologically progressed over the 

past decade4 as strategies to physically isolate and selectively access portions of the stored 

data5,6 as well as algorithmic advances to optimize data encoding and retrieval2,7 have 
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greatly improved the scalability and practicality of DNA information storage. However, 

current DNA-based data storage methods still rely mainly on in vitro iterative chemical or 

enzymatic synthesis of DNA strands4,8.

At the same time, recent advances in CRISPR and recombinase technologies have led to the 

development of numerous DNA-based cellular recording systems to interrogate various 

biological processes9,10, such as lineage tracing for organismal development11–13 and real-

time recording of horizontal gene transfer events14. These cellular data recorders offer the 

capacity to measure biologically relevant signals15–19 in places that are otherwise difficult to 

access, such as inside the body20,21, and over time22. Furthermore, the stored data in DNA 

can be coupled to gene regulation to directly report cellular states23 or control cellular logic 

operations24. These excellent features and inherent compatibility of DNA-based data storage 

with biological systems have suggested potential use of living cells as a physical medium for 

data in DNA to provide more protection (e.g. in radiation and heat resistant spores) and 

enable facile data duplication and amplification (via cell growth and replication)4,10. 

However, such in vivo data storage approaches build largely upon in vitro synthesized DNA 

strands25,26, due to limited capacity in manipulating DNA sequence directly in vivo4. This 

challenge motivates the exploration of easy and scalable transmission of digital data into 

biological systems (i.e. direct encoding) and back (i.e. decoding by sequencing).

Direct information exchange between electronics and biology has tremendous potential to 

transform our ability to analyze, store, and communicate information27–29. The classic 

example is the direct electrical simulation or recording of neurons via ionic potentials and 

currents27. Beyond ionic potentials, the reduction-oxidation (redox) state of the cell, which 

is involved in a wide range of biological processes, is also amenable to physiological 

measurement and perturbation with electronic devices. Recently, redox-responsive 

biomolecules such as phenazines have been used in several electrochemical strategies to 

interrogate various biological activities30,31 and to control gene expression in living 

cells32,33, where redox status of the biomolecules could be measured or manipulated by 

application of electronic potentials. In theory, these approaches could also be used for direct 

electrochemical encoding of data into DNA in living cells. In practice, however, the utility of 

such in vivo DNA recording systems depends heavily upon the efficiency, robustness, and 

scalability of the underlying electrogenetic circuits, which may require extensive 

engineering and optimization.

Here, we describe a scalable and direct strategy, Data Recording in vivo by Electrical 

Stimulation (DRIVES), to encode digital data into the genomes of living cells without the 

need to synthesize DNA in vitro (Fig. 1a). By using electrical signals to tune redox 

biomolecules and sensors in cells, our framework enables the direct transfer of digital data 

from a computer to living cells. With a CRISPR-based DNA recorder, we applied this 

approach to write all possible states of a 3-bit binary data stream into living cells, which can 

be multiplexed to store larger amounts of information by barcoding cell populations. Data 

stored in these ‘living hard drives’ are stably maintained and effectively protected over 

multiple cell generations from external environments, where naked DNA would otherwise 

be degraded. This study provides a foundation to further advance in vivo DNA data storage 

and direct communication with living cells.
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RESULTS

Development of a cellular electrogenetic DNA writer

Previously, we described a directional DNA writing system using CRISPR spacer 

acquisition to record user-defined signals in bacteria (Fig. 1b)22. We sought to build upon 

this system for its directional feature in writing information and unique capabilities of 

temporal recording and multiplexing for scaling. To directly couple an electrical signal for 

biological recognition, we explored the use of redox molecules and a redox-responsive 

SoxRS regulon33 to convert the cell’s electrochemical state into a change in gene expression 

(Extended Data Fig. 1a) thus coupling copy number of the plasmid to oxidative stress. 

Oxidative stress in the cells can then be induced with phenazine methosulfate (PMS) in a 

dose-dependent manner (Extended Data Fig. 1b). We further tested ferri/ferrocyanide 

(oxidized: FCN(O), reduced: FCN(R)) as an alternative electron acceptor and used anaerobic 

growth conditions to exclude the interference of oxygen in order to improve control of redox 

conditions (Extended Data Fig. 1c)33.

To parallelize electrochemical modulation across multiple cell populations, we constructed a 

24-chamber electrochemical redox controller that independently delivers a digital electrical 

pulse (off: 0.0 V or on: +0.5 V) to each chamber (Methods and Extended Data Fig. 2). After 

optimization of the experimental conditions including inducer concentrations and induction 

time (Extended Data Fig. 1d–g), we could robustly modulate cell populations using an 

electrical signal to induce pTrig change. In state 0, the absence of a voltage signal keeps 

FCN(R) reduced, and therefore pTrig copy number low. In state 1, a +0.5 V signal oxidizes 

FCN(R) and PMS, which activates the soxS promoter to increase pTrig copy number (Fig. 

1c). We observed that pTrig copy number increased by more than 400-fold in the presence of 

the +0.5 V signal (Fig. 1d). Accordingly, newly acquired spacers derived from pTrig were 

34-times more prevalent in response to the signal than without, increasing from 

0.038(±0.004)% to 1.28(±0.03)% among all arrays in the cell populations (Fig. 1e). 

Examining the source of newly acquired spacers revealed consistent spacer acquisition 

across genomic and plasmids regions at each state (Supplementary Fig. 1). These results 

demonstrate that DRIVES can be wired for direct digital-to-biological encoding in living 

cells using electronic signals mediated through redox molecules.

Direct encoding of 3-bit digital data into CRISPR arrays

Because spacer acquisition mostly occurs unidirectionally at the 5’ position of the expanding 

CRISPR array, temporal biological events can be recorded over time22. We therefore 

explored the use of temporal signal induction to encode digital data containing multiple bits 

in DRIVES as a way to increase data storage capacity of a cell population. To scale from 1 

bit to 3 bits, we performed an encoding experiment in which cells were exposed to different 

electrical signal profiles over three sequential rounds, testing all 8 possible binary induction 

combinations (Fig. 2a, Extended Data Fig. 3a,b). The pTrig copy number profiles correlated 

strongly with the 3-bit binary input profiles associated with each cell population (Fig. 2b, 

Extended Data Fig. 3c). We also observed an increase in CRISPR array expansion over the 

course of the experiment (Extended Data Fig. 3d) and an increase in the proportion of pTrig-

derived spacers as a function of number of electronic signals (Extended Data Fig. 3e).
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To better delineate the data structure of the 8 different 3-bit binary data stored in DRIVES, 

we enriched longer arrays containing more temporal information (Extended Data Fig. 3f) 

and categorized the observed individual CRISPR arrays in a cell population as a distribution 

of array-types consisting of either reference (genome- or pRec-derived) or trigger (pTrig-

derived) spacers at each positions of an observed array length22 (Methods and Fig. 2c,d). We 

investigated whether these array-type frequencies could differentiate between different input 

signal profiles of different cell population by clustering the normalized array-type 

frequencies (Fig. 2e). Principal component analysis (PCA) on the array-type frequencies 

revealed 8 distinct clusters that differentiated the 3-bit binary data profiles from each other, 

although there were some overlaps between the clusters (Extended Data Fig. 3g). 

Application of our previous classification approach22 using Euclidean distance between 

observed and predicted (or reference) array-type frequencies failed to return reliable 

classification results (64.6%) on the test datasets (Supplementary Fig. 2). We suspect that the 

minimal medium contributed to a weaker pTrig copy number induction and thus a lower 

array expansion efficiency with pTrig-derived spacers. In turn, the array-type frequencies are 

more biased towards ‘R’, ‘RR’, and ‘RRR’, which limited the ability of other array-types to 

contribute to the Euclidean distance metric (Supplementary Fig. 2a). On the other hand, a 

supervised learning approach might better account for these limitations as well as pleiotropic 

host responses induced by strong redox stress from electrical stimulations that may 

introduce variability across datasets34 (Extended Data Fig. 3g).

To leverage the unique patterns of the array-type frequencies, we therefore built classifiers to 

distinguish the observed CRISPR array data to predict the initial signal profile. From three 

independent experiments that measured all 3-bit profiles, we first trained a random forest 

classifier on two randomly selected datasets and tested the model performance on the left-

out dataset using L2 and L3 array-types. This initial model yielded an accuracy of 87.5% in 

profile classification (compared to 12.5% by chance) with 10 iterations of repeated random-

subsampling and validation (Extended Data Fig. 4a). Encouraged by these initial 

classification results, we then retrained the model on all three datasets and then tested its 

performance on newly acquired datasets from 6 additional independent experiments. This 

model produced 93.75% accuracy (45 correct classifications out of 48 tested samples) (Fig. 

2f) with the ‘TRT’ array-type frequency as the leading feature for classification (Extended 

Data Fig. 4b). Approximately, ~10,000 of expanded arrays with uniquely mapping spacers 

(with ~4,000 L2/L3 arrays) from ~17,000 sequencing reads on size-enriched arrays were 

sufficient to achieve reasonable classification accuracy (i.e. >90%) (Extended Data Fig. 4c). 

The number of reads corresponds to ~200,000 cells in the original data-encoded cell 

population. Using more datasets for training marginally improved the model performance 

(Extended Data Fig. 4d). Taken together, these results demonstrate that multi-bit digital data 

can be stored in electrogenetically-actuated CRISPR arrays and the resulting array-type 

frequencies can be used to recover the stored data from the population.

Scaling data storage capacity with barcoded arrays

To further extend the data storage capacity of DRIVES, we sought to devise a multiplexing 

strategy to write larger sized binary data across multiple barcoded cell populations in 

parallel (Fig. 3a). We first generated a library of CRISPR arrays by mutagenizing the distal 8 
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bp region of the first direct repeat (DR) sequence (Extended Data Fig. 5a) where we 

previously showed CRISPR arrays could be barcoded22. However, many of the DR variants 

(72%) exhibited notably lower spacer acquisition rates (i.e. 50% less than that of wild-type 

DR) (Extended Data Fig. 5b–d), likely due to disrupted interactions between the Cas1-Cas2 

complex and the inverted repeats within the first DR sequence at the barcoded region35. We 

then explored introducing the 8-bp barcode downstream of the first spacer in the CRISPR 

array. Encouragingly, spacer acquisition efficiencies were consistently high across 24 unique 

spacer-barcoded variants (Extended Data Fig. 5b,c and Supplementary Table 1). We further 

assessed CRISPR array expansion for different barcoded cells either individually or as a 

mixed pool and confirmed that pooling barcoded populations does not significantly affect 

CRISPR expansion measurements in a multiplex format (Extended Data Fig. 5e). Notably, 

the pooled arrays could be easily demultiplexed into their associated barcodes through a 

streamlined Illumina sequencing pipeline that uses each barcode also as a sample index. 

Barcoding the downstream region of the first spacer also enabled targeted extraction of 

encoded data belonging to specific barcodes from a mixed population (Supplementary Fig. 

3), which was not possible in prior DR barcoding approach. In addition, we performed 

projections on the scale of DRIVES as a function of Cas1-Cas2 activity, the number of 

barcodes, and sampling depth (Extended Data Fig. 6). These results demonstrate that this 

new barcoding strategy can yield active CRISPR array variants with high spacer acquisition 

efficiencies that can be pooled, thus providing a foundation to scale up DRIVES.

Accurate encoding of text directly into living cells

Having established a robust strategy to expand the data storage capacity of DRIVES, we 

then set out to test the encoding of meaningful information (e.g. a text message) into living 

cells. To transform text messages into binary code, we utilized an encoding strategy where 

each ‘byte’ maps to a 6-bit character code (for 26 or 64 possible characters), built from two 

concatenated 3-bit data units over two barcoded cell populations (Fig. 3b). Because our 

classifier performance was not equal across all 3-bit data profiles (Fig. 2f, Extended Data 

Fig. 7a), we examined different encoding schemes to optimize character-to-byte mapping 

(Extended Data Fig. 7b). Two schemes were explored: (i) the classic DEC 6-bit encoding 

table for 64 basic ASCII characters, and (ii) an optimized (OPT) 6-bit encoding table 

designed to take into account the letter usage frequency36 and classifier decoding 

performance bias. In the OPT encoding scheme, more frequently used characters (based on 

letter frequency in English text) are assigned to 6-bit bytes with higher decoding 

performance (Extended Data Fig. 7c). Therefore, OPT encoding was expected to generally 

outperform DEC encoding for text messages (Extended Data Fig. 7d).

To test the performance of these encoding schemes, we encoded a 12-byte text message 

‘hello world!’ using either the DEC or OPT table directly into E. coli cells. For each 

encoding experiment, the text was split into 12 individual 6-bit characters, with each 

assigned to two barcoded cell populations holding 3-bit data each (Fig. 3b). All 24 barcoded 

populations were temporally induced with their assigned 3-bit signals in parallel on the 

multi-channel electrochemical redox controller set-up (Extended Data Fig. 2). During the 

course of encoding, pTrig copy number profiles exactly matched the binary input profiles for 

each barcoded population (Fig. 3c). Upon completion of encoding, the resulting 24 cell 
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populations were pooled and stored at −80 °C as a glycerol stock for subsequent analysis by 

sequencing. From the sequenced spacers, we determined the array-type frequency profiles 

from these barcoded populations, which were then classified using our pre-trained random-

forest model (Fig. 2). Decoding the data from OPT-encoded cells successfully returned the 

original message ‘hello world!’ (Fig. 3c). On the other hand, decoding from DEC-encoded 

cells returned ‘xello world!’, due to misclassification of the first 3-bit ‘101’ as ‘111’ 

(Supplementary Fig. 4). We further examined how data recovery rate depended on the 

amount of sequencing reads. For the OPT-encoded data, only 1,600 expanded arrays with 

uniquely mapping spacers for each barcoded cell population (with ~1,000 L2/L3 arrays) 

from ~2,600 sequencing reads on size-enriched arrays were sufficient to correctly classify 

~98% of the 72 bits in the data (Extended Data Fig. 8).

Even with OPT encoding where errors are intentionally suppressed toward the least 

frequently used characters (bottom 14%), this encoding scheme can still suffer from non-

negligible error rates (average 12.13%) (Extended Data Fig. 7c). As shown with the DEC-

encoded example, a single-bit error can still drastically deteriorate message outcome 

(Supplementary Fig. 4). To address this shortcoming, we next implemented an error 

correction strategy using a simple parity check. Given that the last bit of the binary data 

(generated most recently in the CRISPR array) is always the most reliable for classification, 

we utilized the last bit of every 6-bit as a checksum for the previous 5 bits (Fig. 2f, Extended 

Data Fig. 9a,b). After initial classification of an input, the error correction pipeline counts 

the number of ‘1’ in the first 5 classified bits and then expects ‘0’ or ‘1’ for a checksum 

value at the sixth bit based on the counts (Extended Data Fig. 9c, Supplementary Table 2). 

When the classified checksum value does not match the expected value, the classifier flags 

that an error has occurred during classification of the character and the error is then 

corrected based on the classifier’s confusion probability. With this error correction pipeline 

(OPT2), we can only encode up to 32 curated characters but with significantly higher data 

reconstruction performance (Extended Data Fig. 9d,e). We encoded the text ‘synbio@cu’ 

using the OPT2 encoding/decoding pipeline into cells and found that 2 out of 54 bits were 

initially misclassified, but the errors were detected and successfully corrected to return the 

input message (Extended Data Fig. 9f). Although error correction is still imperfect, the 

OPT2 strategy significantly reduces error rates to 0.79% on average. Together, these results 

demonstrate the ability to encode and store meaningful amounts of information directly into 

living cells using electrical stimulation alone and that careful design of information encoding 

and error-correction strategies can significantly improve reconstruction accuracy of stored 

data.

Stability of data in replicating cells

Mutations during DNA replication, genomic recombination, or changes in cellular fitness 

could all in theory compromise the fidelity of DNA-based data storage in cells. We expect 

the E. coli BL21 genomic CRISPR arrays where data is stored to have neutral cellular fitness 

since the CRISPR interference machineries is absent and previously showed that the spacers 

in CRISPR arrays are stable over 50 generations22. Nevertheless, non-negligible off-target 

spacer integration rates of Cas1-Cas2 complex37 and continuous growth of the pooled 

population may lead to subtle changes in subpopulations that become magnified over time to 
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a level that may affect data recovery. To assess the stability of stored digital information 

within an actively dividing bacterial population, we propagated a cell population containing 

the OPT-encoded data ‘hello world!’ for over 16 days (~100 generations) and sampled the 

population at multiple time points throughout (Extended Data Fig. 10). Although data 

retrieval efficiency gradually decreased with increasing population generations, we found 

that the data could still be robustly decoded with >90% accuracy from the population for 

~80 generations. A drop in data retrieval efficiency is likely due to fluctuations in the 

population since the relative abundance of the 24 barcoded subpopulations was stable for 

~60 generations before a notable change was observed, suggesting adaptive mutations with 

fitness effects arising in some of the subpopulation. We further tracked the population in 

higher resolution using array-type frequencies within each of the barcoded cell populations 

where encoded information is embedded (Supplementary Fig. 5). While 15 out of 24 

barcoded cell populations (62.5%) in the pool stably maintained the data, the array-type 

frequencies within the rest of the 9 barcoded populations shifted gradually, losing their 

initially encoded information over time. Nevertheless, a >90% accuracy achieved over ~80 

generations highlights that data with 72 bits encoded in living cells can be exponentially and 

autonomously amplified over 80 iterations to yield ~1.2×1024 (280) times more physical 

copies that can still be robustly decoded.

Integrity of data in natural open environments

The stability and accessibility of DNA are key advantages in data storage4. However, there 

has been limited direct assessment of the fidelity of DNA-based digital information stored in 

open natural environments, where DNA encounter various degradative factors including 

DNase enzymes, microorganisms, UV and chemical mutagens (Fig. 4a). To investigate the 

integrity of data stored in cells in a natural environment, we took a cell population that 

encoded a text ‘synbio@cu’ with 54 bits using OPT2 (Extended Data Fig. 9) and challenged 

it to commercially purchased organic potting soil at concentrations of 107–109 cells per 100 

mg of soil. Encouragingly, we could retrieve up to 90% of the data from the data-encoded 

cells in soil at the highest spike-in ratio (82% of the mixed soil microbial community). 

However, the decoding accuracy decreased when lower proportions of data-encoded cells 

were present in the mixed community likely due to missing data from rare array-types (Fig. 

4b). To address this, we selectively grew the data-encoded subpopulation from the mixed 

soil microbial community using LB media supplemented with kanamycin and 

chloramphenicol to which data-encoded cells are resistant. Efficient enrichment of data-

encoded cells yielded >90% accuracy in data reconstruction for spike-in ratios as low as 7%. 

We further assessed the stability of the data either in cells or in naked DNA in soil over time. 

In contrast to naked DNA added directly to soil where most of the data degraded during a 6-

day incubation period, data stored in cells were robustly protected and could be decoded 

without any loss of information (Fig. 4c). In addition, beyond the intrinsic layers of data 

security used to protect the information embedded within cells (e.g. CRISPR array locus, 

encoding table, etc.), we further envisioned the utility of camouflaging encoded data in a 

natural microbial community with vast biodiversity and sequence complexity. Metagenomic 

16S rRNA sequencing of the mixed soil microbiome revealed diverse taxa (4,083 OTUs) 

including the data-encoded Escherichia/Shigella genus (Supplementary Fig. 6). Natural soil 

communities with and without hidden data-encoded E. coli cells (4% spike-in ratio) showed 
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highly similar microbial compositions with Pearson’s r >0.8 (Fig. 4d), supporting the idea of 

data concealment in an open setting. Together, these results highlight the relevance of data 

storage in living cells for protection from natural environments and future steganographic 

approaches for embedding synthetic data in complex microbiomes.

DISCUSSION

DNA has great potential to become a next-generation data storage medium. While recent 

DNA-storage efforts have advanced nucleic acid synthesis, manipulation, and sequencing 

methods, we focused in this study on developing an all-in vivo framework for digital-to-

biological data encoding directly into the genomes of living cells in a single step. We 

demonstrated scaling the data storage capacity of DRIVES in two different dimensions: (i) 

binary data in units of multiple bits by using temporal electronic signals (i.e. from 1 bit to 3 

bits with 8 possible states), and (ii) multiplex encoding across many barcoded cell 

populations (i.e. from 3 bits to 72 bits with 272 possible states). These strategies can be 

applied to directly write text messages and the stored data can be reliably recovered and 

physically amplified through multi-generational growth. Furthermore, data can be hidden 

within a natural microbial community to enable an additional layer of data security by 

obscurity. Finally, digital data encoded in the genomes of living cells are protected from 

harsh natural environments where raw DNA would otherwise be damaged or degraded.

With sufficient sequencing depth and read lengths, the data storage capacity in a cell 

population is in principle governed by the CRISPR array expansion efficiency, the number 

of barcodes, and the population size, and will require further advancements for practical 

utility (Extended Data Fig. 6). We chose to use a 3-bit storage unit per barcoded cell 

population in this study due mostly to a low abundance (0.173±0.065%) of L3 arrays after 

three rounds of temporal signal induction. In theory, these rare cells with longer CRISPR 

arrays contain the most amount of temporal information, but would require larger population 

sizes to generate at sufficient levels and deeper sequencing coverages (or amplicon size 

enrichment) for reliable data reconstruction. Current data storage capacity of DRIVES if 

scaled suggests that more than 5,000 barcoded cell populations could in theory be pooled 

and decoded using a single Illumina MiSeq sequencing run (Extended Data Fig. 8). Data 

storage with thousands of barcoded cell populations will require more sophisticated design 

of multiplexed electrochemical induction setups that leverage microplate, on-chip or 

microfluidic formats30,38. Other multiplexable induction modalities such as with light or by 

acoustics could further increase encoding channel capacity across cell populations39,40. We 

anticipate that improving the CRISPR spacer acquisition system will enable encoding with 

higher bit units, a faster rate of encoding, and better reconstruction from a smaller cell 

population size. Metagenomic mining of Cas1-Cas2 orthologs41 and directed evolution42,43 

to improve the CRISPR adaptation machinery or other related host factors are promising 

paths. Other CRISPR-Cas systems with shorter spacer and DR would enable more compact 

and denser data storage in CRISPR arrays44. Employing more efficient size-enrichment 

methods and long-read sequencing technologies to decode longer arrays would also improve 

the overall approach.
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While data-encoded cells could be passaged for over 80 cell generations and still allow 

robust data recovery at >90% accuracy, we observed mutations arising over time that altered 

the relative abundance of subpopulations, which led to loss of some array-types and 

deterioration of data fidelity. Engineering host strains with lower mutation rates or other 

biocontainment strategies could reduce these undesired outcomes45,46. Reducing batch-to-

batch variability induced by redox-translated electronic signals could improve the reliability 

of data recovery34. Lyophilization or use of spore-forming bacteria could also extend shelf-

life for long-term DNA-based data storage47. This digital-to-biological data storage 

framework could be applied to other microbial systems with unique properties such as native 

electroactivity48, fast growth49, or extremotolerance50. We anticipate that the technical 

advances described here can provide a foundation for higher-performance DNA-based 

cellular memory devices used not only in digital data storage but also in other biological 

recording applications.

ONLINE METHODS

Electrochemical set-up

Electrochemical set-up was based on the work by Bentley and colleagues33 with minor 

modifications (Extended Data Fig. 2). Briefly, 12-cm long platinum wires (0.5 mm diameter, 

99.99% purity) were wound and used for both working and counter electrodes. For agar salt 

bridges, 12-cm clear PVC tubings (2 mm ID, 4 mm OD) were filled with heated 3% agar 

with 1 M KCl solution and stored in 3 M KCl at 4 °C. Typical electrochemical set-up for 

FCN(R/O) conversion and encoding experiments were performed as follows: the working 

electrode was placed in 2-mL tube (working chamber) with 1.5 mL of M9 minimal medium 

supplemented with 100 ng/mL anhydrotetracycline (aTc), 1.56 mM ferrocyanide (FCN(R), 

reduced), 100 μM phenazine methosulfate (PMS), 20 μg/mL chloramphenicol, and 50 

μg/mL kanamycin; the counter electrode was placed in another 2-mL tube (counter 

chamber) with 1.5 mL of M9 minimal medium supplemented with 1.56 mM ferricyanide 

(FCN(O), oxidized) and 100 μM PMS, unless otherwise stated. A pair of working and 

counter chamber was connected by a PVC salt bridge.

Electronic control of recordings

E. coli BL21 strain was transformed with pRec and pTrig that are modified from our 

previous work22 by replacing lacI gene with soxR gene on pRec and lac promoter with soxS 
promoter on pTrig (Extended Data Fig. 1a). The transformed strain was inoculated into a 

culture tube with 3 mL LB medium supplemented with 20 μg/mL chloramphenicol, and 50 

μg/mL kanamycin and grown overnight in a shaking incubator at 37 °C aerobically. The 

culture was diluted 1:30 into a new culture tube with 3 mL LB medium supplemented with 

20 μg/mL chloramphenicol, and 50 μg/mL kanamycin and grown for 2 hours aerobically to 

bring the culture into exponential growth phase. The culture was then moved to an anaerobic 

chamber and diluted 1:30 into a working chamber prepared as above. For induction by 

electronic signals, +0.5 V (on, 1) or 0.0 V (off, 0) was applied to the chamber for 14 hours. 

The solutions in the working and counter chambers were mixed by pipetting every 1–2 hours 

to facilitate electrochemical conversion and gene expression induction. Subsequently, 500 

μL of the culture was collected to assess pTrig copy number by qPCR. The remaining cell 
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culture was diluted 1:100 into a new culture tube with 3 mL LB medium supplemented with 

20 μg/mL chloramphenicol, and 50 μg/mL kanamycin and grown for overnight aerobically. 

500 μL of the cell culture was collected for subsequent analysis of CRISPR arrays for this 

round of encoding. For multi-round encoding, the remaining cell culture was diluted again 

into 3 mL LB medium supplemented with 20 μg/mL chloramphenicol, and 50 μg/mL 

kanamycin and other steps were repeated for the next round.

Barcoding of CRISPR arrays

To facilitate CRISPR array barcoding, endogenous CRISPR array I in E. coli BL21 genome 

was removed by homologous recombination using pSim6 plasmid51. Both direct repeat 

(DR) barcoding and spacer barcoding were done by one step cloning and integration 

protocol based on a bacteriophage integrase52. For DR barcoding, the 8 bp of distal end of 

the first DR of the minimal CRISPR array (80-bp leader sequence + DR + the first spacer of 

the original CRISPR array I) was diversified using degenerate oligonucleotides and the 

barcoded arrays were inserted into pOSIP-CH backbone plasmid. For spacer barcoding, we 

added the 8 bp sequence of illumina i7 indexes to the downstream region of the first spacer 

of the minimal CRISPR array on pOSIP-CH backbone plasmid. After integration of the 

plasmids into the genomes of E. coli BL21 strain without endogenous CRISPR array I, the 

backbone part of the plasmids was excised by introducing pE-FLP plasmid for FLP 

recombinase expression which was then removed using a temperature-sensitive replicon. 

The sequences of the spacer barcoded CRISPR arrays are listed in Supplementary Table 1.

Array sequencing and data analysis

CRISPR arrays were sequenced using our established sequencing pipeline22 with minor 

modifications for the barcoded CRISPR arrays. Briefly, cells were lysed using prepGEM 

bacteria kit (MicroGEM) for amplification of input CRISPR array sequences from the DNA. 

After PCR amplification of CRISPR arrays, samples were pooled, and for selected libraries, 

magnetic bead-based size enrichment was performed using AMPureXP beads (Beckman 

Coulter A63881) as previously described. Sequencing was performed on Illumina MiSeq 

platform (MiSeq v2 300 cycle) with additional spike-in of custom sequencing primers. The 

primers sequences are listed in Supplementary Table 3. The raw sequencing data was 

processed using our established CRISPR spacer extraction and mapping pipeline which can 

be found at https://github.com/ravisheth/trace with minor modifications. Briefly, raw 

sequencing reads were subjected to spacer extraction (spacer_extraction.py), the extracted 

spacers were mapped to their sources (blast_search.sh), then uniquely mapping spacers were 

determined (unique_spacers.py). Further analysis and data visualization were performed 

mostly in Python with the numpy, scipy, pandas, scikit-learn, matplotlib, and seaborn 

packages. We considered only arrays with uniquely mapping spacers at all positions within 

the array, determined if each spacer was either from reference (genome or pRec) or trigger 

(pTrig), and determined the frequency of each array-type normalized across all possible 

combinations for the given array length.

qPCR assay for pTrig copy number

pTrig copy number of a cell culture was assessed by qPCR. Briefly, 5 μL of 2x KAPA 

SYBR Fast qPCR master mix, 0.5 μL of 10 μM forward and reverse primers, 3 μL of 
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nuclease free water and 1 μL of cell lysate prepared using prepGEM bacteria kit 

(MicroGEM) were mixed in each well of a 96 well qPCR plate. Two qPCRs were performed 

to quantify pTrig and genomic DNA present in each sample. The primers sequences are 

listed in Supplementary Table 3.

DNA extraction from soil

DNA extraction from soil was performed using our established protocol with Qiagen 

MagAttract PowerMicrobiome DNA/RNA Kit (Qiagen 27500–4-EP)53. Briefly, 100 mg of 

soil samples mixed with data-encoded cell population at various ratios were added to the 

plate. 200 μL of 0.1-mm Zirconia Silica beads (BioSpec 11079101Z) and 750 μL of lysis 

solution (90 mL master mix: 9 mL of 1 M Tris-HCl, pH 7.5, 9 mL of 0.5M EDTA, pH 8.0, 

11.25 mL of 10% SDS, 22.5 mL of Qiagen lysis reagent, 38.25 mL of nuclease-free water) 

were added to each well of the plate. The plate was then subjected to bead beating for 2.5 

min followed by 7.5 min of cooling on a bead beater (BioSpec 1001). This bead beating 

cycle was repeated for 4 times. The plate was centrifuged for 5 min at 4,300 × g and 150 μL 

of supernatant was transferred to a V-bottom microplate. 35 μL of Qiagen inhibitor removal 

solution was added and the plate was centrifuged for 5 min at 4,300 × g. 100 μL of 

supernatant was transferred to a round-bottom plate (Corning 3795) on a robotic liquid 

handler (Biomek 4000) for magnetic bead purification according to the manufacturer’s 

recommendations, but at a scaled volume. The final elute was further diluted 10-fold with 

nuclease-free water to minimize the effect from any residual PCR inhibitors from soil.

16S rRNA sequencing and data analysis

The V4 region of 16S rRNA gene was sequenced using our established sequencing 

pipeline53. After PCR amplification of the 16S rRNA V4 regions from the soil DNA, the 

resulting ~390 bp amplicon was gel-purified and sequenced on Illumina MiSeq platform 

(MiSeq v2 300 cycle) with additional spike-in of custom sequencing primers. The 

sequencing data was processed using USEARCH v11.0.66754. Reads were merged (-

fastq_mergepairs), filtered (-fastq_filter -fastq_maxee 1.0 -fastq_minlen 240), and 100% 

ZOTUs were generated (-unoise3) and OTU table was created (-otutab). Taxonomy was 

assigned to ZOTUs using the RDP classifier55. Phylogenetic tree was constructed using The 

Interactive Tree of Life (https://itol.embl.de)56.

Data availability

All data supporting the findings of this study are available within the article and its 

supplementary information, or are available from the authors upon request. Sequencing data 

associated with this study is available at NCBI SRA under PRJNA625964.

Code availability

All of the CRISPR spacer extraction and mapping software can be accessed at https://

github.com/ravisheth/trace, or are available from the authors upon request.
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Extended Data

Extended Data Fig. 1. Development of a redox-sensing DNA-based cellular recorder for direct 
digital-to-biological data storage.
This system is composed of two distinct modules: (i) a ‘sensing module’ that converts a 

desired biological signal into a change in copy number of a trigger plasmid (pTrig), and (ii) a 

‘writing module’ that overexpresses Cas1-Cas2 from a recording plasmid (pRec) to 

unidirectionally expand genomic CRISPR arrays with novel ~33 bp spacers acquired from 

genomic or plasmid DNA sources in the cell. In the presence of the desired signal, cells 

experience a shift in their intracellular DNA pool, driven by an increase in pTrig copy 

number, which results in an acquisition bias for pTrig-derived spacers amongst expanding 

CRISPR arrays. (a) The lacI gene in the previous pRec22 was replaced with soxR gene from 

E. coli, and the lac promoter in the previous pTrig22 was replaced with soxS promoter from 

E. coli. P1 replication system is inactive in the absence of oxidative stress, and a mini-F 

origin keeps the pTrig plasmid copy number low. Upon induction with oxidative stress, 

SoxR detaches from soxS promoter and activates the P1 replication system to increase the 

copy number of the plasmid. (b) pTrig copy number in the presence of various 

concentrations of phenazine methosulfate (PMS) in aerobic condition. pRec (with an 

additional copy of soxR gene) helps get higher fold-change of pTrig copy number by more 

efficient repression in absence of the inducer. (c) pTrig copy numbers in the presence of 

pRec and various concentrations of PMS, and FCN(R) or FCN(O) in anaerobic condition. 

Fold change of the pTrig copy numbers at the given concentrations of FCN(R) or FCN(O) 

were plotted. (d) Various aTc concentrations and (e) induction time for the expression of 

cas1 and cas2 genes were tested for CRISPR array expansion. (f) Various FCN(R) and 

FCN(O) concentrations were tested for pTrig copy number induction and (g) pTrig-derived 
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spacer incorporation. The proportions of pTrig-derived spacers among all newly 

incorporated spacers are displayed. All measurements are based on three biological 

replicates. Error bars represent standard deviation of three biological replicates.

Extended Data Fig. 2. Construction of a multi-channel electrochemical redox controller.
(a) In an anaerobic chamber, a Raspberry Pi controls 3 of 8-channel relay modules (total 24 

relays), which turn on or off electrical signals into each chamber pair from a power supply, 

based on a python script running on a wirelessly connected PC. (b) A pair of working and 
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counter chambers is connected by an agar salt bridge. In a working chamber, cells are 

incubated in M9 minimal medium supplemented with antibiotics, aTc, FCN(R) and PMS. 

M9 minimal medium supplemented with FCN(O) and PMS is filled in another chamber 

(counter). (c) A photograph of the multi-channel electrochemical redox controller in an 

anaerobic chamber. (d) Changes in electrochemical redox states of FCN(R) in a working 

chamber (left) and FCN(O) in a counter chamber (right) measured by absorbance at 420 nm 

with (0.5 V) and without (0.0 V) electronic signals. All measurements are based on three 

replicates. Error bars represent standard deviation of three biological replicates.

Extended Data Fig. 3. Encoding of 3-bit binary data profiles.
(a) Schematic diagram of experimental steps for multi-round encoding. After each round of 

electrical stimulation, the cell population was recovered in the rich medium (LB) aerobically 

so that the induced/uninduced plasmid copy number in the previous encoding round can be 

diluted out and reset low. (b) To determine the recovery condition, anaerobic and aerobic 

conditions were compared. (c) Overlaid distributions of the plasmid copy numbers with/

without signals at each round over the course of the multi-round encoding (Figure 2b). (d) 
CRISPR array expansion over the course of the experiment. (e) The 3-bit binary data 

profiles are grouped by the number of electronic signals, and the proportions of pTrig-

derived spacers among all newly incorporated spacers are displayed. (f) To enrich the 

sequencing reads for expanded arrays with more new spacers (longer arrays), the magnetic 

bead-based size enrichment was performed. Frequency of arrays of different lengths 

(unexpanded and L1-L4) with and without size enrichment are plotted. (g) Principal 

component analysis on the array-type frequency profiles for the 3-bit digital data profiles. 

All 9 independent biological replicates are shown for each 3-bit digital data profiles. The 

first three independent datasets used for training of the Random Forest classifier are 
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highlighted. All measurements are based on two or more biological replicates. Error bars 

represent standard deviation of three or more biological replicates.

Extended Data Fig. 4. Performance of a Random Forest classifier for data reconstruction.
(a) Confusion matrix from cross validation of the Random Forest classifier for 10 times by 

training on randomly selected 2 datasets for each 3-bit digital data profile from the 3 

independent experiments and testing the trained model on the left-out 1 dataset. (b) 
Importance of features (array-types) for the Random Forest classifier in Figure 2f. (c) 
Classification performance for the number of CRISPR arrays. CRISPR arrays with new 

uniquely mapping spacers were randomly subsampled to the various numbers for the 3-bit 

digital data profiles and classifications were performed. Recall accuracies for distinguishing 

8 different types of 3-bit digital data profiles were displayed as a function of the number of 

expanded arrays with uniquely mapping spacers (grey: all arrays, red: L2/L3 arrays). The 

number of sequencing reads corresponding to the number of expanded arrays with uniquely 

mapping spacers (grey: all arrays) is also provided as an additional x-axis. Shaded regions 

represent 95% confidence interval of 10 iterations of subsampling and classification. (d) 
Recall accuracies for distinguishing 8 different types of 3-bit digital data profiles with 

varying proportions of randomly selected training datasets for each 3-bit digital data profile. 

Shaded regions represent 95% confidence interval of 100 iterations of subsampling and 

classification.
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Extended Data Fig. 5. Barcoding CRISPR arrays for multiplexed encoding.
(a) CRISPR arrays can be barcoded with 8-bp unique sequences either downstream of the 1st 

spacer region or within direct repeat (DR) region. (b) CRISPR array expansion rates 

(relative to wild-type array) of 69 DR-barcoded CRISPR arrays and 24 spacer-barcoded 

CRISPR arrays. (c) Distribution of array expansion rates of spacer-barcoded CRISPR arrays 

is much more uniform and consistent than that of DR-barcoded CRISPR arrays. A DR 

variant (d1) that was more efficient than the wild-type DR sequence in the initial 96-well 

plate-based test is highlighted. (d) The d1 DR variant was tested again in tube culture 

condition. In tube culture condition, however, the DR variant did not show significantly 

higher activity than that of the wild-type DR sequence. (e) Comparison of CRISPR array 

expansion rates measured individually or in pool. Shaded region represents 95% confidence 

interval for linear regression (dashed grey line). Sample sizes (n) and Person correlation 

coefficient (r) are shown. All measurements are based on three biological replicates. Error 

bars represent standard deviation of three biological replicates.

Extended Data Fig. 6. Projections on the scale of DRIVES.
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(a) Data storage capacity (‘n’ bits of information or ‘n’ rounds of encoding) per cell 

population is estimated as a function of Cas1-Cas2 activity (‘X’ proportion of the cell 

population expanded arrays with a new spacer after a single round of encoding). Here, ‘Xn’ 

proportion of the cell population would have expanded arrays every round resulting ‘n’ new 

spacers (Ln arrays) after ‘n’ rounds of encoding, and we assumed that the sampling capacity 

for the Ln array population governs the data storage capacity. We considered various 

sampling depths ‘D’, where ‘D’ proportion of the cell population can be sufficiently 

sampled. This ‘D’ could be affected by many factors including the sequencing depth and 

size enrichment efficiency. We assumed that if the ‘Xn’ is same or higher than the given 

sampling depth constraint ‘D’, ‘n’ bits can be stored and reliably decoded. For example, 

when 0.001 of the cell population can be sufficiently sampled (D=0.001), maximum data 

storage capacity would be 3 bits (n=3) with the current Cas1-Cas2 activity level (X=0.1) as 

in our current experimental dataset (highlighted in red in the plot). And when 0.0001 of the 

cell population can be sufficiently sampled (D=0.0001), maximum data storage capacity 

would be 4 bits (n=4) with the current Cas1-Cas2 activity level (X=0.1). Although the 

Illumina MiSeq v2 300 cycles kit used in this study can read only up to 5 new spacers, we 

assumed that sequencing read length is not the limiting factor in this projection as other long 

read sequencing technologies could be employed. (b) Estimated total data storage capacity 

across barcoded cell populations as a function of Cas1-Cas2 activity and the number of 

parallel channels in the culture platform at two different sampling depths (D=0.001 and 

D=0.00001). A larger data per cell population would require more rounds of encoding which 

takes longer time, and a larger number of parallel channels would require more barcoded 

cell populations and more sophisticated design of the culture platform. Current capacity of 

the system with 24 channels in the culture platform is highlighted in blue in the plot.
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Extended Data Fig. 7. Design of 6-bit encoding tables for text messages.
(a) Probability of correct classification for each of the 3-bit digital data profiles by the 

Random Forest classifier on the newly generated independent datasets is calculated based on 

the result in Figure 2f. (b) DEC and OPT encoding tables with estimated probabilities of 

correct classification for the 64 characters. OPT 6-bit encoding table was designed by 

considering the correct classification probability and the usage frequency of the characters 

(https://mdickens.me/typing/letter_frequency.html). (c) Probability of correct decoding for 

the 64 character (ordered by usage) with DEC and OPT 6-bit encoding tables. (d) 
Comparison of predicted probabilities of correct decoding for various text messages based 

on the two encoding tables. The predicted probabilities of correct decoding for each 

character or text message were calculated by multiplying the correct decoding probability 

values of each 3-bit digital data profile units.

Extended Data Fig. 8. Reading ‘hello world!’ from subsampled sequencing reads.
Sequencing reads from each barcode in the ‘hello world!’-encoded cell population using 

OPT table were randomly subsampled to the various numbers and classifications were 

performed. Recall accuracies for (a) distinguishing 3-bit digital data profiles for 24 barcoded 

populations or for (b) calling correct bits out of 72 bits were displayed as a function of the 

number of expanded arrays with uniquely mapping spacers (grey: all arrays, red: L2/L3 

arrays). The number of sequencing reads corresponding to the number of expanded arrays 

with uniquely mapping spacers (grey: all arrays) is also provided as an additional x-axis. 

Shaded regions represent 95% confidence interval of 10 iterations of subsampling and 

classification.
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Extended Data Fig. 9. Improving data reconstruction with error correction.
(a) By using every sixth bit as a check point (checksum) for the first 5 bits, errors in data 

reconstruction can be detected and corrected for the selected 32 combinations of 6-bit digital 

data profiles based on the classifier’s confusion probability in Figure 2f and Extended Data 
Fig. 9b. For example, for a digital input ‘011110’ could be classified as ‘011110’, ‘011010’, 

‘001110’, or ‘001010’ with the probabilities of 69%, 14%, 14%, or 3%, respectively. Out of 

these 4 possible initial classifications, the last 3 are wrong and the 2 wrong classifications 

with a single bit error can be detected by the check point values and fixed. However, the 
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classification result with 2 bits error cannot be detected by the check point value and 

therefore cannot be fixed. For all 32 combinations of 6-bit digital data profiles, possible 

classification results, their probabilities, and whether they can be fixed or not are 

summarized in Supplementary Table 2. (b) Confusion probability for each of the 3-bit digital 

data profiles based on Figure 2f. (c) The check point values for each combination of eight 3-

bit and four 2-bit digital data profiles. (d) OPT2 encoding table with the estimated 

probabilities of correct classification for the 32 characters. (e) Probability of correct 

decoding for the 32 characters (ordered by usage) for OPT and OPT2 6-bit encoding tables. 

(f) ‘synbio@cu’ encoded in the genomes of barcoded E. coli populations using the OPT2 

error correction strategy. Two errors from the initial classification were detected using the 

check points and successfully corrected as described in the figure. For classification of each 

barcoded cell population, an average of 492,289 total sequencing reads with 268,066 reads 

of expanded arrays (or 106,242 of L2/L3 arrays) that uniquely map spacers were used. Bead-

based size enrichment was performed to enrich for expanded arrays and deplete unexpanded 

arrays. Frequencies of array-types are in log10 scale. All measurements are based on a single 

experimental study.

Extended Data Fig. 10. Data stability in replicating cells.
A mixed pool of 24 barcoded cell population encoded with a 72-bits text message ‘hello 

world!’ in Figure 3 was subsequently diluted 1:100 every 24 hours into 3 mL fresh LB 

media with antibiotic for a total of 16 days (~106 generation, ~6.6 generations per day). (a) 
Data stability in the propagating cell population over 100 generations. Accuracy indicates 

the proportion of bits that are correctly classified. >90% of the 72 bits could be correctly 

retrieved up to ~80 generations. Shaded region represents standard deviation of three 

biological replicates. For classification of each barcoded cell population, an average of 

82,860 of total sequencing reads with 40,502 reads of expanded arrays (or 17,139 of L2/L3 

arrays) that uniquely map spacers were used. Bead-based size enrichment was performed to 

enrich for expanded arrays and deplete unexpanded arrays. (b) Gradual changes in the 

relative abundance of 24 barcoded cell population over time suggests adaptive mutations 

with fitness effects arising in some of the subpopulation. Samples were collected at the time 

points indicated by arrows (day 0, 4, 6, 8, 12, and 16). All measurements are based on three 

biological replicates.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Direct digital-to-biological data storage into CRISPR arrays.
(a) Digital information can be directly encoded into CRISPR arrays of a bacterial population 

using electronic signals. The cell population can then be archived for long-term storage, 

propagated for data amplification, and sequenced for data retrieval. (b) Overexpression of 

the Cas1-Cas2 complex results in constant incorporation new spacers into CRISPR arrays of 

a cell population. Electronic signals induce a change in abundance of a copy number 

inducible plasmid (pTrig) and thus the proportion of pTrig-derived spacers. (c) At 0 state, 

the electrical signal is not applied (0.0 V) to keep FCN(R) and PMS reduced and pTrig copy 

number is low. At 1 state, the electrical signal (0.5 V) oxidizes FCN(R) and PMS, which 

activates the soxS promoter to increase pTrig copy number. FCN(R), ferrocyanide; FCN(O), 

ferricyanide; PMS, phenazine methosulfate. (d) Relative copy number of pTrig, (e) 
proportion of expanded CRISPR arrays and source of the new spacers without (0.0 V) and 

with (0.5 V) electrical signal for 14 hours. Ref, genome- and pRec-derived spacers; pTrig, 

pTrig-derived spacers. All measurements are based on three biological replicates. Error bars 

represent standard deviation of three biological replicates.
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Figure 2. Encoding 3-bit binary data into E. coli populations.
(a) Cells were subjected to electrical signals over three sequential rounds, constituting all 8 

possible 3-bit binary data profiles. (b) pTrig copy number profiles for each round of the 3-bit 

binary data profiles. (c) CRISPR array populations can be described as a frequency 

distribution constituting of all permutations of reference spacers (R, grey) derived from 

genome or pRec and trigger spacers (T, red) derived from pTrig for a given array length (L). 

(d) Frequencies of array-types in log10 scale for each array lengths for the 3-bit data 

encoded CRISPR array populations. (e) Clustering CRISPR arrays based on their array-type 

frequency profiles normalized to Z-score across all 3-bit binary profiles. (f) Performance of 

a Random Forest classifier trained on data from 3 independent experiments and tested on 

data from 6 subsequent independent experiments. For classification of each sample, an 

average of 172,788 total sequencing reads with 89,928 reads of expanded arrays (or 38,295 

of L2/L3 arrays) that uniquely map spacers were used. Bead-based size enrichment was 

performed to enrich for expanded arrays and deplete unexpanded arrays (see Methods). All 
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measurements are based on three or more biological replicates. Error bars represent standard 

deviation of three biological replicates.
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Figure 3. Writing the text message ‘hello world!’ containing 72 bits into barcoded E. coli cells.
(a) Uniquely barcoded cell populations in each chamber on the multi-channel 

electrochemical redox controller can receive and store 3-bit binary profiles in parallel split 

from an original data. The 3-bit encoded cells in each chamber can be pooled and stored. 

Data can be retrieved by sequencing and demultiplexing barcode sequences for data 

reconstruction. (b) The OPT 6-bit character table that leverages letter usage frequency and 

retrieval bias is shown. The 6-bit binary data for each character is split into two barcoded 

cell populations. An example of encoding ‘h’ is shown. (c) Array-type frequencies (in log10 
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scale) from a ‘hello world!’ encoded cell population is shown. For classification of each 

barcoded cell population, an average of 443,051 total sequencing reads with 271,725 reads 

of expanded arrays (or 179,174 of L2/L3 arrays) that uniquely map spacers were used. Bead-

based size enrichment was performed to enrich for expanded arrays and deplete unexpanded 

arrays (see Methods). All measurements are based on a single encoding experiment.
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Figure 4. Cell envelope as a physical barrier to protect data.
(a) A data-encoded cell population or naked genomic DNA extracted from the same amount 

of the data-encoded population was challenged to a natural soil environment. (b) Retrieval of 

a text message (‘synbio@cu’) from a mixed microbial community of data-encoded E. coli 
cells and natural soil microbiota with and without selective growth enrichment. Accuracy is 

defined as the proportion of bits that are correctly classified. For classification of each 

barcoded cell population, an average of 41,740 total sequencing reads with 20,811 reads of 

expanded arrays (or 9,821 of L2/L3 arrays) that uniquely map spacers were used. Bead-

based size enrichment was performed to enrich for expanded arrays and deplete unexpanded 

arrays. (c) Retrieval of text message ‘synbio@cu’ stored in naked DNA or in encoded cells 

after exposure to soil for 0 or 6 days. Accuracy is defined as the proportion of bits that are 

correctly classified. The plot displays the mean values and whiskers span the highest and 

lowest points. For classification of each barcoded cell population, an average of 20,542 total 

sequencing reads with 7,868 reads of expanded arrays (or 2,692 of L2/L3 arrays) that 

uniquely map spacers were used. Bead-based size enrichment was performed to enrich for 

expanded arrays and deplete unexpanded arrays. (d) Comparison of microbial compositions 

of a natural soil community with and without hidden data-encoded E. coli cells (Escherichia/
Shigella genus is highlighted red, 4% spiked-in). OTUs (n) and Pearson correlation 

coefficient (r) are shown. Dashed line represents y=x. All measurements are based on two 

biological replicates.

Yim et al. Page 29

Nat Chem Biol. Author manuscript; available in PMC 2021 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	Development of a cellular electrogenetic DNA writer
	Direct encoding of 3-bit digital data into CRISPR arrays
	Scaling data storage capacity with barcoded arrays
	Accurate encoding of text directly into living cells
	Stability of data in replicating cells
	Integrity of data in natural open environments

	DISCUSSION
	ONLINE METHODS
	Electrochemical set-up
	Electronic control of recordings
	Barcoding of CRISPR arrays
	Array sequencing and data analysis
	qPCR assay for pTrig copy number
	DNA extraction from soil
	16S rRNA sequencing and data analysis
	Data availability
	Code availability

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

