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Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the
readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic
otitis media with effusion (COME) where impaired hearing due to middle ear effusion may
be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe
form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in
these varied clinical presentations is unclear but activation of the innate inflammatory
responses to viral and/or bacterial infection of the upper respiratory tract performs an
integral role. This localised inflammatory response can persist even after pathogens are
cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even
the nasal compartment. Children prone to OM may experience an over exuberant
inflammatory response that underlies the development of chronic forms of OM and their
sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are
limited, with current therapeutic guidelines recommending a “watch and wait” strategy
rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory
drugs. Overall, there is a clear need for more targeted and effective treatments that either
prevent or reduce the hyper-inflammatory response associated with chronic forms of OM.
Improved treatment options rely upon an in-depth understanding of OM pathogenesis,
particularly the role of the host innate immune response during acute OM. In this paper, we
review the current literature regarding the innate immune response within the middle ear to
bacterial and viral otopathogens alone, and as co-infections. This is an important
consideration, as the role of respiratory viruses as primary pathogens in OM is not yet
fully understood. Furthermore, increased reporting from PCR-based diagnostics,
indicates that viral/bacterial co-infections in the middle ear are more common than
bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-
infections may drive or maintain complex innate immune responses and inflammation
during OM as a chronic response require investigation. Improved understanding of the
pathogenesis of chronic OM, including host innate immune response within the middle ear
is vital for development of improved diagnostic and treatment options for our children.
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INTRODUCTION

Otitis media (OM) is defined as inflammation of the middle ear
and encompasses a range of clinical presentations. Acute OM
(AOM) is characterised by otalgia and fever and may occur
occasionally, particularly during a child’s first 3 years of life. If
acute episodes occur a minimum of 3 times in a 6 month period
or more than 4 times within a 12 month period the condition is
considered to be recurrent (RAOM) (Granath, 2017). Otitis
media with effusion (OME) is defined by the presence of
middle ear fluid, or effusion, without any symptoms except
impaired hearing due to restricted mobility of the tympanic
membrane. Chronic suppurative OM (CSOM) involves
perforation of the tympanic membrane with persistent fluid
discharge for more than 6 weeks (Kong and Coates, 2009;
Lieberthal et al., 2013; Massa et al., 2015; Bhutta et al., 2017).

The pathogenesis of OM is largely due to activation of the
innate inflammatory responses to viral and/or bacterial infection
of the upper respiratory tract (Mandel et al. 2008; Bakaletz, 2010;
Mittal et al., 2014a; Parrish et al., 2019). Pathogen-induced
inflammation in the nasopharynx (primarily due to viral
infections) and eustachian tubes (both viral and bacterial
infections) then leads to a range of responses including
enhanced mucus secretion (Val et al., 2018), neutrophil
extracellular traps (Thornton et al., 2013), damage to the
epithelium and enhanced commensal bacterial colonisation
(Nokso-Koivisto et al., 2015; Chonmaitree et al., 2016).
Nasopharyngeal inflammation also causes a loss of pressure
equilibrium with the middle ear (Martin et al., 2017), allowing
fluid accumulation and invasion of viruses and commensal
bacteria. Unresolved inflammation then leads to the
reoccurring or chronic infections and fluid build-up in the
middle ear that are the hallmarks of recurrent and chronic
forms of OM (Bhutta et al., 2017).

In most children, AOM is resolved by the mucosal immune
response of the middle ear and upper respiratory tract, that
protects against repeated infections of the middle ear during the
early years of development when children are at highest risk for
ear disease. Progressively, the mean frequency of AOM episodes
experienced by a child falls from 1.97 per year at six months of
age to 1.07 per year by 36 months of age (Chonmaitree et al.,
2008). Although overall, by three years of age, 60% of children
have experienced one or more episodes of OM and 24% have
experienced three or more episodes (Kaur et al., 2017). However,
the global burden of disease caused by recurrent and chronic
forms of OM, that are not as well controlled by the immune
system, is considerable, particularly during the first 5 years of life.
Globally, CSOM occurs in 4.76% of the population (22% in
children under 5 years old) with hearing impairment present in
30 children per 10,000 (Monasta et al., 2012), a prevalence that
may rise further in adults (Chung et al., 2016).

Our understanding of the role of the innate immune response
in OM is improving as more evidence comes to light that
frequent or prophylactic antibiotics are not always effective for
chronic or recurrent forms of OM, or even for non-severe AOM,
where a “watch and wait” approach to treatment is
recommended (Lieberthal et al., 2013). In many clinical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
practice guidelines, antimicrobial decision-making is based on
the clinical severity of AOM (Spoiala et al., 2021), with a previous
randomised control trial in high-risk individuals reporting that
long-term antibiotics did resolve OME and prevent AOM with
perforation (Leach et al., 2008). However, for chronic forms of
OM, such as CSOM, the benefits of either systemic or topical
antibiotics for rapid resolution are not clear (Chong et al., 2021),
and analgesics rather than antibiotics or anti-inflammatories are
recommended as the front line treatment for OME (Rosenfeld
et al., 2016; Chong et al., 2021).

The innate immune system is a critical first line of defence
within the middle ear and is activated in response to pathogen
associated molecular patterns (PAMPs) on invading pathogens
(Li et al., 2013; Massa et al., 2015). Key characteristics of this
defence mechanism include physical epithelial barriers,
recognition of non-self-factors such as pathogens, up-
regulation of the complement system, initiation of generalised
inflammatory responses and activation of specific immune
responses to pathogens through upregulation of the adaptive
immune system (Massa et al., 2015; Preciado et al., 2017).
BACTERIAL AND VIRAL OTOPATHOGENS

Historically, the middle ear has been considered a sterile
environment (Kurono et al., 1996; Lim et al., 2000). However,
recent advances in ‘OMICS technology have revealed the
potential of a middle ear microbiome (Marsh et al., 2020). The
mechanisms by which the middle ear microbiome, in concert
with that of the nasopharyngeal microbiome, may impact on the
development and pathogenesis of OM remain largely unknown.
This is a growing area of investigation (Schenck et al., 2016;
Enoksson et al., 2020; Marsh et al., 2020), as the presence of a
healthy middle ear microbiome is controversial (Johnston et al.,
2019) with one key study in adults finding no evidence of
bacterial colonisation of the middle ear using microscopy and
culture techniques (Jervis-Bardy et al., 2019). The inflammation
that defines OM, however, is induced by invading respiratory
viral pathogens and dysregulated commensal bacterial
populations within the nasopharynx, which then migrate
through the upper respiratory tract via the eustachian tubes to
infect the middle ear. How well these infections are then
controlled by host mucosal immune responses, and the nature
of each individual’s immune response, direct the course of
OM disease.

Three bacterial species, Streptococcus pneumoniae, non-
typeable Haemophilus influenzae (NTHi) and Moraxella
catarrhalis are the dominant bacterial otopathogens globally
(Schilder et al., 2016) although individual species and strain
dominance may vary according to geographical location (Ngo
et al., 2016). These bacteria are commensal in the nasopharynx
and typically do not induce localised inflammation or activation
of innate immune responses, however their presence within the
middle ear stimulates both responses and may result in clinical
presentation of AOM.

Functional, effective clearance of bacterial otopathogens from
the middle ear, particularly for children experiencing RAOM and
October 2021 | Volume 11 | Article 764772
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COME, may be disrupted by the presence of bacterial biofilm
development on the epithelium of the middle ear (Hall-Stoodley
et al., 2006; Thornton et al., 2011). Mucosal biofilms result from
host and bacterial interactions, often multiple bacterial species
(Thornton et al., 2011), incorporating host and bacterial DNA to
develop and stabilise the biofilm. Furthermore, in addition to
biofilms, the presence of intracellular bacteria, within the
mucosal epithelial cells may also contribute to OM persistence
and ineffective clearance of infection through antibiotic use
(Bakaletz, 2012; Coates et al., 2008).

Viruses play an important role in the induction of AOM,
which often occurs as a complication of upper respiratory
infection (URTI) (Pettigrew et al., 2011). Some viruses can
cause AOM in isolation, although most cases of AOM are the
result of polymicrobial infections (Ruohola et al., 2013; Sawada
et al., 2019). All respiratory viruses have been associated with
AOM, in that they have been detected in middle ear fluid (MEF)
or by nasopharyngeal swab during an episode of AOM, although
some are more commonly detected than others (Pettigrew et al.,
2011; Sawada et al., 2019). These include rhinovirus (RV),
respiratory syncytial virus (RSV), adenovirus (AdV), human
metapneumovirus (HMPV), influenza A virus (IAV) and
seasonal human coronaviruses (Heikkinen et al., 1999;
Chonmaitree and Heikkinen, 2000; Chonmaitree and
Henrickson, 2000; Heikkinen and Chonmaitree, 2003; Kalu
et al., 2011; Nokso-Koivisto et al., 2015; Chonmaitree et al.,
2016; Schilder et al., 2016). In many studies, rhinovirus is the
most common virus detected in both MEF and the nasopharynx
of children with AOM (Moore et al., 2010; Yatsyshina et al.,
2016), while in other studies RSV is most commonly detected
(Sawada et al., 2019). Some viruses, however, are considered
more “otopathic” than others, in that they are more likely to
cause AOM without bacterial co-infection. A study that
investigated the seasonality of AOM identified that peak AOM
activity was significantly associated with detection of RSV,
HMPV and IAV (Stockmann et al., 2013). RSV in particular is
known to induce AOM in the absence of bacterial infection of the
middle ear (Ruohola et al., 2013; Yatsyshina et al., 2016). There is
substantive clinical evidence that IAV and RSV enhance the
severity of OM (Heikkinen et al., 1999).

It is becoming increasingly apparent that defects in the host
innate immune response of the middle ear drive prolonged
inflammation, reduce pathogen clearance, and underlie chronic
and recurrent forms of OM. This review explores the innate
immune response to both viral and bacterial pathogens in OM,
and current knowledge regarding the dysregulation of the host
immune response that may underlie the development and
recurrence of OM. Animal experimental models, in addition to
clinical studies, are discussed, since investigating immune
responses to pathogens in isolation in the middle ear is
difficult, and mechanistic studies using a range of animal
models are essential. However it needs to be noted that murine
immune responses may differ to those of humans and so need to
be viewed in the context of complementary studies (Bhutta, 2012;
Tyrer et al., 2013). A focus of this review is the host innate
immune response to NTHi, as the most common otopathogen
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
used to investigate host immune mechanisms using animal
models for OM. In contrast, respiratory virus activation of host
innate immune responses in OM pathogenesis is less clear, with
most fewer animal model studies focussed on the role of IAV
and RSV.
PATHOGEN RECOGNITION AND
ACTIVATION OF SIGNALLING PATHWAYS
WITHIN THE INNATE IMMUNE RESPONSE

Within the middle ear, like other mucosal immune locations,
molecular signatures known as pathogen-associated molecular
patterns (PAMPs), are produced by both bacterial and viral
pathogens and recognised via one or multiple microbial pattern
recognition receptors (PRRs) (Medzhitov, 2007; Kawai and
Akira, 2009; Li and Chang, 2021). These receptors are located
throughout the middle ear epithelium, and are expressed on the
cell surface, internal cell membranes and within the cytoplasm of
structural epithelial and antigen presenting cells within the host
innate immune system (Leichtle et al., 2011; Kumar et al., 2013;
Kurabi et al., 2016).

Non-self-DNA and RNA sensing within the middle ear
mucosa can involve multiple PRRs depending on the invading
pathogen and intrinsic host PRR expression. Overall, this
activation of multiple PRRs during the initial innate immune
response to pathogens provides increased opportunity for
multiple synergistic and/or redundant signalling pathways to
be activated, often through NF-kB, interferon response factors
(IRFs) and AP-1 transcription factor activation (see Figure 1).
The efficacy of different signalling pathways can influence host
susceptibility to disease (Skevaki et al., 2015). Signalling
regulation by host and pathogen factors within the middle ear
during OM may lead to modification of timing and secretion of
various cytokines, chemokines, interferons, and antimicrobial
peptides from the mucosal epithelium or cells recruited to the
site of activation. Importantly, the concentrations of
antimicrobial peptides and proteins, and cytokines within MEF
of children experiencing recurrent AOM are known to increase
(Seppanen et al., 2019).

Host innate immunity is activated in response to a wide range
of bacterial and viral pathogens through transcription factors
downstream from the PRRs and can vary to provide stimulus-
specific responses (Borghini et al., 2018). This regulation of the
innate immune response is essential to optimise pathogen
clearance whilst minimising local tissue damage from
inflammatory processes (Massa et al., 2015). For example, PRR
activation of the NFkB transcription factor cascade by NTHi
increased surfactant protein A (SP-A) expression in SP-A
knockout mice, causing more severe inflammation. In contrast,
wild-type mice showed improved bacterial aggregation, killing
and macrophage clearance of the middle ear due to SP-A
modulation of the host inflammatory response (Abdel-Razek
et al., 2019).

Thus, differences in host PRR expression and subsequent
signalling pathway activation can lead to differences in how the
October 2021 | Volume 11 | Article 764772
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innate immune response is regulated and how OM disease
progresses. There is growing evidence that host genetic
polymorphisms in PRR genes and differences in PRR expression
can dysregulate innate immune signalling pathways in response to
otopathogens and therefore play a significant role in the induction
and pathogenesis of OM (Lin et al., 2017). Furthermore, NTHi is
recently reported to utilise phase variable epigenetic regulation to
modify and adapt its phenotype but also modify host immune
responses (Robledo-Avila et al., 2020), creating a shifting
immunological target for the host (Parrish et al., 2019).
PRR ACTIVATION AND INNATE IMMUNE
SIGNALLING IN RESPONSE TO
BACTERIAL OTOPATHOGENS

Toll-like receptor (TLR)-dependent activation of innate immune
responses within the middle ear are currently best described
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
from animal, particularly murine models. In these models, the
cell surface-expressed TLRs, TLR-2 and TLR-4, play an
important role in sensing and responding to bacterial
otopathogens (Kweon et al., 2006; Moon et al., 2007; Trune
and Zheng, 2009; Kim et al., 2010; Leichtle et al., 2011; Mittal
et al., 2014b; Zhang et al., 2015). The overall effect TLR activation
is to induce NF-kB signalling, resulting in mucosal hyperplasia
and upregulation of pro-inflammatory cytokines (Lim et al.,
2007) (see Figure 1). Thus, TLRs initiate and mediate
expression of a variety of molecules from the middle ear
mucosa including inflammatory cytokines (IL-1a, IL-1ß, IL-6,
IL-10, TNFa, vascular endothelial growth factor (VEGF),
chemokines Ccl3 (macrophage inflammatory protein 1a or
MIP1a), Cxcl2 (macrophage inflammatory protein-2 or MIP2),
keratinocyte-derived chemokine (KC or Cxcl1; recruits and
activates macrophages) and antimicrobial peptides such as
mouse ß-defensin 2 and mucin genes (MacArthur et al., 2011;
Trune et al., 2015; Kurabi et al., 2016). Interestingly, in
FIGURE 1 | Intracellular signaling pathways utilized by middle ear mucosa in response to stimulation by non-typeable Haemophilus influenzae (NTHi). Pattern
recognition receptors (PRR) detect conserved molecular signatures of invading microbes and facilitate activation of synthesis and secretion of downstream cytokine
cascades. This figure schematically represents the signaling pathways activated by NTHi both at the cell membrane and within the cell cytoplasm of the middle ear
mucosal cells. The information portrayed was extracted from published reports of experiments utilizing middle ear cell lines and middle ear epithelium and mucosa
from animal models and human biopsy material. (Reproduced, with permission, Massa et al., 2015).
October 2021 | Volume 11 | Article 764772
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association with changes in epithelial cell structure from
pseudostratified ciliated columnar epithelium within the
eustachian tube to a more squamous epithelium within the
middle ear of the rat (Massa et al., 2015), more TLR2 and
TLR4 receptor mRNA is expressed within the middle ear
compared to other upper respiratory tract locations including
the Eustachian tube, nasopharynx and oral cavity (Song et al.,
2009). The essential role of TLR2 and TLR4 receptors and
signalling molecules, MyD88 and TRIF in the activation of
innate immune responses has also been demonstrated using
knock-out murine models (Hernandez et al., 2008; Leichtle
et al., 2009). Gene deletion of these receptors and signalling
molecules results in persistent OM, in the form of thickened
mucosa, delayed neutrophil and macrophage recruitment and
reduced efficiency of bacterial killing and clearance from the
middle ear (Leichtle et al., 2009; Leichtle et al., 2011; Underwood
and Bakaletz, 2011; Kurabi et al., 2016).

The importance of cell surface TLR signalling in the innate
immune response in OM is best demonstrated in a murine model
in which heat-killed NTHi was used for trans-tympanic
inoculation (MacArthur et al., 2006; Trune et al., 2015). In
these mice, there was no active infection within the middle ear,
although an inflammatory response was still induced in response
to endotoxins, which act as PAMPs. Within 6 hrs, genes for MIP-
1a, MIP-2a, IL-6 and Cxcl1 demonstrated significantly elevated
expression (>50->1000 fold) whilst IL-1a (Ccl3), IL-1ß, IL-10,
TNFa expression was more moderately upregulated (>4->36
fold). Expression of each of these genes returned to non-
stimulated levels by 72 hr in the absence of active infection.
Cytokine and chemokine production was increased in parallel
with the gene upregulation, however the production of these
proteins lagged behind upregulated gene expression by peaking
24hr after inoculation. In this model, TLR4 and TLR9 expression
were also significantly increased, while TLR2 expression was only
slightly increased (Trune et al., 2015). Interestingly, NTHi
infection also increased Chemokine CXC receptor 4 expression
in the mouse middle ear model, signalling the inflammatory
response through IKKa and p38MAPK pathway activation (Ma
et al., 2018). Studies using bacterial otopathogens other than
NTHi are limited, however, it has been demonstrated in a mouse
pneumococcal OM model that TLR2 expression and NF-kB
signalling in the middle ear mucosa, is critical for the
recruitment of macrophages. The absence of TLR2 expression
resulted in impaired S. pneumoniae clearance from the middle
ear and a prolonged inflammatory response (Komori et al., 2011;
Huang et al., 2016).

Observations regarding the importance of TLR2 in the innate
immune response in murine models of OM is supported by
clinical studies. In children, TLR2 is a predominant NTHi
receptor within middle ear epithelial cells and activation of this
receptor leads to the induction of ß-defensin 2 through activation
of the MyD88-IRAKI-TRAF6-MKK3/6-p38 MAP kinase signal
transduction pathway (Lee et al., 2008). Increased mRNA
expression of TLR4 and TLR2 has also been reported within
the middle ear fluid (MEF) of children experiencing AOM, with
TLR9 expression remaining unchanged. Coincident with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
TLR upregulation, mRNA expression of cytokines including,
pro-inflammatory TNFa, IL-6, IL-8, IL-10, IL-1ß and
chemokines CCL2, CCL3, CCL4, CCR5 and CXCR3 were
significantly higher (8-330 fold) in bacterial culture positive
MEF samples, and increased mRNA expression of these
molecules was associated with increased numbers of bacterial
species identified within the sample (Kaur et al., 2015).

In addition to cell surface expressed TLR signalling,
endosomal TLR9 was shown to be important in sensing NTHi
when inoculated into the murine middle ear. Deletion of TLR9
from mice prolonged middle ear inflammation and bacterial
clearance (Leichtle et al., 2012). In this same study, Leichtle et al,
also identified non-TLR pathogen DNA sensing genes to be
upregulated in response to infection by NTHi. These included
DNA-dependent activator of IFN regulator factor (DAI), absent
in melanoma-2 (AIM2) and Pol-III in addition to other genes
encoding proteins that mediate downstream signalling pathways
(Leichtle et al., 2012).

Several other families of PRRs contribute to PAMP
recognition and activation of the signalling pathways to
activate and modulate innate immune responses, including
retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLR’s),
cytoplasmic nucleotide-binding oligomerisation domain
(NOD)-like receptors (NLRs) and DNA sensing receptors
(Kurabi et al., 2016). Compared to surface expressed TLR
receptors, less is known concerning the importance of
cytoplasmic PRRs in sensing and responding to bacterial
infections in the middle ear (Kumar et al., 2011; Kurabi et al.,
2016). However cytoplasmic NOD-like receptors and RIG-1
receptors exhibit reduced expression in patients with OM
which may be associated with the development of recurrent
OME (Kim et al., 2014). NOD1/NOD 2 receptors activate innate
immune responses during OM to reduce infection (Lee et al.,
2019). More specifically, NOD2 mediated b-defensin 2
regulation is activated after NTHi penetration of the cell
membrane and helps to prevent OM development (Woo J. I.
et al., 2014). Activin-like cell surface receptor kinases and serine/
threonine kinases also activate important signalling pathways in
the pathogenesis of OM. These receptors lead to the activation of
TGF-b, which is a pleiotropic cytokine and a key regulator of
tissue remodelling.

Although several murine models of bacterial OM have
demonstrated an upregulation of pro-inflammatory responses
to infection within the mucosa, the entire process of
immunoregulation during OM may be more complex. A
report on the transcriptome signature elicited from PBMCs at
the onset of AOM in children caused by NTHi reported that
genes associated with antibacterial activity and cell-mediated
immunity were predominantly affected. Importantly, the study
suggested that NTHi infection suppressed more immune
responses than were activated. More specifically, 90% of genes
associated with pro-inflammatory cytokine responses were
down-regulated, as was classic complement pathway activation
(Liu et al., 2013). Furthermore, the transcriptome of a complete
episode of NTHi-induced AOM in a mouse model was examined
via expression profiling utilising whole genome microarrays in
October 2021 | Volume 11 | Article 764772
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the murine model. Sets of genes involved in activation of the
innate immune response, negative regulation of that response,
epithelial and stromal cell marker changes and neutrophil and
macrophage recruitment and function were identified. Overall,
positive and negative regulation of inflammatory processes were
recognised, and the importance of anti-inflammatory responses
in control of OM pathogenesis were highlighted (Hernandez
et al., 2015). Importantly, regulation of NTHi triggered
activation of inflammatory responses by natural products such
as the plant pigment Quercetin may provide potential
therapeutic approaches to reduce OM (Ma et al., 2018).
VIRUS-INDUCED INNATE IMMUNITY

Respiratory viruses alone can induce AOM and lead to chronic
presentations of OM (Heikkinen and Chonmaitree, 2000). A
causal relationship between viral URTI and eustachian tube
obstruction, middle ear pressure and bacterial colonisation has
been demonstrated in both human challenge studies using
rhinovirus (McBride et al., 1989; Buchman et al., 1994) and
IAV (Doyle et al., 1994) and in both chinchilla and mouse
models of AOM induced by IAV (Giebink et al., 1987; Short
et al., 2011). In addition, viral-bacterial coinfections have
demonstrated more severe outcomes for AOM in humans
(Moore et al., 2010; Binks et al., 2011; Pettigrew et al., 2011;
Chonmaitree et al., 2016; Schilder et al., 2016) and animal models
(Giebink and Wright, 1983; Patel et al., 1992; Brockson et al.,
2012), compared to bacterial colonisation alone. However,
despite this clear link between respiratory virus infections and
OM, the exact mechanisms by which viruses promote the
development of AOM and subsequent chronic and recurrent
OM is not well known due to a paucity of studies on the immune
response during virus-only AOM. Therefore, our understanding
of the role of respiratory viruses in the immune response during
OM is based largely on our general understanding of the
immunopathology of URTIs, which affect the nasopharynx
foremost with AOM considered a secondary complication
(Heikkinen, 2000; Chonmaitree et al., 2008; Bakaletz, 2010;
Kalu et al., 2011; Chonmaitree et al., 2016).

There are few human clinical studies that have sought to
characterise the immune response to respiratory viruses during
OM and understand how this contributes to pathogenesis of
disease. One study collected sera from 145 children with AOM
and found that RSV-associated AOM correlated with elevated
serum concentrations of proinflammatory cytokines (Patel et al.,
2009a). These included G-CSF, MCP-1, IL-10, IL-6, IFN-g and
IL-8, with G-CSF concentrations predicting RSV-associated OM
with 87% accuracy. In this study, local mucosal responses were
not investigated, although in a related study, the cytokines
detected in nasopharyngeal secretions of 326 children with
virus-positive URTIs were identified and correlated with virus
identification and the onset of AOM (Patel et al., 2009b). All
viruses detected (adeno-, entero- rhino- viruses, RSV,
Parainfluenza viruses, Influenza viruses) induced significant
quantities of IL-1b, IL-6 and TNFa. However only IL-1b was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
significantly associated with the onset of AOM and was not
correlated with any particular virus.

Some studies have identified innate immune responses of
cultured human middle ear epithelial (MEE) cells when infected
with IAV. A transcriptional study of cells up to 24h post
infection revealed upregulation of genes encoding an array of
type I interferon inducible signalling pathways, transcription
factors, cytokine and chemokine genes, as expected in response
to viral infection (Tong et al., 2004). MEE cells also secrete
elevated levels of MIP-1a and MIP-1b, TNF-a, IL-6, IL-8 and
IL-10 in response IAV infection (Tong et al., 2003; Tong et al.,
2004). Interestingly, when IAV strains were compared, H3N2
IAV induced a stronger IL-6 and IL-8 response by MEE cells in
culture than H1N1 (Short et al., 2013).

These human studies are informative regarding antiviral
responses, although do not provide mechanistic detail
regarding how the immune response to viral infections drives
the development of OM. Animal models have been used to
understand the role of viral URTIs in the development of OM.
However, very few have focused on the induction of AOM by
viruses alone, without bacterial involvement. Early chinchilla
models demonstrated clinical signs and symptoms of OM
induced by viruses alone (Giebink et al., 1987), including
general observations of tympanic membrane inflammation
(Giebink and Wright, 1983). Short et al. (2011) developed the
first infant murine model of IAV-induced AOM (Short et al.,
2011), where IAV replicated in the middle ear epithelium, and
caused submucosal edema and an influx of immune cells,
predominantly neutrophils, into the middle ear cavity. These
mice also displayed hearing loss indicative of clinical AOM. In a
follow up study, inoculation of mice with recombinant IAVs
identified a pro-inflammatory response in the middle ear,
specific to replicating viruses with a H3-type HA attachment
viral protein. This response was dominated by upregulation of
genes expressing IL-1b, IL-1a and CXCL2 in the middle ear
(Short et al., 2013).
INNATE IMMUNE RESPONSES TO
POLYMICROBIAL INFECTIONS

Adding to the complexity of the host innate immune responses,
microbe to microbe interactions are being recognised within the
upper respiratory tract microbiome (Schenck et al., 2016) which
may enhance or impair bacterial competition and the host innate
immune response. For example, peptidoglycan secretion by H.
influenzae can activate neutrophils to enhance complement-
dependent killing of S. pneumoniae (Lysenko et al., 2005), whilst
S. pneumoniae can impair NTHi evasion of host immune responses
(Shakhnovich et al., 2002). Furthermore, S. pneumoniae and NTHi
can synergistically upregulate TLR2 expression, increasing
inflammation (Ratner et al., 2005).

Most mechanistic studies in animal models of OM have used
single infections to understand cause and effect. However,
polymicrobial animal models for OM more closely replicate
the complex microbial environment of the nasopharynx and
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infected and/or inflamed middle ear (Bakaletz, 2010), and may
better reflect COM pathogenesis (Holder et al., 2012) and
immunisation responses (Novotny et al., 2017). A rat model of
OM involving dual infection of the middle ear with NTHi and
Pneumococcus type 6A (Pn6A) demonstrated upregulation of
genes encoding inflammatory Th2 cytokines and effectors of the
TGF-b signalling pathway, which resulted in pathogenic changes
and thickening of the mucosa and submucosal layers of the
middle ear during OM (Lee et al., 2011). It has been
demonstrated in chinchilla that middle ear infection with
NTHi promotes the persistence of M. catarrhalis via the
formation of polymicrobial biofilms (Armbruster et al., 2010).
In a mouse model, M. catarrhalis impacted pneumococcal OM
more than NTHi regarding bacterial load, incidence rate and
persistence of infection. Nitric oxide was measured as an
indication of inflammation and was elevated in polymicrobial
infections significantly more than single infections. Interestingly,
pre-infections with the respiratory virus, Sendai Virus, enhanced
bacterial OM for all three otopathogens, demonstrating the
importance of viral infection in the development of bacterial
OM (Krishnamurthy et al., 2009).

Most animal models of virus-induced OM have investigated
the role of viruses in supporting subsequent bacterial
colonisation of the eustachian tube and middle ear. The
chinchilla model has been the most utilised to study the
pathogenesis of viral-bacterial co-infection in OM (Giebink
and Wright, 1983; Suzuki and Bakaletz, 1994). However, it
does have limitations, in that the immune responses and the
presentation of AOM in these animals can vary depending on the
order and timing of infection and partnering of viruses and
bacteria. These variables have made it difficult to build an
accurate picture of the role of antiviral innate immune
responses in AOM. It has also been difficult to identify specific
mechanisms by which viral dysregulation of the innate immune
response promotes bacterial colonisation. Therefore, most
studies report general inflammation and clinical signs of OM
on tympanometric investigation of animals.

Murine models of IAV and S. pneumonia co-infection have
demonstrated more severe AOM than single infections of either
virus or bacteria alone, including greater hearing loss, and middle
ear inflammation (Short et al., 2013), in addition to reduced
ciliation, hyperplasia of the mucosal epithelium and increased
goblet cells (Tong et al., 2014). Tong et al. (2104) also identified
that the anaphylatoxins C3a and C5a were expressed in both
serum and middle ear lavage from IAV-infected mice indicating
that induction of the complement alternative pathway reduced
bacterial clearance and enhanced the severity of acute
pneumococcal OM. When paired with M. catarrhalis and
NTHi in experimental Chinchilla infections, RSV was
associated with cl inical s igns of inflammation and
haemorrhagic foci in the middle ear mucosa (Brockson et al.,
2012), thus compromising the ability of the mucosa to combat
ascending bacterial infections and biofilm formation in the
middle ear. The chinchilla model has also been useful in
demonstrating the ability of different viruses in enhancing
bacterial OM. Type 5 adenovirus (Ad5) has been shown to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
promote infection of the middle ear by S. pneumoniae (Murrah
et al., 2015), while type 1 adenovirus (Ad1) has been shown to
promote ascension of NTHi (Suzuki and Bakaletz, 1994)
although not S. pneumoniae (Tong et al., 2000) or M.
catarrhalis (Bakaletz et al., 1995). It is likely that the role of
viruses in OM is complex and involves not only inflammation
and innate immune dysregulation, but also other factors that
enhance bacterial colonisation such as epithelial damage, mucus
production and modulation of antimicrobial peptides, as has
been demonstrated within other compartments of the respiratory
mucosa (Melvin and Bomberger, 2016).
ANTIMICROBIAL FACTORS RELEASED BY
THE MUCOSAL EPITHELIUM

In addition to classical innate and adaptive immune responses,
the production of anti-microbial molecules, mucus secretion,
and mucociliary clearance within the middle ear and eustachian
tubes, work in combination to maintain the relative sterility of
the middle ear cavity (Lim et al., 2000; Massa et al., 2015).
Morphologically, the middle ear region adjacent to the
eustachian tube and the eustachian tube itself, exhibit cellular
characteristics shared by other mucosal surfaces within the upper
respiratory tract, such as a secretory, pseudostratified, and
ciliated columnar epithelium (Lim, 1976; Lim, 1979; Bluestone
and Doyle, 1988; Martin et al., 2017). The physical resilience of
the epithelium is reinforced via tight junctions (Tsukita et al.,
2008; Yonemura, 2011) and goblet cells that secrete mucus to
provide a barrier to adherence and colonisation by bacteria,
(Linden et al., 2008), and contribute to the mucociliary clearance
of the tympanic cavity and eustachian tube (Evans and Koo,
2009; Martin et al., 2017).

Most importantly, the mucosal response includes activation
of antimicrobial molecules, such as lysozyme, ß-defensins and
lactoferrin which either independently or together, act to inhibit
bacterial colonisation and activate the adaptive immune response
(Underwood and Bakaletz, 2011). The significance of
antimicrobial molecules has been demonstrated using animal
models. For example, lysozyme knockout mice exhibit increased
susceptibility to bacterial colonisation of the middle ear and
enhanced inflammatory response to S. pneumoniae 6B infection
(Shimada et al., 2008). Furthermore, in humans, lysozyme and ß-
defensin 2 can synergistically partner to directly kill invading S.
pneumoniae 6B (Lee et al., 2004) and protect against NTHi
induced OM (Woo J. I. et al., 2014). Most recently, a study
examining middle ear effusate from children experiencing
recurrent AOM confirmed the importance of elevated
antimicrobial protein (AP) and cytokines as potential markers
for bacterial persistence and inflammation (Seppanen et al.,
2019). Antimicrobial proteins or host defence peptides may
offer future treatment options against polymicrobial infections
(Bergenfelz and Hakansson, 2017; Batoni et al., 2021).

Viruses, conversely, have been shown to enhance bacterial
infection of the middle ear by suppressing antimicrobial factors and
enhancing bacterial adhesion molecules. McGillivary et al. (2007)
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demonstrated that both viruses and bacteria can alter the
expression of cationic APs in the upper airways, thus enabling
an expansion of otopathogens. This elegant study involved the
expression of recombinant cCRAMP, a cathelicidin homolog
from the upper respiratory tract of the chinchilla in cultured
chinchilla middle ear epithelial cells (CMEEs). CMEEs were
infected with IAV, RSV or Ad1, and the effect on cCRAMP
and also cBD-1, which is the murine ortholog of the human AP
b-defensin, was investigated (McGillivary et al., 2007). IAV
reduced cCRAMP mRNA expression by 50%, while RSV and
Ad1 only had a minimal effect. In contract RSV reduced the
expression of cBD-1 mRNA by 40%, while IAV and Ad1 did not.
Thus, highly otopathic viruses, such as IAV and RSV appear
adept at differentially reducing key antimicrobial defence
molecules in airway epithelial cells using different mechanisms.
The ability of RSV to suppress cBD-1 expression has also been
demonstrated directly in a chinchilla RSV/NTHi co-infection
model. In this model, RSV intranasal challenge diminished both
cBD-1 mRNA and protein expression in the upper airway
epithelium. Consequently, when chinchilla were inoculated
with NTHi, there was a marked increase in both the quantity
and duration of NTHi recovered from the nasopharynx
(McGillivary et al., 2009). These studies provide evidence that
virus-induced dysregulation of AP expression contributes to the
e leva ted bacter ia l co lon isa t ion to precedes AOM
(Bakaletz, 2010).

The net effect of viral URTI is a reduction in the protective
function of the mucosal epithelium, which extends from the
nasopharynx through the eustachian tubes and into the middle
ear. This compromise in protection renders the middle ear
susceptible to ascending bacterial infection, and can last from
2-10 weeks in children before homeostatic conditions are
returned (Carson et al., 1985).
IMMUNOCOMPETENT CELL TYPES
WITHIN THE MUCOSAL EPITHELIUM

The healthy middle ear of both humans and animal models of
OM is host to immunocompetent cell types, although not in
significantly high numbers until infiltration occurs during AOM
(Jecker et al., 1996; Jecker et al., 2001; Suenaga et al., 2001) or
COME (Enoksson et al., 2020). Mast cells and macrophages are
the predominant cell types in non-inflamed middle ear, with
dendritic cells and macrophages present in the tympanic
membrane (Ichimiya et al., 1990; Mittal et al., 2014b) These
antigen-presenting cell phenotypes provide a mechanism for
interconnection of the local innate mucosal immune response
with the more specific adaptive immune system (Ichimiya et al.,
1997). Enhanced inflammation within the middle ear mucosa,
stimulated through pro-inflammatory cytokine secretion
including ß-defensin 2 and other defensins (Underwood and
Bakaletz, 2011) and pre-inflammatory molecules including
TNFa, IL-1b and CCL3, attract other immunocompetent cells
via chemotaxis, including dendritic cells, memory T-cells,
neutrophils and mast cells within the epithelium (Yang et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
2007). In addition to direct bacterial killing, ß-defensin 2
contributes to the mediation of adaptive immunity (Yang et al.,
2007; Underwood and Bakaletz, 2011).

Upregulation of the innate immune response, as evidenced by
immunocompetent cell infiltration, has long been demonstrated
in COM patients (Palva et al., 1981; Enoksson et al., 2020), whilst
mouse models of NTHi infection of the middle ear have also
demonstrated leukocyte infiltration (Hernandez et al., 2008;
Hernandez et al., 2015; Trune et al., 2015). Furthermore, the
acute inflammatory response during AOM in the rat model
shows time-dependent increases in identification of
macrophages, dendritic cells, polymorphs and natural killer
cells (Jecker et al., 1996; Forseni et al., 1999), with T-cells
present 3 days after perforation of the tympanic membrane
(Tahar Aissa and Hultcrantz, 2009).

The activation and rapid response of the innate immune
response within the middle ear mucosa is well evidenced from
animal studies, particularly mouse models (Bhutta, 2012). Evidence
of the precise timing and duration of immunocompetent cell
changes occurring in the murine middle ear demonstrates that
neutrophil recruitment is evident within 6 hrs of inoculation of
middle ear and peaks 24 hours post inoculation at level ~10-fold
greater than the peak recruitment of macrophages observed at 48
hours after inoculation (Leichtle et al., 2011). The number of
neutrophils within the ME epithelium returned to control levels
after 72h, whereas macrophages were still observed 120hr post
inoculation. Epithelial effusion within the middle ear is present 24-
48hr post inoculation, consistent with peak neutrophil and
macrophage (Hernandez et al., 2015) recruitment. Unfortunately,
increased neutrophil recruitment can be utilised by NTHi to avoid
phagocytosis through host formation of neutrophil extracellular
traps (Juneau et al., 2011; Schachern et al., 2017) which have been
identified within the MEF of children with OM (Thornton
et al., 2013).

Neutrophil infiltration of the middle ear is also a feature of
IAV-induced OM in a murine model (Short et al., 2011). IAV also
depressed polymorphonuclear leukocyte chemiluminescence
activity in a chinchilla model (Giebink and Wright, 1983).
Interestingly H3N1 had a more significant effect on this
response than H1N1, similar to the findings of Short et al. (2013).
INNATE IMMUNE RESPONSE ACTIVATION
OF THE ADAPTIVE IMMUNE RESPONSE

Overall, there is a paucity of human studies, however, many
murine studies have explored the interconnection of the innate
immune responses occurring within the middle ear and their role
in activation of the adaptive immune response. Within 3 days post
inoculation with type B Haemophilus influenzae, macrophages
and Mac-1+ neutrophils were present in the middle ear of mice
whilst within the middle ear mucosa, Lyt-1+ T cells and Lyt-2+ T
suppressor/cytotoxic cells were present 7 and 14 days post
inoculation. The majority of mucosal immunoglobulin-bearing
cells at Day 14, were IgA+ lymphocytes although IgG+ and IgM+
T –cells were present 3, 7 and 14 days post-inoculation. Lyt-1/
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L3T4+ T lymphocytes were present in larger numbers than B
lymphocytes thus helper T cells appear to have significant
involvement in AOM (Krekorian et al., 1991). Recent profiling
of the cells within the murine middle ear using single-cell
transcriptomics identified 17 different cell clusters, reflecting
different cell types within the normal middle ear however tissue
monocytes appear to have a primary role in regulation of acute
middle ear infection response in the complex innate defence (Ryan
et al., 2020). Interestingly, adaptive immune system factors such as
TBX21, a transcription factor, may also participate in innate
immune response regulation during S. pneumoniae infection,
through modifying TLR2 expression (Woo C. H. et al., 2014).
Whilst these model studies establish a link between innate and
adaptive immune responses in the middle ear, additional studies
are needed to confirm such links in the human middle ear.

Recent evidence highlights the complexity of the upregulation
of specific inflammatory cells and mediator secretion varies in
response to the microbial otopathogens involved and the child’s
gender, with Moraxella and Haemophilus species tending to
stimulate more inflammatory mediators in the middle ear
(Enoksson et al., 2020). Interestingly, within the few human
studies available, reports of relationships between IgG, IgG1,
IgG2 and IgA are complicated by case-definitions of the sampled
population (Corscadden et al., 2013). A well-designed cross-
sectional study of serum and middle ear levels of IgG, IgG1 and
IgG2 in children under 3 years of age, with and without a history
of frequent AOM reported that of 11 different pneumococcal
serotypes present, only serotype 5 induced elevated serotype
specific IgG and IgG1. This study evidenced that frequent AOM
is not the result of deficiency in IgG, IgG1 or IgG2 response
(Corscadden et al., 2013). Further research, focussed on both
viral and bacterial otopathogens are needed to the confirm the
innate activation of the adaptive immune responses of children
experiencing OM.
HOST FACTORS THAT MODULATE THE
MUCOSAL RESPONSE IN OM

In this review we have explored the innate immune response to
predominant otopathogens in the context of OM pathogenesis.
Induction of a productive innate immune response that will clear
otopathogen infection, whilst minimising inflammation is ideal
for AOM resolution, while a hyperinflammatory response and
upregulation of bacterial adhesion mechanisms is deleterious to
this process and may result in recurrent or chronic forms of OM.
Otitis media susceptibility is associated with a number of host
genes, identified in previous reviews (Kurabi et al., 2016; Bhutta
et al., 2017; Geng et al., 2019). Genetic factors that influence the
heritability of susceptibility to OM are reported to range between
40%-70%, based on several prospective, longitudinal prospective
and retrospective twin studies (Mittal et al., 2014a). In humans,
reduced expression of key PRRs TLR9, NOD1, NOD2 and RIG-I
has been observed in the MEF of OM-prone compared to non-
OM-prone children (Kim et al., 2010). In addition, TLR2, IL-1,
IL-6 and TNFa gene and protein production were reduced in
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children aged 2-7 years compared to 0-2 and over 7-year olds,
and were also lower in culture-positive OM (Kim et al., 2015).
Interestingly, in contrast, one report identified no significant
differences in mRNA and protein levels of TLR2, TLR4 and
TLR5 between non-OM and chronic OM patients, however the
levels fell for CSOM patients. These studies indicate a correlation
between reduced PRR function and severity of disease (Si
et al., 2014).

This lack of functionality in PRR signalling and subsequent
protective innate immune responses in OM-prone individuals is
likely due to polymorphisms in candidate genes related to innate
and adaptive immunity. Children identified with TLR2 and
TLR4 polymorphisms exhibit disrupted innate immune
responses that increase their susceptibility to OM (Hafren
et al., 2015; Toivonen et al., 2017). Genetic polymorphisms in
Mannose-binding lectin and TLR2,3,4,7 and 8 can promote or
protect children from the risk of respiratory infections and AOM
(Toivonen et al., 2017) indicating that we do not fully understand
the mechanisms of innate immunity influenced by
gene polymorphisms.

Allelic association studies have identified polymorphisms
related to the development of OM in genes encoding TLR4
receptors, IL-6, IL-10 and TNF-a (Emonts et al., 2007),
mannose-binding lectins (Wiertsema et al., 2006), surfactant
(Ramet et al., 2001), and Mucin gene MUC5AC (Ubell et al.,
2010) [for review see (Mittal et al., 2014a; Lin et al., 2017; Geng
et al., 2019)]. TLR4 locus polymorphisms have also been
examined in patients with RAOM or COME and demonstrated
a role for TLR4 in the regulation of the innate immune response.
The inability of this study to replicate the association of a
previously unrecognised TLR4 haplotype in two independent
Finnish cohorts with UK or 2 US cohorts emphasises the
potentially heterogenous nature of OM and the complexity of
environmental and host factors that may modulate overall
susceptibility to OM (Hafren et al., 2015; Einarsdottir et al.,
2016). Polymorphism IL-1b+3953 is associated with more severe
presentations of AOM and has been associated with higher risk
of severe inflammation post-AOM infection (McCormick et al.,
2011). Recently, the potential impact of cohort heterogeneity and
the complexity of environmental and host factors on OM
development has been reviewed for a unique “stringently-
defined otitis-prone” population, where microbial confirmation
of AOM through tympanocentesis was undertaken. The children
in this cohort demonstrate a wide range of dysfunctional innate
and adaptive immune responses that increase their vulnerability
to upper respiratory tract infections and OM (Pichichero, 2020).
CONCLUSION

The middle ear clearly demonstrates the structural and
functional features of a mucosal immune site, that for some
children, results in increased susceptibility to recurrent or
chronic OM. Investigations using a range of animal models
(chinchilla, rat, mouse) and particularly genetically modified
knockout mice, continue to improve our insight and
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understanding of activation and regulation of the host-microbial
interactions within the middle ear in response to a variety of
pathogens. The cellular immune apparatus within the middle ear
can mount a rapid innate immune response to invading
pathogens. Ongoing investigation and characterisation of the
innate and adaptive immune responses of the middle ear
mucosal tissues using clinical studies and animal models will
elucidate this region’s response to individual and multiple
otopathogen infections, and the host factors that influence OM
disease progression or clearance and response to vaccination.
Some pathogens, such as NTHi can activate multiple,
overlapping induction pathways resulting in innate immune
system upregulation. Co-infection with multiple pathogens can
also influence the host response. It is increasingly recognised that
genetic polymorphisms, the level of expression of key regulatory
molecules for the innate immune response and environmental
factors such as pathogen load may impair innate immune system
function and substantially increase the risk of predisposition of
some children to more frequent or severe OM. Future studies
need to explore the genetic and environmental interrelationships
of these polymorphisms and their impact on predisposition or
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
susceptibility to OM and its severity. Next generation sequencing
and large, well-phenotyped populations from multiple regions
will expand the applicability of these data to support
development of new treatment strategies that may enhance
innate immunity such as monophosphoryl lipid A (MPL)
studies in mice (Iwasaki et al., 2017), b-defensin 2 and
probiotics or alter the activation of the innate immune
responses to reduce inflammation and chronic OM pathogenesis.
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