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White matter hyperintensities (WMHs), which have a significant effect on human health,
have received increasing attention since their number of publications has increased
in the past 10 years. We aimed to explore the intellectual structure, hotspots, and
emerging trends of publications on WMHs using bibliometric analysis from 2012 to
2021. Publications on WMHs from 2012 to 2021 were retrieved from the Web of Science
Core Collection. CiteSpace 5.8.R3, VOSviewer 1.6.17, and an online bibliometric
analysis platform (Bibliometric. com) were used to quantitatively analyze the trends of
publications from multiple perspectives. A total of 29,707 publications on WMHs were
obtained, and the number of annual publications generally increased from 2012 to 2021.
Neurology had the most publications on WMHs. The top country and institution were
the United States and Harvard University, respectively. Massimo Filippi and Stephen
M. Smith were the most productive and co-cited authors, respectively. Thematic
concentrations primarily included cerebral small vessel disease, diffusion magnetic
resonance imaging (dMRI), schizophrenia, Alzheimer’s disease, multiple sclerosis,
microglia, and oligodendrocyte. The hotspots were clustered into five groups: white
matter and diffusion tensor imaging, inflammation and demyelination, small vessel
disease and cognitive impairment, MRI and multiple sclerosis, and Alzheimer’s disease.
Emerging trends mainly include deep learning, machine learning, perivascular space,
convolutional neural network, neurovascular unit, and neurite orientation dispersion and
density imaging. This study presents an overview of publications on WMHs and provides
insights into the intellectual structure of WMH studies. Our study provides information to
help researchers and clinicians quickly and comprehensively understand the hotspots
and emerging trends within WMH studies as well as providing direction for future basic
and clinical studies on WMHs.

Keywords: white matter hyperintensities, bibliometrics, CiteSpace, VOSviewer, co-citation analysis, intellectual
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INTRODUCTION

White matter hyperintensities (WMHs) are the neuroimaging
features of cerebral small vessel disease (CSVD) and are
commonly observed on brain magnetic resonance imaging (MRI)
in older people (Wardlaw et al., 2015; Chen et al., 2019).
The prevalence of WMHs is between 39% and 96% in the
general population and increases with age (Prins and Scheltens,
2015). WMHs are related to cognitive impairment, stroke,
depression, gait impairment, and death and influence many
diseases (Wardlaw et al., 2015; Liu et al., 2017; de Havenon
et al., 2019). Thus, the treatment of WMHs is of vital importance
(Li Q. et al., 2018). WMHs have received significant attention, and
relevant articles have been published. However, the pathogenesis
of WMHs remains unclear, and no effective therapeutic measures
are available (Li Q. et al., 2018).

There are a large number of publications related to WMHs.
However, the previous publications were mainly focused on a
single perspective of WMHs, lacking comprehensive bibliometric
analysis on WMHs. Therefore, it is necessary to conduct a
bibliometric study on WMHs.

Bibliometric analysis, also known as systematic scientometric
review, is a type of systematic reviews that is performed with
science mapping tools, including CiteSpace and VOSviewer
software (Chen and Song, 2019). Using these tools, bibliometric
analysis can quantitively analyze the publications, visualize
the intellectual structure, measure the impact of publications,
and identify emerging trends (Chen et al., 2012; Ellegaard
and Wallin, 2015; Thompson and Walker, 2015; Agarwal
et al., 2016). A network of diverse entities, including co-cited
references, co-occurred keywords, and cooperative authors, is
able to reflect the intellectual structure of a knowledge domain
(Chen C.M. et al., 2014). Co-citation analysis is the basis of
the visualization of intellectual structure within bibliometric
analysis (Chen et al., 2012). Bibliometric analysis has some
advantages over other knowledge synthesis approaches such
as conventional expert-compiled reviews (Chen C.M. et al.,
2014). Bibliometric analysis introduces quantitative analysis
methods, which can obtain more objective results. With
the help of bibliometric analysis tools, bibliometric analysis
can input and analyze a much wider range of publications
with higher analysis efficiency. However, conventional
expert-compiled reviews are still irreplaceable as experts
have profound and unique insights into a research field
(Chen C.M. et al., 2014).

CiteSpace software, which contained information
visualization methods, bibliometrics, and data mining
algorithms, can visualize the co-citation network of scientific
literature and identify trends and structure within a knowledge
domain (Synnestvedt et al., 2005). CiteSpace integrates “time
slice” networks to visualize the evolution of a knowledge
domain over time. Scientific literature published in a 1-year
time interval belongs to a “time slice” network (Chen C. et al.,
2014). VOSviewer is another computer program for constructing
and visualizing bibliometric networks (van Eck and Waltman,
2010). It is more advantageous in the visualization of large
bibliometric maps. The network visualization, the overlay

visualization, and the density visualization are the three types of
visualizations in VOSviewer.

Web of Science (WoS), Scopus, and Google Scholar databases,
which contain citation data, are commonly used in bibliometric
studies (Kulkarni et al., 2009). WoS provides citation rates,
which is extremely helpful, despite lacking citation tracking
(Agarwal et al., 2016). Its depth of coverage is great, as numerous
journals are covered from 1900 to present. Scopus is the largest
abstract and citation database, while the depth of coverage is
relatively poor. Although citation tracking is available, citation
data are only available since 1996. Google Scholar is freely
accessible, while it covers some sources that are non-scholarly
(Agarwal et al., 2016).

Our study aimed to map the intellectual structure and
illuminate the hotspots and trends of publications on WMHs
from 2011 to 2021 using bibliometric methods. In this way, we
can summarize the studies on WMHs in the past 10 years and
provide some directions for future studies.

MATERIALS AND METHODS

Data Sources and Search Strategies
The publications were retrieved from the Science Citation
Index Expanded (SCI-EXPANDED) of the WoS Core Collection
on 11 December, 2021. The search strategy was as follows:
topic = (leukoaraiosis OR [white matter AND (hyperintensit∗
OR lesion∗ OR disease∗ OR change∗ OR abnormalit∗)]) and
time span = 2012–2021. Only original articles and reviews were
included, and there were no other limitations. A total of 29,707
publications were obtained. We chose the past decade as the
research time period for the study, as an analysis of studies
published within the past decade enables researchers to identify
the latest research trends. Only original articles and reviews were
obtained, as these accounted for the vast majority of publications
and contained all the items needed for bibliometric analysis.

Analytical Method and Tools
Features of publications, such as journals and citations, were
retrieved from WoS. The impact factor (IF), which reflects the
influence of journals, was retrieved from the 2021 version of
Journal Citation Reports (JCR).

The co-citation network is composed of references cited
together by a set of articles and forms the intellectual base
(Synnestvedt et al., 2005; Chen C. et al., 2014). Nodes, which
represent references, are shown as citation “tree-rings” that
represent the number of citations received in different years.
Citation bursts, which means a surge of citations, are indicators of
emerging trends (Chen C. et al., 2014). Citation bursts in specific
time slices are represented by red rings in the network. Nodes
with purple rings have higher betweenness centrality than other
nodes, which means that their positions are critical in the network
(Chen et al., 2012). The lines denote co-citation links.

Then nodes are clustered into groups representing different
thematic concentrations. In the clustered network, the size of the
nodes denotes the number of citations received (Chen C.M. et al.,
2014). The smaller the serial number in the cluster label, the larger
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and more important the cluster is. The silhouette score of a cluster
is close to 1, representing that the cluster has good homogeneity
(Chen et al., 2012). The timeline view visualizes the changes of
each cluster over time.

The keyword co-occurrence network, which can be visualized
by VOSviewer, is able to indicate the hotspots (Chen et al.,
2012). In the network, the nodes represent keywords, and the
size of the nodes denotes the number of publications in which
a keyword occurs. The lines represent co-occurrence links, and
link strength represents the number of publications in which a
keyword occurs. The nodes are divided into different clusters that
are distinguished by color.

Cooperation analysis of countries and institutions, can
identify the countries and institutions with great impact in the
field of WMH studies and show the cooperation among them.
The co-occurrence network of subject categories can reflect the
hot disciplines and topics (Chen et al., 2012). Co-citation analysis
of journals visualized by CiteSpace enables the identification of
the influential journals on WMHs. Cooperation and co-citation
analysis of authors are able to find out researchers making great
contributions to WMH studies and visualize the cooperation
between researchers.

The dataset of the 29,707 publications were input into
CiteSpace. Different variants were merged in batches using a
specific file. The time slicing was set as “from 2012 to 2021,”
and years per slice was set to “1”. The link strength was set to
“Cosine,” and the scope was set to “within slices”. The selection
criteria used g-index in each slice, with the scale factor k value
set to “25.” There was no network pruning. Co-citation analysis
of references, journals, and authors, burst detection of keywords,
and co-occurrence analysis of subject categories were performed
with CiteSpace. In the timeline view of the clustered network of
co-cited references, the top 12 clusters were displayed.

VOSviewer was used to visualize the cooperation analysis of
countries, institutions, and authors and co-occurrence analysis of
keywords. VOSviewer utilizes thesaurus files to merge different
variants. In the cooperation analysis of countries, institutions,
and authors, the maximum number of countries, institutions, or
authors per document was set to “25”. The minimum number of
documents of a country, institution, or an author was set to “5”,
and the minimum number of citations of a country, institution,
or an author was set to “0”. The top 50 countries, top 100
institutions, and top 100 authors were displayed in the networks.

An online bibliometric analysis platform1 and Microsoft Excel
were used to map the publication distribution.

The number of publications by countries and institutions
refers to the number of all articles published by authors from
these countries and institutions in the dataset obtained from
WoS. The citations of publications by countries and institutions
were received not only from the field of WMHs, but also from
other research fields in WoS. Therefore, the number of the
citations reflects the impact of these publications on all fields,
not only within the field of WMHs. In the co-citation analysis of
references, the number of citations refers to the times a reference
was co-cited with other references in the obtained dataset. With
respect to the co-citation analysis of journals and authors, the

1http://bibliometric.com/

number of citations refers to the times a reference including
the specified journals or authors was co-cited with the other
references in the obtained dataset. In the author cooperation
analysis, article counts refer to the number of articles published
by the authors in the obtained dataset. In the subject category co-
occurrence analysis, frequency refers to the number of articles
that belong to the subject categories in the obtained dataset.
In the keyword co-occurrence analysis, frequency refers to the
number of articles in which a given keyword occurred within the
obtained dataset.

RESULTS

Yearly Quantitative Distribution of
Articles
The annual number of publications can indicate the overall
trend of WMH studies. From 2012 to 2021, a total of 29,707
original articles and reviews were included. The overall trend
of the annual number of publications increased, from 2,253 in
2012 to 3,200 in 2021 (Figure 1A). Figure 1B shows that the
United States has maintained the largest number of publications,
whereas the publications of China has continued to grow rapidly
in the past decade.

Country and Institution Cooperation
Analysis
Cooperation analysis of countries and institutions is used to
explore countries and institutions with enormous influence and
the collaboration between them.

The 29,707 articles were distributed among 126 countries and
regions. As shown in Table 1, the leading country in terms
of the number of publications is the United States (11,225,
37.0%), followed by China (3,905, 13.1%), the United Kingdom
(3,672, 12.4%), Germany (2,800, 9.4%), and Canada (2,386, 8.0%).
These countries made great contributions to WMH studies.
The United States had the maximum total citations (31,5421),
followed by the United Kingdom (120,975) and Netherlands
(76,885). In the cooperation network (Figure 2), the size of the
nodes depicts the number of publications, and the link strength
represents the closeness of the collaborations. Countries and
regions with the top five link strength were the United States,
the United Kingdom, Germany, Netherlands, and Canada. These
countries had more cooperation than other countries.

A total of 16,677 institutions published articles on WMHs. As
shown in Table 2, Harvard University has the maximum number
of publications (1,525, 5.1%), followed by University College
London (898, 3.0%), the University of Toronto (743, 2.5%), Johns
Hopkins University (586, 2.0%), and King’s College London
(563, 1.9%). Therefore, Harvard University, University College
London, the University of Toronto, Johns Hopkins University,
and King’s College London were the influential institutions in
the field of WMH studies. Harvard University was the most
cited institution (48,292), followed by University College London
(28,722) and Vrije University Amsterdam (19,956). As shown
in Figure 3, institutions with the top five link strength are
Harvard University, University College London, University of
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FIGURE 1 | Quantitative distribution of publications on white matter hyperintensities (WMHs). (A) Annual distribution of publications on WMHs. (B) Annual
distribution of publications on WMHs among the top 10 countries.

California San Francisco, Vrije University Amsterdam, and
King’s College London. These institutions had more cooperation
than other institutions.

Journal Co-citation Analysis
Co-citation analysis of journals aims to identify journals with
great influence and illustrate the associations among journals.
The top 20 journals are listed in Table 3. Neurology had the
maximum number of citations (16,180 citations), with an IF of
9.910. Neuroimage was the second most cited journal (15,805
citations), with an IF of 6.556. Brain, which had an IF of
13.501, ranked third with a citation count of 14,385. They were
the journals with great impact. Neuroimage had the largest
centrality value (0.06), which demonstrated that Neuroimage had
an important position in the network. According to the JCR 2021
standards, eight of the top 10 journals were categorized as the
first quartile (Q1), and two of the top 10 journals belonged to the
second quartile (Q2). The top 10 journals were the mainstream
journals in the field.

Author Cooperation and Co-citation
Analysis
Cooperation and co-citation analysis of authors aim to identify
researchers with great impact in the research field and promote

TABLE 1 | The top 10 countries and regions contributing to the publications on
white matter hyperintensities.

Rank Country/region Article
counts

Total
number of
citations

Average
number of
citations

Total
link

strength

1 United States 11,225 315,421 28.10 8469

2 China 3,905 53,136 13.61 2080

3 United Kingdom 3,672 120,975 32.95 5951

4 Germany 2,800 76,885 27.46 4331

5 Canada 2,386 62,704 26.28 3195

6 Netherlands 2,181 67,745 31.06 3505

7 Italy 2,156 50,441 23.40 2992

8 Japan 1,674 25,765 15.39 908

9 Australia 1,475 39,439 26.74 2284

10 France 1,455 40,599 27.90 2447

the collaboration among researchers. The top 10 productive
authors and co-cited authors are listed in Table 4. The
cooperation of the top 100 productive authors is illustrated
in Figure 4. Massimo Filippi, from Vita-Salute San Raffaele
University in Italy, published the highest number of articles,
followed by Joanna M. Wardlaw from University of Edinburgh
in the United Kingdom and Frederik Barkhof from University
College London in the United Kingdom and Amsterdam
University Medical Centers in the Netherlands. They were the
most productive authors. Smith S.M. (4,549 citations) was the
most cited author, followed by Wardlaw J.M. (2,152 citations),
Basser P.J. (2,101 citations), and Fazekas F. (2,054 citations). They
had great influence in the field of WMH studies.

Subject Category Co-occurrence
Analysis
Every periodical of WoS belongs to one or more subject
categories. The co-occurrence analysis of subject categories can
indicate the influential disciplines. Burst detection illustrated
active study areas. Neurosciences and Neurology was the
largest category with the highest number of publications,
followed by Neurosciences and Clinical Neurology (Table 5).
By the end of 2021, bursts of subject categories included
“computer science, information system,” “telecommunications,”
and “engineering, electrical and electronic,” etc., which indicated
the emerging trends (Supplementary Figure 1). Therefore,
computer science, information technology, and electronic
technique are increasingly being applied in WMH studies.

Keyword Co-occurrence Cluster
Analysis
Keyword co-occurrence cluster analysis is used to explore core
keywords, identify the co-occurrence links, classify keywords into
clusters, and shed light on the hotspots. Burst detection reflects
emerging trends (Chen C.M. et al., 2014).

The network of keyword co-occurrence cluster analysis is
shown in Figure 5A. The 7,855 keywords with a frequency
over five were analyzed and divided into five clusters: white
matter and diffusion tensor imaging (DTI) (in red), inflammation
and demyelination (in green), small vessel disease (SVD) and
cognitive impairment (in blue), MRI and multiple sclerosis (MS)
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FIGURE 2 | Cooperation network of countries and regions contributed to publications on white matter hyperintensities. The nodes represent the countries, and the
lines represent the cooperation between countries. The size of the nodes depicts the number of publications. The color of the nodes distinguishes the cluster of the
countries.

TABLE 2 | The top 10 institutions contributing to publications on white matter
hyperintensities.

Rank Institutions Article
counts

Total
number of
citations

Average
number of
citations

Total
link

strength

1 Harvard
University

1525 48,292 31.67 1993

2 University
College London

898 28,722 31.98 1407

3 University of
Toronto

743 16,511 22.22 767

4 Johns Hopkins
University

586 15,421 26.32 703

5 King’s College
London

563 19,824 35.21 804

6 Vrije University
Amsterdam

533 19,956 37.44 866

7 University of
California

San Francisco

519 17,118 32.98 890

8 University of
Pittsburgh

507 17,600 34.71 562

9 University of
Pennsylvania

482 15,747 32.67 714

10 University of
Cambridge

420 14,320 34.10 586

(in yellow), and Alzheimer’s disease (AD) (in purple). They were
the hotspots of the research field. The temporal distribution of the
keywords co-occurrence cluster is shown in Figure 5B. The color

of the nodes depicts the average publication year and changes
from dark blue to yellow, representing the average publication
year of the keywords from 2012 to 2021. SVD, machine learning
(ML), connectivity, tract, and neurodegeneration, etc., which
have approximate yellow colors, have recent average publication
time. Therefore, these keywords have been the active topics
in recent years.

The top 25 keywords with the strongest citation bursts were
detected from 2012 to 2021. As shown in Figure 6, by the end
of 2021, deep learning (DL) has the maximum burst strength,
followed by ML, perivascular space (PVS), convolutional
neural network (CNN), neurovascular unit (NVU), neurite
orientation dispersion and density imaging (NODDI), surface
area, parcellation, density, connectome, and free water. They
were the emerging trends in the research of WMHs.

Co-cited Reference Analysis
The co-citation analysis of references can identify frequently cited
references and explore the relationships between references.

References cited by the 29,707 articles were analyzed and
visualized. Table 6 displays the top 10 co-cited references.
The article published by Wardlaw et al. in the Lancet
Neurology had the maximum number of citations (658
citations), followed by the article published by Andersson
and Sotiropoulos in the Neuroimage (410 citations) and the
article published by Jenkinson et al. in the Neuroimage (358
citations) (Jenkinson et al., 2012; Wardlaw et al., 2013b;
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Andersson and Sotiropoulos, 2016). These references had
important implications for WMH studies.

Co-cited Reference Cluster Analysis
The co-cited reference cluster analysis can devide references into
clusters that represent different thematic concentrations, in order
to shed light on the intellectual structure.

As shown in Figure 7, the references are clustered and
analyzed, and the seven largest clusters include CSVD,
diffusion MRI (dMRI), schizophrenia, AD, MS, microglia, and
oligodendrocyte. Every cluster denotes a thematic concentration
of intellectual structure. The network contains 1955 nodes and
9899 links. The weighted mean silhouette score is 0.909, which
means that the clusters had good homogeneity.

The timeline view illustrates the distributions and changes of
nodes in each cluster over time, which are reflective of changes
in research focus. The timeline view of the co-citation cluster
analysis of references is shown in Figure 8. Every cluster is
shown on a horizontal line with a cluster label on the right. The
time is at the top, which can be used to judge the publication
time. The references are depicted as citation rings that reflect
their citations, and the reference labels are shown under the
citation rings. The lines represent the co-citation links between
nodes. The color of the lines distinguishes different clusters.
The timeline view can reflect the trends of the research field
over time, highlighting emerging and pivotal study directions.
As shown in Figure 8, cluster #0 CSVD and cluster #1 dMRI
are the largest clusters. These two clusters appeared early and

persisted. Cluster #5 microglia and #cluster 11 brain age occurred
late. These results suggest that CSVD and dMRI has been the
major focuses of researchers in this field during the past decade.
However, microglia and brain age have attracted researchers’
attention in recent years.

DISCUSSION

This study quantitatively analyzed the publications on WMHs
from 2012 to 2021 using the bibliometric analysis method. With
the quantitative method, it provided an overview of WMH
studies, characterized the intellectual structure, and identified
the emerging trends. Other knowledge synthesis methodologies
such as conventional reviews have also been used in the
field of WMH studies (Prins and Scheltens, 2015). However,
conventional reviews use subjective and qualitative analytical
methods and mainly focus on one aspect of WMH studies. Thus,
it is difficult to get a true overview of the research field. Therefore,
bibliometric analysis may be a superior method for quantitatively
analyzing publications.

General Trends of Publications on White
Matter Hyperintensities
The number of annual publications on WMHs in the past
decade has been generally increasing, indicating that WMHs
have received increasing attention. Therefore, the importance of
WMH studies has been increasingly recognized.

FIGURE 3 | Cooperation network of institutions contributed to publications on white matter hyperintensities. The nodes represent the institutions, and the lines
represent the cooperation between institutions. The size of the nodes denotes the number of publications. The color of the nodes distinguishes the cluster of the
institutions.
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Neurology had the maximum number of citations, followed
by Stroke and Annals of Neurology, indicating that they were
influential journals on WMHs. The top 10 cited journals
were the mainstream journals in the field of neurology, which
demonstrates that research on WMHs is a hot topic in neurology.

The United States, China, and the United Kingdom were
the three countries that published the maximum number
of articles on WMHs. The United States, the United
Kingdom, and Germany were the leading countries in the

TABLE 3 | The top 10 co-cited journals on white matter hyperintensities.

Rank Journal title Total number
of citations

Centrality Impact
factor(2021)

Quartile in
category

(2021)

1 Neurology 16,180 0.04 9.91 Q1

2 Neuroimage 15,805 0.06 6.556 Q1

3 Brain 14,385 0.03 13.501 Q1

4 PLos ONE 12,765 0.03 3.24 Q2

5 Annals of
Neurology

11,397 0.01 10.422 Q1

6 Journal of
Neuroscience

10,821 0.05 6.167 Q1

7 Proceedings of
the National
Academy of

Sciences of the
United States

of America

9,776 0.03 11.205 Q1

8 American
Journal of

Neuroradiology

9,739 0.01 3.825 Q2

9 Human Brain
Mapping

9,170 0.02 5.038 Q1

10 Journal of
Neurology

Neurosurgery
and Psychiatry

9,129 0.01 10.154 Q1

TABLE 4 | The top 10 productive authors and co-cited authors in white matter
hyperintensity studies.

Rank Author Article counts Co-cited
author

Total number
of citations

1 Massimo Filippi 168 Smith SM 4,549

2 Joanna M.
Wardlaw

165 Wardlaw JM 2,152

3 Frederik
Barkhof

143 Basser PJ 2,101

4 Charles Decarli 116 Fazekas F 2,054

5 Clifford R. Jack
Jr

108 Mori S 2.011

6 Mark E. Bastin 85 Jenkinson M 1,996

7 Meike W.
Vernooij

85 Ashburner J 1,975

8 Maria A. Rocca 82 Fischl B 1,802

9 Paul M.
Thompson

82 Pantoni L 1,720

10 Qiyong Gong 80 Song SK 1,573

cooperation network. Therefore, the United States and the
United Kingdom were the most influential countries in
the field of WMHs. China has the second largest number
of publications on WMHs. However, China’s cooperation
strength in the cooperation network was relatively low, which
indicates that China should enhance its cooperation with
other countries.

Harvard University had the most publications, followed
by University College London and the University of
Toronto. It’s obvious that Harvard University leads the
way in WMH studies. Five of the top 10 countries
that contributed to publications on WMHs were in the
United States, which indicates that institutions in the
United States contributes the most to publications on
WMHs. Harvard University, University College London,
University of California San Francisco, Vrije University
Amsterdam, and King’s College London collaborate more than
other institutions.

Intellectual Structure of Publications on
White Matter Hyperintensities
The intellectual structure is composed of multiple entities,
including co-cited references and co-occurring keywords (Chen
C.M. et al., 2014).

Massimo Filippi published the highest number of articles,
followed by Joanna M. Wardlaw and Frederik Barkhof. Thus,
they are the most prolific authors. Stephen M. Smith was
the most cited author, followed by Joanna M. Wardlaw and
Peter J. Basser. Therefore, their publications had a significant
impact on WMH studies.

The subject category co-occurrence analysis demonstrated
that computer science, information technology, and electronic
technique have been increasingly introduced into WMH studies,
acting as advanced tools in the study of WMHs.

The top 10 co-cited references had significant implications
for WMH studies. The most cited reference, which was
written by an international working group, proposed a series
of detailed neuroimaging standards for CSVD; it removed
a significant barrier and laid a solid foundation for the
study and clinical practice of CSVD (Wardlaw et al., 2013b).
The second top cited reference developed a method to
estimate and correct for off-resonance induced distortions
and subject movement in diffusion imaging, which has been
widely used (Andersson and Sotiropoulos, 2016). The third
top cited reference systematically introduced the development
process and current situation of the FMRIB Software Library,
which is widely used to analyze MRI brain imaging data
(Jenkinson et al., 2012).

There were three other top cited references on neuroimaging.
Jones et al. (2013) provided insights into the physics of diffusion-
weighted MRI, appropriate approaches to obtain diffusion-
weighted MRI data, method to interpret the results, and a list
of the things that should be done or avoided. Winkler et al.
(2014) proposed permutation inference for a general linear
model to control false positives in imaging research scenarios.
Smith and Nichols (2009) presented a threshold-free cluster
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FIGURE 4 | Cooperation network of authors contributed to publications on white matter hyperintensities. The nodes represent the authors, and the lines represent
the cooperation between authors. The size of the nodes represents the number of publications. The color of the nodes distinguishes the cluster of the authors.

enhancement method that was more sensitive and stable than
cluster-based thresholding.

The other four top cited references are on white matter
diseases. Polman et al. (2011) introduced the revision of
the diagnostic criteria for multiple sclerosis, the McDonald
criteria, in 2010, with the simplification of the criteria and the
emphasis on the application in broader populations. Debette and
Markus (2010) conducted a meta-analysis and found that the
increased risk of stroke, dementia, and death can be estimated
using WMHs. Wardlaw et al. (2013a) proposed the potential
pathogenesis of SVD from the perspective of neuroimaging and
presented hypotheses for the study of SVD. Prins and Scheltens

TABLE 5 | The top 10 subject categories.

Rank Category Freq

1 Neurosciences and Neurology 17,715

2 Neurosciences 11,370

3 Clinical Neurology 8,845

4 Radiology, Nuclear Medicine and Medical Imaging 3,885

5 Neuroimaging 3,229

6 Psychiatry 2,521

7 Science and Technology-Other Topics 1,567

8 Multidisciplinary Sciences 1,546

9 Geriatrics and Gerontology 1,323

10 Cardiovascular System and Cardiology 1,151

(2015) suggested that WMHs were predictors of cognitive decline
and could be a therapeutic target.

The keywords can be divided into five clusters: white matter
and DTI, inflammation and demyelination, SVD and cognitive
impairment, MRI and MS, and AD. These were the hotspots
in WMH studies. The main clusters of co-cited references
were CSVD, dMRI, schizophrenia, AD, MS, microglia, and
oligodendrocyte, which were the thematic concentrations of the
WMH publications. CSVD and dMRI have been the major
thematic concentrations in the decade, while microglia and brain
age have attracted researchers’ attention only in recent years.
Hotspots and thematic concentrations were intrinsically linked.

Cerebral small vessel disease is a broad spectrum of diseases
affecting the perforating arterioles, capillaries, and venules
with heterogeneous etiologies. Recent small subcortical infarcts,
lacunes, WMHs, PVSs, microbleeds, and brain atrophy are the
neuroimaging biomarkers of CSVD (Wardlaw et al., 2013b). The
clinical manifestations of CSVD are heterogeneous, containing
cognitive decline, psychiatric disorders, gait dysfunction, and
urinary incontinence (Cannistraro et al., 2019). The pathogenesis
of CSVD needs to be further elucidated, and CSVD lacks
specific prevention and treatment methods; currently, vascular
risk factors are the targets for the prevention and treatment of
CSVD (Li Q. et al., 2018; Cannistraro et al., 2019).

Diffusion imaging, which utilizes the water diffusion–driven
displacement (Le Bihan, 2013), can differentiate individual tracts
and assess both the microstructure and macrostructure of white
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FIGURE 5 | Clustered network of keyword co-occurrence. (A) Network
visualization of keyword co-occurrence cluster analysis. (B) Overlay
visualization of keyword co-occurrence cluster analysis. The keywords are
depicted as the nodes, and the lines represent the co-occurrence links. The
size of the nodes denotes the number of publications. In panel (A), the color
of the nodes distinguishes the cluster of the keywords. In panel (B), the color
of the nodes, which denotes the average publication year, changes from dark
blue to yellow, representing the average publication year of the keyword from
2012 to 2021.

matter. Diffusion imaging is a popular method despite its
shortcomings, such as lack of specificity (Lebel et al., 2019).
Diffusion weighted imaging, DTI, advanced multi-compartment
diffusion models, tractography analysis, and connectivity analysis
all belong to the category of diffusion imaging (Raja et al., 2019).
DTI, which utilizes the diffusion tensor model to map the white
matter fiber (Basser et al., 1994a,b), has a broader range of uses
than any other diffusion methods despite some limitations (Jones
and Cercignani, 2010; Tournier et al., 2011). Mean diffusivity

and fractional anisotropy are the DTI scalars used to measure
the properties of white matter. Advanced diffusion methods such
as diffusion kurtosis imaging can characterize the white matter
microstructure more specifically (Jensen et al., 2005; Xu et al.,
2016).

Schizophrenia is a serious psychiatric disease with apparent
clinical heterogeneity (Tan et al., 2020). Widespread white matter
is a prominent neuroimaging feature of schizophrenia (Cetin-
Karayumak et al., 2020). Diffusion imaging has shown that
white matter microstructure is damaged in schizophrenia with
reproducible patterns (Kochunov and Hong, 2014; Ohtani et al.,
2014; Kochunov et al., 2022). The dMRI studies have indicated
that white matter abnormalities are present throughout the
whole process of schizophrenia, which is consistent with a
developmental theory (Cetin-Karayumak et al., 2020).

Alzheimer’s disease is a neurodegenerative disease
characterized by pathological changes in the gray and white
matter. Cerebrovascular disease and AD pathology are
commonly comorbid, significantly increasing the risk of
developing dementia (Toledo et al., 2013; Arvanitakis et al., 2016;
Azarpazhooh et al., 2018). White matter degeneration is closely
related to cognitive and functional decline and may occur years
before the onset of anticipated symptoms of AD (Ble et al., 2006;
Lee et al., 2016; Zavaliangos-Petropulu et al., 2019). White matter
degeneration is recognized as a prominent characteristic and
potential biomarker of AD (Sachdev et al., 2013; Lee et al., 2016)
and correlates with neuroimaging biomarkers of AD (Gaubert
et al., 2021). Oligodendrocyte lineage cells dysfunction is a
crucial mechanism of the white matter changes of AD and may
be the potential target (Nasrabady et al., 2018; Lorenzini et al.,
2020).

Multiple sclerosis is a chronic inflammatory, demyelinating
disease with various clinical courses (Lassmann, 2018). Two types
of inflammation may lead to demyelination in MS (Lassmann,
2018). Primary demyelination and diffuse neurodegeneration,
which are two of the pathological features, involve the white
and gray matter (Kutzelnigg et al., 2005; Haider et al., 2014;
Lassmann, 2018). Remyelination of different extents helps
repair demyelination (Patrikios et al., 2006; Patani et al.,
2007). In fact, pre-existing unaffected oligodendrocytes rather
than new oligodendrocytes perform remyelination (Yeung
et al., 2019). However, most patients with MS cannot enhance
oligodendrocyte production despite considerable potential
(Yeung et al., 2019). Prompt and aggressive treatment is
essential to protect oligodendrocytes and promote recovery
(Giovannoni et al., 2016).

Microglia are resident myeloid cells with multiple functions
and phenotypes (Lee et al., 2019). They have multiple functional
subsets associated with the category or spatiotemporal state of the
diseases and thus have numerous effects on white matter diseases
(Lee et al., 2019). Oligodendrocyte lineage cells are affected by
various subpopulations of microglia, both in the demyelination
and remyelination phases (Li et al., 2017; Dai et al., 2020).

Oligodendrocytes, which have multiple functions, can
produce myelin sheaths that can accelerate conduction
velocity, making contributions to remyelination (Hamanaka
et al., 2018; Kuhn et al., 2019). As oligodendrocyte
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FIGURE 6 | The top 25 keywords with the strongest citation bursts during 2012–2021. Each line denotes a keyword with its occurrence year, the citation burst
strength, and the beginning and ending times of the citation burst. On the right side of the figure, each line, which is divided into 10 short lines, represents the time
from 2012 to 2021. Each red line segment depicts a citation burst in the corresponding year.

progenitor cells (OPCs) can proliferate and differentiate
into oligodendrocytes, OPCs are critical to oligodendrocytes
regeneration (Clayton and Tesar, 2021). Oligodendrocyte lineage
cells, which comprised oligodendrocytes and OPCs, can perform
the reparative function with the help of the cells of the NVU
(Levit et al., 2020). As oligodendrocyte lineage cells have multiple
effects (Zhou et al., 2021), they are potential targets for the
treatment of white matter diseases (Ohtomo et al., 2018).

Emerging Trends of Publications on
White Matter Hyperintensities
Burst detection indicates emerging trends in the field of study.
Among the top 25 keywords with the strongest citation bursts,

DL had the maximum burst strength, followed by ML, PVS,
CNN, NVU, and NODDI.

Deep learning, which is a tool for ML and can analyze big data,
is widely used in many areas of medical image analysis (Anwar
et al., 2018). Currently, DL tractography segmentation method
utilizing DL techniques performs well in segmenting white matter
fibers (Poulin et al., 2019). The deep white matter analysis method
leveraging DL can identify white matter tracts consistently and
quickly (Zhang et al., 2020). DL can segment WMHs and other
disease areas in CSVD (Duan et al., 2020; Shan et al., 2021).
ML algorithms are employed to produce streamlines in the
process of tractography; the path-based and local-model-free
method can avoid the disadvantages of traditional tractography
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TABLE 6 | The top 10 co-cited references.

Rank Title First author Journal Year Total citations

1 Neuroimaging standards for research into small vessel disease and its
contribution to ageing and neurodegeneration (Wardlaw et al., 2013b)

Joanna M. Wardlaw Lancet Neurol 2013 658

2 An integrated approach to correction for off-resonance effects and subject
movement in diffusion MR imaging (Andersson and Sotiropoulos, 2016)

Jesper L R. Andersson Neuroimage 2016 410

3 FSL (Jenkinson et al., 2012) Mark Jenkinson Neuroimage 2012 358

4 White matter integrity, fiber count, and other fallacies: the do’s and don’ts of
diffusion MRI (Jones et al., 2013)

Derek K. Jones Neuroimage 2013 357

5 Permutation inference for the general linear model (Winkler et al., 2014) Anderson M. Winkler Neuroimage 2014 304

6 Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald
criteria (Polman et al., 2011)

Chris H. Polman Annals of Neurology 2011 297

7 Threshold-free cluster enhancement: addressing problems of smoothing,
threshold dependence and localisation in cluster inference (Smith and

Nichols, 2009)

Stephen M. Smith Neuroimage 2009 283

8 The clinical importance of white matter hyperintensities on brain magnetic
resonance imaging: systematic review and meta-analysis (Debette and

Markus, 2010)

Stéphanie Debette BMJ 2010 274

9 Mechanisms of sporadic cerebral small vessel disease: insights from
neuroimaging (Wardlaw et al., 2013a)

Joanna M. Wardlaw Lancet Neurol 2013 251

10 White matter hyperintensities, cognitive impairment and dementia: an
update (Prins and Scheltens, 2015)

Niels D. Prins Nat Rev Neurol 2015 246

FIGURE 7 | Clustered network of co-cited references of the publications on white matter hyperintensities. The nodes represent the references, and the lines
represent the co-citation links between the references. The size of the nodes denotes the number of citations. The color of the nodes distinguishes the cluster of the
references. The labels in bright red are the names of the clusters, and the labels in dark red represent the important articles highly cited of each cluster.
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FIGURE 8 | Timeline view of the clustered network of co-cited references. Every cluster is shown on a horizontal line with a cluster label on the right. The time is
displayed at the top of the figure, which can be referred to judge the publication time of the references. The references are shown as citation rings which reflect their
citations, and the reference labels are shown under the citation rings. The lines depict the co-citation links. The color of the lines represents different clusters.

methods (Poulin et al., 2019). ML tractography will make
significant contributions to white matter tractography; however,
an outstanding framework for training and evaluating ML
tractography methods is required (Poulin et al., 2019). CNNs are
the most popular DL techniques used in medical image analysis
(Anwar et al., 2018). CNN algorithms can segment WMHs and
perform white matter tract segmentation efficiently with high
accuracies (Li H. et al., 2018; Wasserthal et al., 2018; Schirmer
et al., 2019; Li et al., 2020).

Perivascular spaces, which surround cerebral deep perforating
arteries, are compartments containing cerebrospinal fluid. They
can facilitate material exchange and waste clearance, and play an
essential role in glymphatic function (Iliff et al., 2012). There were
topological associations and volumetric associations between
deep WMH lesions and PVSs, and PVSs may grow into WMHs;
the underlying mechanism may be increased interstitial fluid and
glymphatic dysfunction (Chen et al., 2019; Huang et al., 2021).
PVS is a neuroimaging marker for CSVD (Chen et al., 2019).

Neurovascular unit includes neurons, astrocytes, endothelial
cells, pericytes, vascular smooth muscle cells, and extracellular
matrix components (Muoio et al., 2014). The NVU directs
neurovascular coupling to match the metabolic demands
(Girouard and Iadecola, 2006; Muoio et al., 2014). The blood
brain barrier, the critical structure of the NVU, manages the
diffusion of molecules between the blood and brain (Daneman
and Prat, 2015). NVU dysfunction has adverse effects on
central nervous system homeostasis and may be the underlying
mechanism of WMHs (Cannistraro et al., 2019; Levit et al., 2020;
Sabayan and Westendorp, 2021). Oligodendrocyte lineage cells

supported by cells of the NVU make significant contributions
to white matter repair (Hamanaka et al., 2018). Glial cells are
expected to be therapeutic targets of WMHs (Levit et al., 2020).

Neurite orientation dispersion and density imaging is a dMRI
approach with a multi-compartment model (Zhang et al., 2012).
The neurite density index and orientation dispersion index,
which are the essential parameters of NODDI, can evaluate
neurite packing density and neurite angular variation and have
been histologically validated (Zhang et al., 2012; Mollink et al.,
2017; Schilling et al., 2018; Wang et al., 2019). NODDI is
becoming popular, particularly in the field of white matter studies
(Lynch et al., 2020; Beck et al., 2021; Lehmann et al., 2021).

Strengths and Limitations
To our knowledge, this is the first study that quantitatively
analyzed the publications on WMHs from 2012 to 2021 using
the bibliometric analysis method. The intellectual structure
and emerging trends were identified to provide directions
for future studies on WMHs. However, this study has some
limitations. Firstly, the publications were obtained only from the
SCI-EXPANDED of WoS, and not from any other databases.
Secondly, only publications in English were obtained, whereas
publications in different languages were excluded. Thirdly, only
original articles and reviews were retrieved, whereas other types
of publications were not obtained. Last but not least, as the
COVID-19 pandemic has had a major impact on scientific
research and clinical practice, the trends of WMH study may have
changed to some extent. Thus, the emerging trends identified in
the current study may only be used as a reference.
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CONCLUSION

This study quantitatively analyzed the publications on WMHs
in the past decade, using bibliometric analysis performed by
Citespace and VOSviewer software. The study provided insights
into the intellectual structure of WMH studies, and shed light on
emerging trends. WMH studies mainly focused on the study of
diseases with WMHs as the critical pathogenesis, dMRI research,
and the mechanistic research of WMHs from the perspective of
microglia and oligodendrocyte. The emerging trends centered on
the application of new technologies such as ML in neuroimaging
research. Studies on PVS and NVU were also identified as
the emerging trends of WMH studies. This study can help
researchers and clinicians obtain the hotspots and emerging
trends of WMH studies and promote the collaboration among
academics, institutions, and countries. Our findings can also
provide direction for future basic and clinical studies of WMHs
and promote the prevention and treatment of WMHs.
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