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A B S T R A C T   

3D bioprinting has unlocked new possibilities for generating complex and functional tissues and 
organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for 
constructing fully functional 3D artificial organs. Currently, there are no cell sources available 
that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses 
unique characteristics suitable for specific applications. In this review, we explore the impact of 
different 3D bioprinting technologies and bioink materials on seed cells, providing a compre-
hensive overview of the current landscape of cell sources that have been used or hold potential in 
3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bio-
printing. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted 
organs, highlighting their potential to revolutionize the fields of tissue engineering and regen-
erative medicine.   

1. Introduction 

3D bioprinting is an emerging technology that enables the precise layer-by-layer deposition of bioink, a specialized material 
consisting of living cells, biomaterials, and bioactive molecules [1–6]. This advanced technique allows for the fabrication of complex 
and functional tissues or organs. The implications of 3D bioprinting are vast, with the potential to generate tailored and functional 
tissues for diverse applications, including regenerative medicine [7–9], drug discovery [10–13], and toxicology testing [14,15]. 
However, there are still several challenges that need to be overcome to unlock the full potential of 3D bioprinted tissues and organs. 

Regardless of the rapid advancements in additive manufacturing technologies, obtaining suitable seed cells persists in the pursuit of 
creating fully functional organs through 3D bioprinting [16–18]. Seed cells play an essential role in 3D bioprinting technology since 
cells are the fundamental units of life. High quality cells are indispensable for generating applicable 3D bioprinted tissues and organs. 
An ideal cell source possesses several key characteristics.  

1. Printability: The cells should demonstrate the ability to withstand the rigorous printing process, including shear stress, pressure, 
and temperature variations, without compromising their viability or functionality. Although suitable bioink materials could help to 
increase the printability of cells, it is still important for cells utilized for the generation of organs and tissues. 
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2. Proliferation: For organ and tissue fabrication, cells need to possess a proliferation capacity in order to expand to the required cell 
number and adequately populate the 3D bioprinted tissue. However, it is also important to have control over the proliferation of the 
seed cells. Excessive proliferation could result in hyperplasia which can disrupt the structure and function of 3D bioprinted tissues.  

3. Functionality: The cells should either possess functional attributes or have the capability to differentiate into mature functional 
cells, thereby establishing the desired functionality of the 3D bioprinted organs.  

4. Safety: When constructing transplantable normal tissues for therapeutic purposes, it is crucial to use cells with a normal karyotype, 
non-tumorigenic properties, and devoid of phycological toxicity. Immunological rejection induced by allogeneic or heterogeneous 
cells is also a serious problem, which should be carefully considered.  

5. Economy: The construction of large-scale organs necessitates a substantial number of seed cells. Therefore, the cost-effective large- 
scale expansion of seed cells is crucial for the applications of 3D bioprinted organs.  

6. Self-assembly ability: The microstructure of 3D bioprinted tissues plays a crucial role in achieving full functionalization. The 
microstructure is primarily formed through the natural self-assembly and organization of cells, which cannot be precisely designed 
using the current resolution capabilities of 3D bioprinting techniques. The vessel networks of 3D bioprinting vascular tissues mainly 
relied on the cells [19,20]. 

An appropriate cell source is key for the successful development of fully functional 3D bioprinted organs. By meticulously selecting 
seed cells that possess essential characteristics, including printability, proliferation, functionality, safety, economic feasibility, and self- 
assembly ability, researchers can overcome a significant hurdle in achieving the desired microstructure and multi-functionality of 3D 
bioprinted tissues and organs [21,22]. In this review, we explored the impact of various 3D bioprinting technologies and bioink 
materials on seed cells and provided a comprehensive overview of the currently available options for cell sources in 3D bioprinting. 
Furthermore, we offer insights into the prospects of seed cells for 3D bioprinted organs, highlighting their potential to revolutionize 
tissue engineering and regenerative medicine. 

2. Cell requirements in different 3D bioprinting techniques 

In recent years, significant advancements have been made in 3D-bioprinting techniques, revolutionizing the field of bioartificial 
organ construction. 3D bioprinting involves the precise deposition of bioinks composed of living cells and biomaterials, enabling the 
fabrication of complex tissue structures [23–25]. However, it is important to note that different bioprinting technologies possess 
unique characteristics, resulting in distinct requirements for seed cells (Table 1). 

Extrusion-based bioprinting has gained widespread popularity as a versatile and straightforward 3D-bioprinting technique, capable 
of creating stable structures [26–28]. This strategy involves the controlled ejection of bioinks from nozzles, which are subsequently 
cured and stacked layer by layer on the printing plane to build a predefined 3D construct (Fig. 1a) [29,30]. Notably, extrusion-based 
bioprinting offers a broader selection of bioinks compared to other techniques, facilitating the achievement of high-cell-density 
printing [31]. However, the pressure and shear stress during the extrusion process could damage the cells. Additionally, the tem-
perature fluctuations or UV stimulation often used for the solidification of the bioink can impose further stress on the cells [32–34]. 
Therefore, by cooperating with bioinks, cells used in this approach must possess suitable size, shape, and viscosity to be ejected as 
droplets without compromising their viability or functionality. They should also be capable of withstanding the polymerization process 
of bioink materials [31,35]. 

Inkjet bioprinting offers a notable advantage in the precise delivery of biological inks to specific locations according to a deter-
mined scheme, allowing for the creation of multifunctional bionic structures while avoiding disruption to existing constructs (Fig. 1b) 
[36]. This technique enables control of ink droplet sizes as small as picoliters, making it feasible to fabricate artificial tissues and organs 
at the microscopic scale [37,38]. While inkjet bioprinting is capable of achieving microstructures with small ejected liquid droplets, it 
can also be utilized for printing large-sized tissues. However, the successful printing of large tissues requires a substantial number of 
seed cells and bioink [39]. Moreover, for inkjet bioprinting, cells must meet stringent criteria, including compatibility with the bioink 
materials and the ability to withstand the jetting process [39,40]. 

Laser-assisted bioprinting (LAB) is capable of generating high-resolution 3D bioprinted tissues, allowing for precise patterning of 
individual cells and smaller structures [41]. One distinguishing feature of LAB is the elimination of nozzles for bioink deposition, which 
reduces the risk of contamination and lowers fabrication costs (Fig. 1c) [42]. Additionally, LAB’s high printing frequency makes it 
suitable for constructing high-resolution structures, such as capillary systems, and its in situ capability minimizes the potential for 
secondary damage to transplant recipients [43,44]. However, it is crucial that the cells used in LAB possess the ability to withstand the 

Table 1 
Requirements of cell sources of different 3D bioprinting techniques.  

Technique Requirements Ref. 

Extrusion-based bioprinting Suitable size shape, viscosity 
Stable viability and functionality 

[32–34] 

Inkjet bioprinting Compatibility with bioink materials Jetting process resilience [39,40] 
Laser-assisted bioprinting Stable viability and functionality 

Laser resilience 
[45,46] 

Stereolithography bioprinting Compatibility with light-sensitive materials 
Light exposure resilience 

[50]  
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laser energy applied during the printing process. It is also important to note that the laser-induced transfer process can potentially 
disrupt cell structure [45,46]. The influence of laser and UV on the DNA of cells should also be considered when applying the 
laser-assisted bioprinting technique [47]. 

Stereolithography bioprinting utilizes digital micromirror arrays to control the light intensity in each pixel, enabling the poly-
merization of light-sensitive polymer materials (Fig. 1d) [48,49]. This technique provides several advantages such as high printing 
efficiency, exceptional resolution, and a stable model framework, making it well-suited for fabricating large tissues and organs. For this 
strategy, cells must be compatible with the light-sensitive polymer materials, capable of enduring the polymerization conditions 
induced by light exposure, and able to maintain their viability, functionality, and structural integrity throughout the printing and 
post-printing stages [50]. 

While 3D bioprinting technology holds promise in alleviating the scarcity of organs for transplantation, challenges persist in the 
preoperative fabrication, in vitro cultivation, and transplantation processes, posing considerable risks and limitations [51,52]. The 
emerging in situ 3D bioprinting technology, which allows direct organ printing at the transplant site, shows the potential to mitigate 
these issues to some extent. Currently, various studies have explored the application of in situ 3D bioprinting in skin repair and bone 
reconstruction. The use of in situ 3D bioprinted skin [53] and bones [54] has demonstrated its ability to expedite wound healing and 
reduce immune rejection reactions. Beyond skin and bones, in situ, 3D bioprinting technology proves highly effective in specific 
applications within oral medicine and certain ophthalmic implants [55,56]. With the continual enhancement of 3D printing precision, 
it is anticipated that in situ 3D bioprinting technology will find an even broader range of applications. 

Novel bioprinting techniques, such as acoustic bioprinting [57–59], magnetic bioprinting [60–62], electrohydrodynamic bio-
printing [63,64], and other innovative approaches, are emerging to address the constraints of conventional methods and open up new 
possibilities in the creation of complex tissue. A significant focus of these advancements is the integration of precise control 

Fig. 1. Representative 3D bioprinting techniques. (A) Extrusion-based bioprinting; (B) Inkjet bioprinting; (C) Laser-assisted bioprinting; (D) Ster-
eolithography bioprinting. 
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mechanisms to improve cell viability and functionality when fabricating intricate tissue architectures. 

3. Influences of bioink materials on cells 

Bioink, a combination of seed cells and bioprinting materials, plays a core role in achieving high-density cell distribution within 
bioprinted structures while maintaining their biological function throughout the 3D-bioprinting process [65,66]. Serving as a delivery 
and support system, bioink materials ensure the transportation and sustenance of seed cells during bioprinting. Moreover, bioink 
materials regulate biocompatibility, mechanical properties, and rheological characteristics of the bioprinting structure [67–69]. 
Additionally, bioink materials create a supportive microenvironment for the cells, which is essential for achieving functional and 
physiologically relevant 3D-bioprinting tissues and organs. An ideal bioink material should be able to mimic the intricate extracellular 
matrix (ECM) of the target tissue or organ while exhibiting appropriate rheological properties that enable extrusion or deposition 
through the bioprinting system [70–72]. 

The utilization of natural materials in 3D bioprinting has garnered significant attention due to their exceptional biocompatibility, 
biodegradability, and potential to enhance cell survival, function, adhesion, and self-organization [73–75]. Extensive research and 
optimization have been conducted on several natural materials, including collagen, gelatin, alginate, hyaluronic acid, and chitosan, to 
develop them as bioink materials for 3D bioprinting [76–84]. Acellular tissue matrix, which contains mixed tissue-specific ECM 
components, is often incorporated into the bioink materials to provide a tissue-specific environment with signaling and mechanical 
properties [85,86]. Natural materials generally exhibit low immunogenicity, and reduce the risk of causing adverse reactions [68,87]. 
Furthermore, their ability to undergo biological degradation over time is crucial for establishing cell-cell interactions and ECM 
remodeling during the functionalization of 3D bioprinted organs [88,89]. Natural materials also offer the advantage of incorporating 
bioactive molecules, growth factors, and cytokines into their structures, further enhancing the microenvironment for seed cells (Fig. 2). 
However, the relatively limited options of natural materials cannot meet the increasing demand for diverse mechanical properties and 
precise manufacturing controls [90–92]. 

Synthetic materials, typically derived from non-biological sources through chemical synthesis or manufacturing processes, offer 
flexibility in tailoring their mechanical properties to adapt different 3D bioprinting approaches [93]. These materials can be engi-
neered to possess specific characteristics such as stiffness, toughness, elasticity, and crosslinking modes [87]. Due to their superior 
mechanical properties and consistent quality, synthetic materials find wide application in the 3D bioprinting of large-scale tissues and 
organs [94,95] (Fig. 2). Among the synthetic polymers used in 3D bioprinting, polycaprolactone (PCL) stands out for its excellent 
biocompatibility and ease of shaping. However, it exhibits limited capability in effectively encapsulating cells. With a low melting 

Fig. 2. Advantages of different bioink materials for 3D bioprinting.  
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point, PCL is suitable for extrusion-based 3D bioprinting and finds applications in printing scaffolds for bone, cartilage, and vascular 
tissue engineering [96–98]. Polyethylene glycol (PEG), known for its hydrophilicity and cell-friendly nature, allows for cell attachment 
and proliferation. PEG-based bioink materials can be customized to exhibit specific mechanical properties and degradation rates, 
making them suitable for vascular, cartilage, and heart bioprinting, as well as for use in bioprinted organ scaffolds [99–101]. Poly 
(lactic-co-glycolic acid) (PLGA), on the other hand, has been utilized in scaffold development for nerve tissue regeneration [102–105]. 
Synthetic materials used in 3D bioprinting must demonstrate high biocompatibility, low immunogenicity, and good tolerance by cells 
and tissues [106–108]. 

Achieving the multifunctionality of complex tissues and organs using a single type of bioink poses several challenges [109–111]. 
Simply increasing the concentration of bioinks to enhance the mechanical properties of bioprinting structures lacks the ability to 
selectively couple small molecules or dynamically alter the printed structures [112–114]. To address these limitations and enhance the 
specificity and controllability of bioinks, the utilization of chemically modified and environmentally responsive materials holds 
promise. By incorporating such materials, it becomes possible to improve the performance of bioinks, allowing for precise modulation 
and responsiveness to specific cellular environments and stimuli [115–119]. 

4. Cell sources for 3D bioprinting 

Cells are the fundamental building blocks for 3D bioprinted tissues and organs [120,121]. Despite the explosive development of 
various approaches to generate stem cells or functional cells for generative medicine purposes, many cell types are currently not 
suitable for 3D bioprinting due to their fragility during the printing process, limited proliferation ability, inability to adapt to the bioink 
materials, insufficient functionality, tumorigenic risk, costly culture system, and other limitations [28,122]. In this context, we provide 
a summary of commonly used cell types as well as potential cell types that show promise for use in 3D bioprinting applications. 

4.1. Cell lines 

Cell lines are populations of cells that maintain stable phenotypes and functions over an extended period of time. They are 
frequently employed as models in the development of 3D bioprinting technologies, especially because primary cell types are usually 
difficult to maintain and expand in vitro. There are many advantages of cell lines, such as easy handling and cost-effectiveness [123, 
124]. Their culture does not require complex conditions and is robust against environmental changes and mechanical stresses. Various 
cell lines have made significant contributions to the establishment and optimization of 3D bioprinting technologies (Table 2) 
[125–132]. For instance, beta-TC60, an immortalized mouse cell line capable of insulin secretion was utilized in the initial inkjet 
bioprinting experiments [133]. Human umbilical vein endothelial cell lines, smooth muscle cell lines, and skin fibroblast cell lines have 
been widely employed in the development of bioprinted vascular systems [134,135]. HepaRG cells, an immortalized hepatic cell line 
that maintains many hepatic functions, were utilized in the construction of a transplantable 3D bioprinted liver. When transplanted 
into a liver injury mouse model, this 3D bioprinted bioartificial liver persisted for over 8 weeks in vivo and demonstrated therapeutic 
effect [136]. 

Numerous cell lines are derived directly from tumors, while others are generated from primary cells of normal tissues by disabling 
cell cycle arrest or senescence genes such as p53, Rb, and p16 [137,138]. This can be achieved through spontaneous mutations, shRNA, 
gene editing, or the overexpression of Simian Vacuolating Virus 40 large T antigen [139–142]. Therefore, cell lines are capable of 

Table 2 
Cell lines used in 3D bioprinting.  

Cell lines Bioprinting techniques Bioink materials Tissues or Organs Ref.  

MCF-7, MDA-MB-468, 
MCF-12A 

Extrusion-based ECM Mammary organoids and 
tumoroids 

[125] Advantages: 
Diverse sourcing options 
Cost-effectiveness 
Easy cultivation 
Stable proliferation 
Excellent homogeneity 
Disadvantages: 
Carcinogenic risk 
Lack certain organ- 
specific functions 

Glioblastoma stem 
cells 

Digital light processing 
(DLP)-based 

Photocrosslinkable native ECM 
derivatives 

Biomimetic 3D cancer 
microenvironment 

[126] 

Mouse myoblast cells 
(C2C12s) 

Extrusion-based Oxidized alginate-gelatin (ADA- 
GEL) hydrogel 

Muscle tissue [127] 

Huh7 & HepaRG Extrusion-based Fibrinogen, gelatin & alginate Skeletal muscle-like bundles [128] 
HUVECs Extrusion-based GelMA Bone-like tissue with vascular 

lumen 
[129] 

Valvular interstitial 
cells (VICs) 

Extrusion-based Alginate & gelatin Aortic valves tissue [130] 

Caco-2 cells Extrusion-based GelMA Intestinal villi and hair 
follicles 

[131] 

MCF-7 & BT-474 
Beta-TC60 

Extrusion-based 
Inkjet 

Mammocult & Matrigel Breast adenocarcinoma tissue [132] 
Alginate hydrogel Single-cell based 

microparticles 
[133] 

HepaRG Extrusion-based Gelatin & sodium alginate Liver [136] 
HEK 293FT Extrusion-based Gelatin & sodium alginate Kidney tissue models [147] 
Huh7 & HepaRG Extrusion-based Gelatin methacryloyl (GelMA) Liver model [149] 
HepG2 Drop-on-Demand 

(DoD) 
Agarose, gelatin & collagen Functional liver carcinoma 

model 
[150]  
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continuous proliferation, making it easy and cost-effective to produce a large quantity of cells. However, the high proliferative capacity 
of cell lines may not always be advantageous for 3D bioprinting. While many cell lines exhibit contact inhibition and cease prolif-
eration after population of the 3D bioprinted constructs, others, particularly those derived from tumors such as HepG2 cells, can 
continue proliferating and give rise to neoplasms. Therefore, it is crucial for cells to proliferate and populate the 3D bioprinted 
construct appropriately, with proliferation ceasing after the formation of functional structures. 

Another notable advantage of cell lines is their homogeneity [143]. Cell lines have the ability to undergo clonal expansion, 
generating populations of cells with identical genetic profiles [144]. This uniformity allows for the fabrication of homogeneous tissues 
and organs, ensuring consistent and reliable outcomes in the printed constructs. Moreover, the utilization of homogenous cells offers 
stability and high reproducibility when developing new 3D bioprinting technologies. 

However, when it comes to constructing transplantable 3D bioprinted tissues and organs for therapeutic purposes, there are certain 
challenges to consider. Many cell lines exhibit abnormal karyotypes or carry mutations in oncogenes and tumor suppressor genes, 
increasing the risk of tumor formation [145,146]. For example, the human HEK 293 cell line, used in the construction of 3D kidney 
models, is a hypotriploid cell line with 64 chromosomes [147]. A karyology analysis of the human umbilical vein endothelial cells 
(HUVEC) cell line (CRL-1730) provided by the American Type Culture Collection (ATCC) showed that 87.8 % of the cells are hypo-
diploid or polyploid [148]. 

Another disadvantage of cell lines is their inability to fully replicate the mature and specialized functions of their in vivo coun-
terparts. Although many cell lines retain some marker genes associated with their origin cell types, they often lack or have significantly 
reduced functional characteristics. For instance, HepG2 cells, a commonly used hepatoblastoma cell line that has been used for 
constructing a 3D liver-like model, express the ALBUMIN gene, a common hepatic marker, but they exhibit defects in drug metabolism, 
urea metabolism, coagulation system, and more [149,150]. Thus, it is nearly impossible to reconstruct a fully functional artificial liver 
based on HegG2 cells. Consequently, it is crucial to explore safer cell sources that are capable of generating mature functional cells with 
controlled proliferation. 

4.2. Stem cells 

Stem cells, possessing the remarkable ability to self-renew and differentiate into various cell types, offer tremendous potential as 
cell sources for 3D bioprinted tissues and organs (Table 3) [151–159]. In recent years, stem cells and their derivatives have already 
demonstrated remarkable advancements in clinical applications, particularly in treating hematological disorders, cardiovascular 
diseases, bone injuries, skin wounds, and more [160–162]. These developments highlight the promising future of stem cells in 
regenerative medicine. Particularly, the rapid progress of Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), 
which can give rise to virtually any cell type in the body, has led to an increasing number of available cell types for research and 
applications [163,164]. 

One of the most discussed advantages of stem cells is their theoretically unlimited proliferation capability, which holds the po-
tential for generating an unlimited number of functional cells. This feature becomes particularly valuable when it is challenging to 
culture their counterpart cells in vitro. In recent years, numerous technologies have been developed to induce the differentiation of 
ESCs and iPSCs into various functional cell types, such as neurons, cardiomyocytes, hepatocytes, β cells, muscle cells, and endothelial 

Table 3 
Stem Cells used in 3D bioprinting.  

Cell types Bioprinting techniques Bioink materials Tissues or Organs Ref.  

hiPSC-derived neural 
progenitor cells 

Microfluidics -based Fibrin-based bioink Neural tissue [13] Advantages: 
Easy accessibility 
Pluripotency 
Strong proliferation 
Stable genetic 
Mature functionality 
post-differentiation 
Disadvantages: 
Carcinogenic risk 
High cultivation costs 

Human Adipogenic 
Mesenchymal Stem Cell 
(hADMSCs) 

Extrusion-based Pluronic acid as the sacrificial 
material and type I collagen 

Cardiac Purkinje 
System 

[151] 

iPSs Drop-on-demand Alginate hydrogel iPS tissue [152] 
Extrusion-based Hydroxypropyl chitin (HPCH) iPS tissue [153] 
Extrusion-based Gelatin Neural tissue [166] 

iPSC-derived cardiomyocytes Extrusion-based Collagen I and Matrigel Cardiac [154] 
iPSC-derived neural cells Microextrusion-based Gelatin Neural tissue [155] 
iPSCs-derived cardoimyocytes 

(CMs) and ECs 
Extrusion-based Patient-derived dECM & 

gelatin 
Cardiac tissue [156] 

iPSC-derived mesenchymal 
stem cell 

Extrusion-based Alginate & gelatin Endometrium 
tissue 

[157] 

iPSC-derived 
neural aggregates 

Extrusion-based Alginate, fibrin & genipin Neural tissue [158] 

hiPSCs Sequential printing in a 
reversible ink template 
(SPIRIT) 

GelMA, Alginate & Gelatin Vascular tissue [159] 

iPS Cells-derived 
cardiomyocytes and 
hepatocytes 

DLP-based Decellularized extracellular 
matrices (dECM) 

Myocardium 
tissue，liver 

[165] 

Mouse embryonic stem cells Extrusion-based Gelatin & alginate N/A [167]   
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cells. Many of these protocols have been successfully utilized to produce large quantities of functional cells for constructing 3D hepatic, 
cardiac, and neural tissues [165–167]. Recently, iPSCs have been effectively differentiated into endothelial cells and retinal pigment 
epithelial cells, which, when combined with pericytes and fibroblasts, can generate a 3D bioprinting tissue that mimics the 
outer-blood-retina-barrier in the back of the eye [168]. 

However, the proliferation capability of stem cells decreases as they undergo differentiation. Once fully differentiated, these cells 
typically lose their ability to divide and become unable to populate the 3D constructs. To address this challenge, a compromised 
strategy is to guide the stem cells to differentiate into committed stage or progenitor cells that retain the ability to proliferate. After the 
initial population of the 3D bioprinting structure, further differentiation and maturation can be induced, allowing for the development 
of functional and mature tissues and organs. 

Another distinct advantage of pluripotent stem cells in 3D bioprinting is the generation of multiple cell types with the same genetic 
background. This becomes particularly useful in clinical settings where the goal is to construct an artificial organ using cells exclusively 
sourced from the same individual. With the help of iPSCs, the theoretical possibility of creating a 3D bioprinted organ using a patient’s 
cells arises, thereby addressing the issue of immune rejection. Recently, a proof of principle study has used neural stem cells, endo-
thelium, and neurons derived from the same population of iPSCs to generate patterned neural tissues by 3D bioprinting [169]. 
However, due to the complex and time-consuming nature of the iPSC generation process, the current focus does not prioritize the 
production of patient-specific 3D bioprinted organs based on iPSCs. 

Before the clinical application of ESC or iPSC-based 3D bioprinting technologies, several safety concerns need to be addressed. 
These include the risk of genetic and epigenetic abnormalities and the potential tumorigenicity of undifferentiated pluripotent stem 
cells. In recent years, significant efforts have been dedicated to enhancing the safety. Researchers are working on developing ESC and 
iPSC strains with normal karyotypes, avoiding tumorigenic mutations, and implementing good manufacturing practices (GMP) during 
the production process to meet the requirements for clinical applications. The emerging clinical applications of ESC and iPSC-derived 
cells hold tremendous potential as cell sources for 3D bioprinting tissues or organs with therapeutic purposes [170–175]. 

In addition to pluripotent stem cells, there are many other stem cells available for use as cell sources in 3D bioprinting, including 
adult stem cells such as mesenchymal stem cells (MSCs). Among them, MSCs have the potential to differentiate into multiple cell 
lineages and promote tissue regeneration, which made them widely used in 3D bioprinting technology development and tissue repair 
research [23,176,177]. These cells are typically obtained by expanding primary cells derived from somatic tissues through in vitro 
culture, and their applications will be discussed in the following sections. 

4.3. Cells derived by transdifferentiation 

Mammalian cells have demonstrated the ability to undergo transdifferentiation, which offers a new avenue for cell sources in 
regenerative medicine [178,179]. By overexpressing lineage-specific transcription factors, somatic cells have successfully been con-
verted into neurons, hepatocytes, cardiomyocytes, endothelial cells, and myofibroblasts [180–183]. Transdifferentiation technology 
provides a simpler and less time-consuming approach to generating patient-specific functional cells, bypassing the pluripotent stage 
and avoiding associated risks. In recent clinical experiments, hepatocytes generated through transdifferentiation have shown 
remarkable therapeutic effects in bioartificial liver support systems, offering promising prospects for advanced interventions 
[184–188]. 

However, one limitation of transdifferentiated neurons, cardiomyocytes, and hepatocytes, is their limited potential for in vitro 
proliferation. To address this issue approaches such as silencing p19Arf or overexpressing SV40 large T antigen have been used to 
expand transdifferentiated hepatocytes, although this raises additional safety concerns [184,186]. Another strategy involves gener-
ating proliferative neural stem cells or liver stem cells through transdifferentiation [189,190]. Additionally, the relatively low 
transdifferentiation efficiency has also hindered its applications, though significant efforts have been made to substantially improve 
the efficiency [191]. Despite several breakthroughs in the applications of transdifferentiation cells, their use in 3D bioprinting is still 
largely unexplored, representing a fertile ground for further investigation. 

4.4. Primary cells 

Primary cells derived from adult normal tissues are highly regarded as valuable cell sources due to their excellent safety profile and 
functional performance [192]. However, their practical application has been hindered by the limited availability of suitable donor 
sources and the challenges associated with in vitro culture and expansion. Freshly isolated primary cells are often delicate and 
vulnerable to the stresses imposed by temperature, pressure, and shear forces during 3D bioprinting, leading to high mortality rates 
[192–194]. 

Nonetheless, significant progress has been made in recent years with continuous in vitro expansion and culture techniques for 
various primary cell types. Hepatocytes, muscle satellite cells, small intestine stem cells, and lung stem cells have seen breakthroughs 
in large-scale expansion in vitro [195–199]. These in vitro expanded primary cells demonstrate improved adaptability to the 3D bio-
printing process and exhibit relatively higher cell survival rates when subjected to in vitro conditioning [192,200]. Furthermore, these 
cells maintain a normal karyocyte post-expansion and exhibit functional maturity or the ability to differentiate into mature functional 
cells [201,202]. Notably, they possess enhanced self-assembly capabilities, enabling the formation of intricate microstructures. 

The remarkable progress has led to the inclusion of these cells in clinical trials for in vivo cell transplantation therapies, under-
scoring their favorable safety profiles and the potential for smooth translation into clinical applications in the future. This promising 
development paves the way for their utilization of cutting-edge medical treatments, providing hope for improved patient outcomes and 
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advancements in regenerative medicine. We summarized the key benefits of utilizing primary cells in 3D bioprinting as follows.  

(1) Better physiological relevance: Primary cells retain the in vivo phenotype and function of native tissues, ensuring a closer 
representation of physiological conditions.  

(2) Tissue-specific functions: Primary cells exhibit tissue-specific functions, making them well-suited for fabricating organ-specific 
structures and functions, offering a more accurate and specialized tissue model.  

(3) Patient-specific: Primary cells can be sourced directly from a patient’s tissue, allowing for the generation of personalized organ 
constructs that closely mimic the individual’s unique biological characteristics. This personalized approach holds immense 
promise for regenerative medicine applications.  

(4) Better integration: Primary cells possess remarkable integration capabilities within host tissues, minimizing the risk of immune 
rejection and enhancing the overall functionality of the 3D-bioprinting tissue or organ. This improved integration promotes 
long-term tissue function and enhances the potential for successful transplantation. 

By harnessing the unique characteristics of primary cells, several kinds of primary cells had been utilized in the 3D bioprinting of 
tissues and organs (Table 4) [176,203–208]. Primary human hepatocytes and hepatocellular carcinoma cells were applied in con-
structing the liver and liver cancer models [194,209]. Primary fibroblasts and intestinal cells have also been employed in the gen-
eration of skin tissues and intestinal models [192,193,210]. 

Despite these unique strengths of primary cells, several limitations need to be addressed to fully harness their potential [120, 
211–214]. Primary cells are difficult to obtain, especially from human tissues, and their isolation and expansion are often 
time-consuming and labor-intensive. Besides, the heterogeneity of primary cells makes their behavior vary depending on the donor, 
tissue source, and culture conditions. 

Primary cells have a limited lifespan, and their replicative potential decreases with each passage. The differentiation capacity of 
primary cells can be affected by the culture conditions, resulting in variability in the quality of 3D-bioprinting tissue or organ con-
structs. The biggest limitation of the usage of primary cells is the ethical concerns, especially for the cells sourced from human tissues, 
as the collection of tissues may require informed consent and approval from ethical review boards. 

The use of primary cells in 3D bioprinting has the potential to revolutionize the field of regenerative medicine. However, to fully 
harness their potential, limitations such as their limited availability, heterogeneity, and differentiation capacity need to be addressed 
through the development of standardized isolation and culture protocols [121,215,216]. 

4.5. Trends and prospects of cell sources 

Finding a suitable cell source for 3D bioprinting is a critical decision that greatly influences the success and functionality of 
generated tissue or organ. Different cell types bring their own set of advantages and limitations to the table (Fig. 3). Understanding 
these factors and selecting the most suitable cell type for a particular application is paramount in achieving the desired outcome of 
functional and viable tissue models [216–219]. 

Table 4 
Primary Cells used in 3D bioprinting.  

Cell types Bioprinting 
techniques 

Bioink materials Tissues or Organs Ref.  

Human mesenchymal stem 
cells (hMSCs) 

Extrusion-based Alginate- and silk-based Smart dual scaffold [23] Advantages: 
High safety 
Stable functionality 
Patient-specific 
Excellent in vivo integration 
capability 
Disadvantages: 
Limited cell sources 
High cost 
Weak proliferation ability 
High heterogeneity 

hMSCs Femtosecond-laser- 
assisted 

Tunicate cellulose nanofibrils & 
Alginate-based 

Cell-laden corneal 
tissue 

[176] 

Human primary dermal 
fibroblasts 

Inkjet ECM-like BioInk Soft tissue models [192] 

Primary normal human 
fibroblasts (NHF) 

Magnetic-based Collagen Skin tissue [193] 

Primary human hepatocytes Extrusion-based GelMa Liver [194] 
Primary Skeletal Muscle 

Progenitor Cells 
Extrusion-based GelMA Skeletal muscle [200] 

Primary human osteoblasts Extrusion-based GelMA Osteoblasts scaffold [203] 
Primary human keratocytes Extrusion-based Collagen-based Corneal stromal 

tissue 
[204] 

hMSCs Extrusion-based GelMA Compact 
macrotissue 

[205] 

HUVECs Extrusion-based GelMA-Fibrin Vascular tissue [206] 
Human umbilical vein & 

artery cells 
Microfluidic 
bioprinting 

Alg/Gel/GelMA Vascular tissue [207] 

Human nasoseptal 
chondrocytes 

Extrusion-based Nanocellulose-alginate Rounded 
chondrogenesis 

[208] 

Hepatocellular carcinoma 
(HCC) cells 

Extrusion-based Gelatin & sodium alginate HCC Model [209] 

Primary intestinal cells Extrusion-based Novogel Intestinal models [210]  
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It is crucial to carefully consider the advantages and limitations of each cell type to the specific requirements of the tissue or organ 
being generated. Factors such as printability, proliferation capacity, functionality, safety, and economic considerations should be taken 
into account during the selection process. 

By making informed decisions regarding cell types, researchers can optimize the outcomes of 3D bioprinting, leading to the 
fabrication of functional and viable tissue models that hold immense potential for various applications, including drug screening, 
disease modeling, personalized medicine, and regenerative therapies. 

5. Discussion and future perspectives 

The 3D bioprinting technique is experiencing rapid and remarkable advancements, holding the potential for swift application in 
drug screening and evaluation processes. Researchers have successfully bioprinted vascularized tissues and organs, improving cell 
survival and functionality [220,221]. Multicellular bioinks that mimic native tissue microenvironments have been developed, enabling 
the creation of bioprinted constructs resembling native organs [222,223]. These advancements bring us closer to viable organ 
transplantation alternatives and personalized medicine. While 3D-bioprinting organs for in vivo transplantation is still a work in 
progress, future research will concentrate on overcoming key challenges. 

One critical area is vascularization, where the establishment of a functional vascular network capable of connecting with the body’s 
native blood vessels becomes essential. A multi-level vascular network is needed to ensure the long-term survival and growth of the 3D- 
bioprinting organ, incorporating smooth muscle and composition of vascular endothelial cells within the blood vessels. 

Another crucial step is massification, requiring a substantial quantity of cells. This places greater demands on the in vitro expansion 
culture of cells. Finding ways to reduce the production cost of a significant cell quantity becomes an important consideration. 

Ensuring safety is another essential aspect. The production process must avoid immune problems stemming from animal-derived 
components to safeguard cell safety effectively. 

Additionally, achieving functionalization poses a challenge in current 3D bioprinting. The current technology lacks the ability to 
establish functional connections between cells. Consequently, cells need to self-organize and proliferate to form mature functional 
microstructures, often necessitating additional in vitro culturing of 3D bioprinting organs and further functionalization post- 

Fig. 3. Advantages of different cell sources available for 3D bioprinting.  
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transplantation. Furthermore, cell sources for 3D bioprinting require a high level of functionality, prompting exploration of methods to 
enhance the functional capabilities of cells. 

Addressing these challenges will be crucial to advancing the field of 3D bioprinting and realizing the development of functional and 
transplantable artificial organs. Through ongoing research and innovation, the goal of creating viable, safe, and fully functional 3D- 
bioprinting organs will come within closer reach. 

6. Conclusion 

3D bioprinting technology holds immense potential for organ fabrication. A crucial challenge in successful 3D bioprinting is the 
availability of a substantial quantity of cells. Different cell types offer unique advantages and face their limitations. With ongoing 
advancements in cell isolation and culture technologies, the challenges of cell sources in 3D bioprinting will be overcome, significantly 
impacting the field of regenerative medicine. 
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