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Abstract

The advent of biocatalysts designed computationally and optimized by laboratory evolution 

provides an opportunity to explore molecular strategies for augmenting catalytic function. 

Applying a suite of NMR, crystallographic, and stopped-flow techniques to an enzyme designed 

for an elementary proton transfer reaction, we show how directed evolution gradually altered 

the conformational ensemble of the protein scaffold to populate a narrow, highly active 
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conformational ensemble and achieve a nearly billionfold rate acceleration. Mutations acquired 

during optimization enabled global conformational changes, including high-energy backbone 

rearrangements, that cooperatively organized the catalytic base and oxyanion stabilizer, thus 

perfecting transition-state stabilization. Explicit sampling of conformational sub-states during 

design, and specifically stabilizing productive over all unproductive conformations, could speed up 

the development of protein catalysts for many chemical transformations.

One Sentence Summary:

Altered sampling of conformational sub-states on multiple time scales was critical for optimization 

of a designer enzyme.

Computational enzyme design has afforded catalysts for chemical reactions ranging from 

ester hydrolysis to abiological cycloadditions (1, 2). Although starting activities are usually 

low, they can be increased to levels approaching those of natural enzymes through laboratory 

evolution (3-6). This process mimics the natural selection of enzymes in biology, with the 

advantage that individual intermediates along the evolutionary pathway can be characterized 

to deduce how function was enhanced. A comprehensive understanding of the molecular 

changes that confer better activity could improve design protocols as well as guide the 

development of smarter mutagenesis and screening strategies.

Here, we investigate the molecular origins of the nearly billionfold rate enhancement 

achieved by directed evolution of the computationally designed Kemp eliminase HG3 

(7). The Kemp elimination (Fig. 1A) is a well-studied model for proton transfer from 

carbon (8) that has served as a benchmark for de novo design (7, 9-11). Although 

the first-generation HG3 design is significantly more efficient than an “off-the-shelf” 

catalyst like bovine serum albumin (12), its specific activity was further increased 200-

fold over 17 rounds of mutagenesis and screening (3). The resulting catalyst HG3.17, 

which exhibits improved alignment of the substrate and the catalytic base (Asp127) and 

possesses a newly acquired H-bond donor for oxyanion stabilization (Gln50), approaches 

the efficiency of natural enzymes that promote metabolically important proton transfers 

(13). Characterization of HG3, the evolutionary intermediate HG3.7, and optimized HG3.17 

by a combination of NMR spectroscopy, cryo- and high-temperature crystallography, and 

stopped-flow fluorescence experiments shows that altered sampling of conformational sub-

states on different temporal and spatial scales was crucial for attaining the evolved enzyme’s 

superior catalytic power.

We first obtained NMR backbone assignments for HG3.17 (Fig. S1) and recorded data at 

different temperatures and pH values (Fig. 1B and Fig. S2). Unexpectedly, peak duplication 

spanning a large portion of the protein was detected (Fig. S2A), indicating that the resting 

enzyme exists in two different folded states undergoing a global conformational exchange 

that is slow on the NMR timescale. Upon raising either temperature or pH, the cross-peak 

intensity of one set of peaks increased relative to the other (Fig. 1B and Fig. S2B-D). 

Based on the independent observation that HG3.17 undergoes inactivation above ~25 °C 

(Fig. 1C), well below the melting temperature (Tm ≥ 50 °C; Fig. 1D), we hypothesized 

that the species observed at high temperature corresponds to a less active (or fully inactive) 
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conformational sub-state. An additional transition observed in thermal-shift assays (Fig. 1D 

and Fig. S3), not seen in circular dichroism melting curves (3), provides further evidence for 

a pre-existing equilibrium between active (A) and inactive (I) forms of the enzyme.

Importantly, the NMR spectra of HG3 and HG3.7 show analogous features, although their 

inactive sub-states are populated to a greater extent than in HG3.17 (Fig. S2C,D). Estimating 

the respective populations from the volumes of duplicated cross peaks (Fig. 2A) shows that 

the inactive species comprises ~25% of the HG3 and HG3.7 samples at 25 °C, but only 

5% of HG3.17. At 40 °C, though, the fraction of inactive state increases to 42% and 58% 

for HG3.17 and HG3.7, respectively (Fig. 2A). Activity-based pH-jump assays (Fig. S4) 

confirmed that the inactivation process is fully reversible, and repopulation of the active 

species could be monitored in real time by recording two-dimensional NMR spectra after 

a rapid change from pH 10 to 7 (Fig. 2B). Trp fluorescence (Fig. S5) and one-dimensional 

NMR (Fig. 2C) experiments allowed extraction of quantitative rate constants (kina→act; Fig. 

2D) and show that the interconversion between the two states is slow for all variants (kobs 

~10−3-10−4 s−1). We note that in addition to this slow process, millisecond motions are 

detected for many residues in the form of line-broadening or complete loss of amide signals 

for several residues in the core β-strands (Fig. S1D). We hypothesize that these faster, more 

localized motions underlie the slower collective global rearrangements we observe.

Taken together, these data show that: (i) the HG3 variants all exhibit a slow, pre-existing 

equilibrium between active and inactive conformational sub-states; (ii) the last 10 rounds of 

directed evolution (HG3.7→G3.17) substantially reduced the population of inactive species 

present under ambient conditions; and (iii) moving away from the conditions employed for 

selection (i.e., higher temperatures or pH) increases the fraction of enzyme in the inactive 

state.

To provide structural information on these conformational sub-states, we turned to X-ray 

crystallography. Cryogenic structures of HG3 and HG3.7 in the absence of a ligand revealed 

that β-strands 6 and 7 (located adjacent to the binding pocket), adopt two distinct backbone 

conformations whereas only a single conformer is observed for HG3.17 (Fig. 3A-C, Fig. 

S6, and Table S1). One conformation matches that seen in the corresponding complexes 

with a transition-state analog (TSA), and presumably represents the active sub-state. The 

almost identical positioning of the catalytic residues in the free and the TSA-bound forms 

of HG3.7 (Fig. 3E and Table S1) indicates that the active site of this sub-state is already 

primed for catalysis. In the inactive sub-state, however, a backbone flip creates a steric clash 

between the carbonyl group of Leu236 and the nitro group of the TSA that would block 

ligand binding (Fig. 3D). Interestingly, this inactive backbone conformation is the only one 

present in the original xylanase scaffold used for design (PDB 1gor (14); Fig. 3F).

Because the sparsely populated inactive sub-state of HG3.17 was not detected in the 

cryogenic X-ray structure, we set up crystal screens under conditions favoring this 

conformation (pH 10 and 37 °C). Crystals obtained with calcium in the crystallization 

solution yielded a structure of this inactive species (Fig. 3G,H and Table S1). A weak, 

surface-exposed calcium-binding site stabilizes the inactive form, with substantial backbone 

changes propagating to the active site, including the backbone flip in strand 7 that impedes 
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substrate binding (Fig. 3G,H and Fig. S7A-E). The 270-282 loop, which contains four of 

the 10 mutations introduced in the last rounds of directed evolution, also differs in the two 

conformational sub-states. This segment is ordered in the active state, likely stabilized by 

a cation-π interaction between protonated His209 and Phe276 (Fig. 3H and Fig. S8A), 

but disordered in the inactive state. We conjecture that disrupting the His209-Phe276 

interaction by raising either temperature or pH, or mutation of His to Ala (Fig. S8B,C), 

shifts the equilibrium toward the inactive conformation. NMR spectra of HG3.17 with 

100 mM Ca2+ confirm that the conformational sub-state captured crystallographically is 

the same as the inactive species in solution, as the positions of the corresponding cross 

peaks are virtually unaltered but their intensities relative to the ‘active’ signal increase (Fig. 

S7F,G). Independent kinetic measurements show that the enzyme is 80% inhibited in the 

crystallization buffer. Remarkably, a HG3.17 structure obtained at 70 °C in the absence 

of calcium enabled simultaneous observation of both the inactive and active conformations 

(Fig. 3I, Fig. S7H, and Table S1) as observed in solution by NMR. At this temperature, the 

complete global rearrangement is permitted within the crystal lattice.

Considering that an enzyme’s affinity to an ideal transition-state analogue is directly 

proportional to the rate enhancement for the chemical step (15, 16), we dissected the TSA 

binding mechanism to probe changes in the activation barrier of the chemical step through 

directed evolution. The minimal binding scheme involves a conformational-selection step 

for the binding-competent state plus the physical binding step, and—for HG3.17 only—an 

additional induced-fit step (Fig. 4A and Fig. S9). We hypothesize that the induced-fit step 

involves a slow ring flip of Trp44 at the bottom of the binding pocket (Fig. S9E), but this 

does not likely affect activity significantly. The microscopic rate constants were obtained 

by combining stopped-flow binding kinetics and NMR experiments (Figs. 2 and 4A and 

Figs. S10-S13); the agreement between the measured macroscopic KD and their calculated 

values (Fig. S13E and Equations 11 and 12) confirm our binding schemes. As expected 

for a good TSA, its affinity increases over the course of evolution (K2 values of 276, 

16.5, and 4.4 μM). For a quantitative comparison of these values with improvements in 

catalytic efficiency, reliable steady-state parameters are paramount. Previously, kcat and 

KM values were extracted from initial rates, but our new insights into these enzymes 

reveal that a simple Michaelis-Menten model is not sufficient to describe the system. 

We therefore monitored the enzymatic conversion of 5-nitrobenzisoxazole to completion 

and numerically fit the data to a scheme that includes the conformational-selection step 

and product inhibition (Fig. S14A). This approach enables a more reliable determination 

of kcat and KM even if substrate saturation cannot be achieved (17), as is the case for 

5-nitrobenzoisoxazole due to its limited solubility (Fig. 4B and Fig. S14). The extracted 

values show excellent agreement with the previously published steady-state parameters after 

correction for the fraction of enzyme in the active state, and the increase in (KS/kcat)·kuncat 

through the evolutionary rounds indeed correlates remarkably well with the change in K2 

(Fig. 4C). Notably, as TSA affinity increased during evolution, product affinity decreased, 

minimizing product inhibition and guaranteeing efficient enzyme turnover (Fig. 4B).

Although reducing the fraction of inactive sub-states in the apo protein improved overall 

catalysis, the maximum change in the active population of 20% between variants only 

accounts for a small fraction of the observed 200-fold increase in catalytic efficiency 
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from HG3 to HG3.17 (Fig. 1C). However, ensemble refinement of crystal structures (18) 

for all the variants in complex with the TSA points to progressive increase of the active 

configuration as the key contributor to the catalytic enhancement (Figs. 3A-F and 4D and 

Figs. S15-S17). Increased ordering of the Met172 and Met237 side chains, which interact 

with one face of the TSA and likely stabilize the charge delocalized transition state through 

London dispersion forces (19-21), illustrates this trend (Fig. 4D and Figs. S15E,F and 

S16C). Although relatively flexible in HG3, Met172 becomes better ordered in HG3.7 

due to shortening of residue 84 through the M84C mutation, which enabled a stabilizing 

interaction between the terminal methyl group of Met172 and the π-face of Trp87. The 

resulting conformation helps to position the catalytic base (Asp127), which samples many 

unreactive conformations in HG3, in a single orientation with the geometry required for 

proton abstraction (Figs. 3A-F and 4D and Figs. S15 and S16). Furthermore, HG3.7’s 

acquisition of the oxyanion stabilizer Gln50 constrains the TSA in a productive pose through 

hydrogen bonding, which is accompanied by ordering of Met237. In principle, Lys50 in 

HG3 could act as an effective oxyanion stabilizer and constrain the ligand in a reactive 

pose, but its side chain points away and forms a hydrogen bond with Gln90 instead (Fig. 

S15A,B). Further tuning of active site conformations by second- and third-shell mutations 

from subsequent evolutionary rounds ultimately yielded the highly preorganized HG3.17 

binding pocket (Fig. 4D and Figs. S15 and S16).

To disentangle the catalytic contributions of M84C and K50Q from those of more distant 

mutations, we introduced them singly and together into the original computational design. 

K50Q increased HG3 activity only 1.5-fold (Fig. 4E and Fig. S18), in marked contrast 

to the 40-fold loss in efficiency seen when Gln50 was reverted to Lys in HG3.17 (22). 

The maximum likelihood X-ray structure of HG3 K50Q shows that the Gln50 side chain 

is properly oriented to hydrogen-bond with the TSA (Fig. S15E), but it shows significant 

disorder in the ensemble refinement, as do Asp127 and adjacent residues (Fig. 4D and 

Fig. S16). Similarly, M84C provides no catalytic benefit to HG3 on its own. Together, 

however, these two mutations boost catalytic efficiency substantially, increasing the rate 

of the chemical step ~30-fold and overall catalytic efficiency 10-fold (Fig. 4E and Fig. 

S18). Epistasis is indicated by the synergistic effect of these two mutations. This striking 

result highlights the serendipitous paths that directed evolution takes, and offers a bright 

outlook for rational enzyme design: only two of the 17 mutations introduced by directed 

evolution (Fig. S19) account for a major fraction of the catalytic enhancement. Crucially, 

these two mutations were predicted from a structural analysis within a protein dynamics 

framework, underscoring the potential for improved success in enzyme design by focusing 

on counterselection against sampling of alternative, catalytically unproductive states. The 

other 15 mutations in HG3.17 had a relatively small effect on kcat (3-fold), but increased 

kcat/KM 10-fold by lowering KM; they also largely eliminated the inactive conformational 

sub-state and decreased product inhibition (Fig. 4B).

Kemp eliminase HG3.17 is among the most efficient artificial enzymes described to 

date. Analysis of its evolutionary trajectory has revealed how changes in conformational 

sampling were critical to its success. All HG3 variants have an inactive conformational 

sub-state, rooted in the original protein scaffold, which was gradually supplanted with a 

catalytically competent sub-state as evolution progressed. Although conformational selection 
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has been observed in the optimization of other designed enzymes (23, 24), including Kemp 

eliminases (4, 25-28), what is striking in the HG3 system is that the active conformational 

sub-state was not explicitly engineered into the xylanase scaffold but only emerged upon 

introduction of the 11 design mutations due to a serendipitous backbone flip. Instead, 

design created two “energetically frustrated” enzyme conformations. Drastically decreased 

sampling of unreactive conformations within the catalytically-competent state provided the 

second major mechanism for improving efficiency. While distant mutations contributed to 

this fine-tuning, two active-site residues played an outsized role in sculpting a steric and 

electrostatic environment conducive to transition-state stabilization. These findings speak to 

the ongoing debate on the role of protein dynamics in enzyme catalysis (29-34), providing 

a direct, quantitative demonstration of how modulating a protein conformational landscape, 

something not optimized by current design protocols but which evolution perfects, can speed 

up a simple chemical reaction. Proper modeling of conformational dynamics and selective 

stabilization of productive sub-states over all unproductive conformations during design, for 

example by explicit energy landscape optimization (35), may open the door to substantially 

better biocatalysts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Inactivation of Kemp eliminase variants is due to sampling of an alternative, folded 
conformation.
(A) The Kemp elimination reaction (8) with the structure of the transition-state analog 

shown on the right. (B) Temperature- and pH-dependent NMR experiments for free HG3.17 

display peak duplication for many residues (Fig. S2A) as exemplified here for Gly263. 

The cross peak of the minor, inactive (I) species increases with temperature and/or pH, 

indicative of a slow interconversion process between two folded conformations. (C) Directed 

evolution greatly increased catalytic efficiency (kcat/KM) from HG3 to HG3.17 (3), but 

for evolved enzymes a clear temperature-dependent inactivation is observed. (D) Protein 

stability measurements using thermal-shift assays indicate that inactivation above ~25 °C is 

not due to global unfolding, but the smaller transition at lower temperatures suggests the 

presence of another state.
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Fig. 2. Characterization of the inactive/active interconversion of Kemp eliminase variants.
(A) Active and inactive conformations are observed for all HG3 variants as exemplified 

by the NMR cross peaks of Gly229 at pH 7. At 25 °C the inactive population is small 

for HG3.17, but sizeable for HG3 and HG3.7, and the inactive species increases with 

temperature. (B-D) Detection of interconversion kinetics at 25 °C by real-time NMR using 

a pH-jump from proteins equilibrated at pH 10.0 to 7.0. (B) pH-jump experiment for HG3.7 

followed by 2D HSQC spectra confirm that the interconversion from the inactive (at high 

pH) to active (at lower pH) conformation indeed occurs, but the quality of the data is 

insufficient to extract reliable rate constants. (C, D) The measurements were repeated using 

1D proton NMR experiments and time-dependent changes of selected peak areas are shown 

(C). Observed rate constants (kobs) in (C), combined with the populations from NMR (A), 
yielded the activation rate constant (kina→act; D).
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Fig. 3. X-ray data reveal extensive structural changes between the active and inactive 
conformations of the Kemp eliminases.
(A-E) Crystal structures in the absence of TSA show two conformations for residues 

near the active site of HG3 (A) and HG3.7 (B), but not of HG3.17 (C). The active 

state (light colors) makes favorable interactions with the modeled TSA (transparent gray; 

A-C), whereas the inactive state (dark colors) is a binding-incompetent conformation as the 

carbonyl-group of Leu236 would clash with the TSA (D). (E) The active conformation of 

free HG3.7 is nearly superimposable with its TSA-bound form. (F) The inactive backbone 

conformation is the only one observed in the xylanase scaffold (red, PDB 1gor (14)). (G) 
X-ray structure of inactive conformation of HG3.17, obtained by calcium (green) binding at 

a surface-exposed site. Residues with NMR peak duplication (Fig. 1B) are shown in blue, 

unassigned residues in grey, and prolines in black. (H) Superposition of the active (yellow) 

and inactive, calcium-bound (orange) conformation of HG3.17 shows the propagation of 

backbone changes from the calcium-binding site extending to the active site with modeled 

TSA. (I) The mFo-DFc-polder map (green mesh, contoured at 3σ) for crystallographic data 

recorded at 70 °C for free HG3.17 can only be explained by modeling both the active 

(yellow) and inactive (orange) conformations (see also Fig. S7H).
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Fig. 4. Transition-state analogue binding as a proxy for probing the chemical activation barrier 
over evolution.
(A) Mechanism and microscopic equilibrium constants (reported as dissociation constants) 

for TSA binding to the HG3 variants. (B) Kinetic parameters obtained by numerically fitting 

the progress curves for substrate conversion at 25 °C to an extended Michaelis-Menten 

model (Fig. S14A). (C) The increase in (KS/kcat)·kuncat through the evolutionary rounds 

correlates remarkably well with the change in K2, as expected from transition-state theory. 

(D) Ensemble refinements (see also Fig. S16-S17) of cryogenic X-ray structures of HG3 

variants bound to TSA reveal extensive conformational sampling for HG3 and HG3 K50Q, 

whereas in evolved enzymes the side chain orientations become more ordered leading to 

optimal positioning of the catalytic base Asp127 and the oxyanion stabilizer Gln50 (see also 

Fig. S15-S16). The apparent order for residues Lys50, Trp87, Ser89, and Gln90 in HG3 is 

explained by crystal contacts in that region (Fig. S16D) that are specific to HG3. HG3 K50Q 

is thus better suited for comparison of the ensembles as it forms similar crystal contacts as 

HG3.7 and HG3.17. (E) kcat values for all Kemp eliminase variants (Fig. S18) highlight the 

major boost in kcat by the K50Q/M84C substitutions.
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