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Abstract
Reverse genetic techniques harnessing mutational approaches are powerful tools that can

provide substantial insight into gene function in plants. However, as compared to diploid

species, reverse genetic analyses in polyploid plants such as bread wheat can present sub-

stantial challenges associated with high levels of sequence and functional similarity

amongst homoeologous loci. We previously developed a high-throughput method to identify

deletions of genes within a physically mutagenized wheat population. Here we describe our

efforts to combine multiple homoeologous deletions of three candidate disease susceptibili-

ty genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring ho-

mozygous deletions at two of the three homoeoloci for all genes, but this was dependent on

the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines

possessing homozygous deletions at all three homoeoloci could not be produced for any of

the candidate genes. To investigate deletion size as a possible reason for this phenome-

non, we developed an amplicon sequencing approach based on synteny to Brachypodium
distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in
our mutants. These analyses revealed that genomic deletions removing the locus are rela-

tively large, resulting in the loss of multiple additional genes. The implications of this work

for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.
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Introduction
Recent advances in high-throughput sequencing technologies have vastly increased under-
standing of gene content and variation within many plant species [1]. For some plants such as
Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), completed genome sequences are
available and re-sequencing of numerous accessions has been performed [2], [3]. Even for
crops with complex genomes, large quantities of sequence data have been produced and ge-
nome references of varying degrees of completeness are beginning to emerge [4], [5], [6]. De-
spite the power of these resources as platforms for functional genomics [7], [1]
characterization of gene function clearly requires additional analyses. Gene inactivation is a
powerful approach for the study of gene function, and has contributed substantially to our cur-
rent knowledge in this area [8]. Furthermore, in instances where the loss of function of a gene
is known or predicted to confer a desirable agronomic or quality phenotype, gene inactivation
has potential to be used as a tool for crop improvement, e.g. [9].

In the model plant Arabidopsis, for most genes a T-DNA insertion and/or EMS mutant is
publically available [10] allowing efficient study of the effect of loss of gene function. In most
crop plants such comprehensive resources are not yet available and the study of loss-of-func-
tion mutants is not as simple. However TILLING approaches [11] are effective in identifying
mutant gene variants in crops, some of which are non-functional. Traditionally, mutant popu-
lations for TILLING have been developed using chemical mutagens such as ethyl methanesul-
fonate (EMS) or sodium azide (NaN3), which predominantly produce point mutations with
high frequency and random distribution within the genome [12]. Physical mutagens such as
gamma rays, fast neutrons and heavy ions have also been used for plant mutagenesis and re-
verse genetic [13] strategies [14], [15]; these physical agents mainly induce genomic deletions.
The size distribution of deletions varies with specific mutagen/plant species combinations, but
is known to range from only individual base pairs to hundreds of kilobases [16]. Additionally,
structural changes including inversions and translocations are relatively common as a result of
physical mutagenesis [17].

Bread wheat (Triticum aestivum) is one of the most important agricultural commodities in
the world, cultivated on the largest land area of any crop plant and providing 20 percent of
human caloric intake globally [5]. Functional genomics has great potential to assist wheat im-
provement, however the wheat genome is notoriously challenging for functional analysis [4].
In addition to its extremely large size (~ 17 Gb; approximately 40 times the size of rice) and
high percentage of repetitive elements (80–90%; [18], [19]) the bread wheat genome is hexa-
ploid, possessing three ‘subgenomes’ designated ‘A’, ‘B’ and ‘D’. For most wheat genes, six
homoeologous copies exist, two alleles from each of the subgenomes, which is assumed to lead
to a high degree a functional redundancy [13].

Most likely due to its polyploid genome, wheat is extremely tolerant of mutation. For exam-
ple, a mutation rate of ~ 1 in 32 kb has been reported within a chemically mutagenized TILL-
ING population in bread wheat, compared to an average of ~ 1 in 400 kb in diploid plants [20].
While such high tolerance to mutation is desirable in the sense that ‘mutation saturation’ (i.e.
production of a population statistically likely to contain a mutation in any given gene) can be
achieved with relatively small population sizes [20], genomic redundancy can potentially pres-
ent a substantial challenge for the production of loss-of-function mutants for a given gene.
Theoretically, to achieve complete gene inactivation individual loss of function mutations of all
six homoeologous gene copies would need to be combined in a single line. Since the seminal
work of Slade et al. [21], reports of functional analysis of genes and/or plant improvement via
TILLING in wheat are limited [13], although protocols specifically designed for TILLING in
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wheat have been reported [22]. It seems likely that difficulties (such as the absence of a detect-
able phenotype) associated with genetic redundancy may have contributed to this.

Previously, we reported the development of a method to facilitate high-throughput screen-
ing for homoeologous gene deletions within a mutant wheat population produced using heavy
ion irradiation (HII) [15]. We demonstrated the application of the method to the identification
of deletions of wheat homologues of several disease susceptibility genes [15] including PFT1
[23] and PLDß1 [24] characterized in model plants. Such susceptibility genes are seen as good
candidates for this approach, as wheat inactivations may represent novel sources of disease re-
sistance that have great potential to assist with crop improvement. However, given the hexa-
ploid nature of the wheat genome, substantial additional development of genetic stocks is
required to fully explore this strategy. Ideally, for a given wheat gene lines would be produced
which feature 1. deletions of each of the individual homoeoloci; 2. all combinations of deletions
of two of three homoeoloci (i.e. ‘AB’, ‘BD’, and ‘AD’ deletions); and 3. Deletions of all homoeo-
loci (i.e. ‘ABD’ deletions). Here we outline our attempts to create comprehensive deletion
stocks for three candidate susceptibility genes in wheat using HII deletion mutants, and pro-
vide an assessment of the use of HII mutagenesis for reverse genetics in wheat.

Results

Identification of ‘primary’ Chara HII deletion mutants
Identification of mutant lines possessing homozygous deletions of individual homoeoloci (‘pri-
mary’mutants) of the putative disease susceptibility genes TaPLDß1 and TaPFT1 in the wheat
cultivar ‘Chara’ was described previously [15]. Here we also focussed on TaWRKY11, another
putative disease susceptibility gene. In Arabidopsis, WRKY11 acts as a negative regulator of re-
sistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae. T-DNAmutants pos-
sessing inactivated WRKY11 demonstrate enhanced resistance to both virulent and avirulent
strains of the pathogen [25]. Sequences of three putatively homoeologous copies (S1 Fig.) of a
wheat homologue of ArabidopsisWRKY11, which share between 96–98% identity (S1 Fig.),
were identified as described in Materials and Methods. A modified version of the method of
Fitzgerald et al. [15] (see Materials and Methods) was then used to identify primary
TaWRKY11 deletion mutants. Previously, we observed an average frequency of candidate gene
deletions within the HII population of approximately 0.3% (i.e. 3 independent deletions in the
same gene in 1000 lines) [15]. DNA from 1728 M2 Chara HII mutants was initially screened to
identify putative TaWRKY11mutants. Re-screening of M3 plants obtained from putative mu-
tants confirmed deletions in six lines; four A-homoeologue (TaWRKY11-A) deletions and two
B-homoeologue (TaWRKY11-B) deletions (Tables A and B in S1 File). However, no confirmed
D-homoeologue (TaWRKY11-D) mutants could be identified at the M3 generation. Subse-
quently an additional 768 DNA samples were screened and a single TaWRKY11-D deletion
was identified at the M3 generation (Tables A and B in S1 File).

Chromosomal mapping of candidate genes
To further assess whether the highly homologous copies targeted by our screening method are,
in fact, located on the homoeologous chromosomes of the A, B and D sub-genomes, respective-
ly, the Chinese Spring nullisomic-tetrasomic lines [26], which lack individual homoeologous
chromosome pairs, were screened using the method of Fitzgerald et al. [15]. The chromosomal
locations of the TaPFT1 sequences targeted by each of the fluorescently-labelled probes were
previously determined to be on the group 5 chromosomes 5A, 5B, and 5D [15]. Nullisomic-
tetrasomic lines lacking the 1A, 1B and 1D homoeologous chromosome pairs showed ineffi-
cient/absent fluorescence from the PLDB1prbFAM, PLDB1prbVIC and PLDB1prbNED
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probes, respectively. This indicates that the TaPLDß1 sequences are located on these homoeo-
logous chromosomes (S2 Fig.; Table C in S1File). For TaWRKY11, nullisomic-tetrasomic lines
lacking the 2B and 2D chromosomes showed inefficient/absent fluorescence from the
WRKY11prbNED andWRKY11prbFAM probes, respectively, indicating that TaWRKY11
homoeologue sequences are located on these chromosomes (S3 Fig.; Table C in S1 File). For
the chromosome 2A series, only DNA from monosomic lines (possessing a single 2A chromo-
some) was present in the collection available to us and thus the location of a TaWRKY11
homoeologue on 2A could not be confirmed using this approach, as the probe-based screening
method produces similar fluorescence from a single copy of a target sequence (as present on a
monosomic chromosome) as two copies [15].

With the recent availability of the ‘Whole Chromosome Survey Sequence’ or ‘CSS’, (Interna-
tional Wheat Genome Sequencing Consortium; http://plants.ensembl.org/info/website/ftp/
index.html; as published in [27]), the chromosomal location of TaPFT1, TaPLDß1 and
TaWRKY11 was assessed in silico by a MEGABLAST search of all chromosome-arm specific
sequence data with gene sequence used for the design of the high-throughput deletion screen-
ing assays. Results of this analysis complemented those obtained from screening of the
nullisomic-tetrasomic accessions and are described in S2 File.

Combining multiple homoeologous deletions
To overcome possible redundancy conferred by homoeologous copies of our candidate genes,
attempts were made to produce lines with homozygous deletions of two homoeoloci (one in-
tact homoeologous locus remaining; ‘tetras’) and three homoeoloci (all homoeologues re-
moved; ‘hexas’). Viable tetras were produced for all genes (Table D in S1 File), but as outlined
in detail below this was dependent on the individual mutants used in crossing. However, viable
hexas could not be produced for any of our candidate genes despite extensive efforts.

For each candidate gene, crosses were made between mutants possessing homozygous dele-
tions of different homoeoloci, and F2 progeny was screened to identify lines featuring homozy-
gous deletions of multiple homoeoloci. As stated above, the high-throughput screening
method used does not distinguish between hemizygous individuals lacking one allele at a given
homoeolocus and homozygous wild type individuals possessing both alleles. Rather, individu-
als homozygous for the deletion of a specific homoeolocus (i.e. with both homoeoalleles delet-
ed) are detected [15]. The expected genotypic ratios as detected by the probe screen of F2
progeny of the crosses performed for this study are outlined in Table E in S1 File. Details of
crosses performed, progeny screened and the probability of the observed genotypic ratios in
the progeny of a given cross based on a Chi-square analysis [28] are presented in Table 1 and
Table 2.

For TaPFT1, nine independent mutant combinations (two A-B; four A-D; and three B-D)
were used to produce tetras. 1237 F2 progeny were screened and A-D and B-D tetras were
identified and confirmed at the F3 generation (Table 1; e.g. Fig. 1). However, tetras could not
be obtained for five of the mutant combinations, including all A × B attempts; in all cases this
was significantly different from statistical expectations (Table 2). Since all A and B homoeolo-
gue deletion mutants were incompatible, the production of TaPFT1 hexas appeared unfeasible
and this was not attempted.

For TaWRKY11, seven independent mutant combinations (four A-B; and three A-D) were
used to produce tetras. 419 F2 progeny were screened and A-B and A-D tetras were identified
and confirmed at the F3 stage (e.g. S4 Fig.). Tetras could not be produced from one mutant
combination (tawrky11–227-a × tawrky11–87-b) and this was significantly different from sta-
tistical expectations (Table 1). A-B tetras produced from two different primary mutant
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Table 1. Overview of attempts to create ‘tetras’ for TaPFT1, TaPLDB1 and TaWRKY11.

Gene
Name

A parent B parent D parent Index of
expected
ratios‡

No. of F2
progeny
screened

A-deletion B-deletion D-deletion AB-deletion AD-deletion BD-deletion

TaPFT1 tapft1–
616-a

tapft1–
157-b

- 1 316 55 51 - 0** - -

TaPFT1 tapft1–
616-a

- tapft1–
723-d

2 164 21 - 18** - 0** -

TaPFT1 tapft1–85-
a

- tapft1–
734-d

2 85 14 - 19 - 9 -

TaPFT1 - tapft1–
157-b

tapft1–
723-d

3 124 - 17 17 - - 0**

TaPFT1 tapft1–85-
a

tapft1–
157-b

- 1 124 22 19 - 0** - -

TaPFT1 tapft1–
616-a

- tapft1–
757-d

2 83 18 - 4** - 0* -

TaPFT1 tapft1–
616-a

- tapft1–
734-d

2 39 5 - 2* - 2 -

TaPFT1 - tapft1–
157-b

tapft1–
757-d

3 192 - 41 23* - - 3**

TaPFT1 - tapft1–
157-b

tapft1–
734-d

3 110 - 15 9** - - 7

TaPLDß1 tapldß1–
690-a

tapldß1–
150-b

- 1 75 8 16 - 0* - -

TaPLDß1 tapldß1–
781-a

tapldß1–
855-b

- 1 48 3* 10 - 4 - -

TaPLDß1 tapldß1–
334-a

tapldß1–
855-b

- 1 40 4 2* - 1 - -

TaPLDß1 tapldß1–
208-a

tapldß1–
855-b

- 1 48 8 12 - 0 - -

TaPLDß1 tapldß1–
781-a

- tapldß1–
934-d

2 134 31 - 18 - 9 -

TaPLDß1 tapldß1–
334-a

- tapldß1–
147-d

2 94 24 - 17 - 5 -

TaPLDß1 tapldß1–
781-a

- tapldß1–
147-d

2 42 4 - 9 - 5 -

TaPLDß1 - tapldß1–
855-b

tapldß1–
147-d

3 92 - 21 12 - - 7

TaPLDß1 - tapldß1–
150-b

tapldß1–
934-d

3 32 - 4 6 - - 2

TaWRKY11 tawrky11–
208-a

tawrky11–
743-b

- 1 104 16 22 - 3 - -

TaWRKY11 tawrky11–
286-a

tawrky11–
87-b

- 1 51 11 10 - 2 - -

TaWRKY11 tawrky11–
227-a

tawrky11–
87-b

- 1 76 4** 11 - 0* - -

TaWRKY11 tawrky11–
417-a

tawrky11–
87-b

- 1 44 4 6 - 3 - -

TaWRKY11 tawrky11–
227-a

- tawrky11–
300-d

2 48 4 - 4 - 1 -

TaWRKY11 tawrky11–
417-a

- tawrky11–
300-d

2 48 8 - 8 - 6 -

(Continued)
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combinations (tawrky11–417-a × tawrky11–87-b; and tawrky11–286-a × tawrky11–87-b) were
then crossed with tawrky11–300-d to produce hexas (Table 2). Although A-B and A-D tetras
were produced at similar to expected ratios, B-D tetras were not observed within the F2 proge-
ny screened; again this was significantly different from expectations based on Chi-square anal-
ysis (Table 2). Similarly, hexas could not be obtained despite screening of 535 F2 progeny, and
Chi-square analysis indicated that this was a significant deviation from expectations (Table 2).

For TaPLDß1, nine independent mutant combinations (four ‘A-B’; three ‘A-D’; and two ‘B-
D’) were used in crossing experiments to produce tetras (Table 1). A total of 605 F2 progeny
were screened and A-B, A-D, and B-D tetras were identified and confirmed at the F3 genera-
tion (e.g. S5 Fig.). For two A-B mutant combinations, no tetras were detected and for one com-
bination (tapldß1–690-a × tapldß1–150-b), this was significantly different from expectations

Table 1. (Continued)

Gene
Name

A parent B parent D parent Index of
expected
ratios‡

No. of F2
progeny
screened

A-deletion B-deletion D-deletion AB-deletion AD-deletion BD-deletion

TaWRKY11 tawrky11–
286-a

- tawrky11–
300-d

2 48 5 - 6 - 4 -

The number of progeny screened (F2 progeny) and the number of progeny identified with each expected deletion genotype (e.g. A-deletion) is given. ‘-’

indicates that a given parent was not used in the cross, or a given deletion was not expected in the progeny. Asterisks indicate significantly different

observed frequencies of a deletion genotype compared to expectations;

* indicates P < 0.05;

** indicates P < 0.01.

Where a deletion genotype was not identified and this was significantly different from expectations, this is in bold.

‡ ‘Index’ refers to the expected genotypic ratio within F2 progeny of crosses performed as given in Table E in S1 File.

doi:10.1371/journal.pone.0117369.t001

Table 2. Overview of attempts to create ‘hexas’ for TaPLDß1 and TaWRKY11.

Gene A parent B parent D parent Index of
expected
ratios‡

No. of F2
progeny
screened

AB-deletion AD-deletion BD-deletion ABD-deletion

TaPLDß1 tapldß1–
781-a

tapldß1–
855-b

tapldß1–934-
d; tapldß1–
147-d

4 79 - 13 19 5

TaPLDß1 tapldß1–
334-a

tapldß1–
855-b

tapldß1–147-d 4 64 - 9 9 4

TaWRKY11 tawrky11–
417-a

tawrky11–
87-b

tawrky11–300-
d

5 252 8 9 0** 0*

TaWRKY11 tawrky11–
286-a

tawrky11–
87-b

tawrky11–300-
d

5 283 7 2 0** 0*

Number of progeny screened (F2 progeny) and number of progeny identified with expected tetra and hexa genotypes (frequency of primary mutants is not

shown; these were similar to expected for all crosses.

‘-’ indicates that a given parent was not used in the cross, or a given deletion was not expected in the progeny. N.B. for TaPLDß1 A-D tetras were crossed

with B-D tetras to produce hexas, and thus all progeny were expected to possess a D deletion. Therefore AB-deletion lines (possessing deletions of A and

B, but with D intact) were not expected within the progeny.

Asterisks indicate significantly different observed frequencies of a deletion genotype compared to expectations;

* indicates P < 0.05;

** indicates P < 0.01. Where a deletion genotype was not identified and this was significantly different from expectations, this is in bold.

‡ ‘Index’ refers to the expected genotypic ratio within F2 progeny of crosses performed as given in Table E in S1 File.
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based on number of progeny screened (Table 1). Crosses were then made between A-D tetras
from two different mutant combinations (tapldß1–334-a × tapldß1–147-d; and tapldß1–781-a
× tapldß1–934-d), and B-D tetras from tapldß1–147-d × tapldß1–855-b and F2 progeny of
these crosses was screened to identify hexas. All mutant combinations produced hexas at simi-
lar to expected frequencies (Table 2). However, all hexas produced were sterile (S6 Fig.). Artifi-
cial fertilization of the lines with wild-type pollen produced viable seed, indicating that the
combination of deletions at the three TaPLDß1 homoeoloci induced male sterility (S6 Fig.).

Genotypes of TaPFT1 and TaWRKY11 tetras, and TaPLDß1 hexas were independently con-
firmed using agarose gel-based assays as outlined in S2 File and S10 Fig.

Assessment of deletion size in wheat mutants using synteny to
Brachypodium distachyon
Heavy ion irradiation is known to be capable of producing relatively large deletions even in
diploid plant species e.g. [16]. We hypothesized that potentially large deletion sizes may con-
tribute to the inability to ‘stack’multiple homoeologous deletions in our wheat mutants. To ex-
plore this hypothesis, we developed an amplicon sequencing approach based on synteny to
Brachypodium distachyon to investigate the size of the deletions removing TaPFT1 (Materials
and Methods).

For this approach, a putative BdPFT1 homologue was identified on Brachypodium chromo-
some 4. Wheat homologues of 20 genes flanking BdPFT1 at regular intervals were identified
across a region of ~ 4 Mb (spanning locations ~ 2Mb from BdPFT1 in opposite chromosomal
directions; we use ‘Up’ to refer to the direction towards the distal end of the short arm of chro-
mosome 4) (Table 3). Fragments of these genes were then PCR amplified from control samples
and all TaPFT1 deletion mutants used for this study, and were sequenced using the Ion Torrent
platform. One fragment was excluded from analysis due to poor technical reproducibility
amongst wild type controls. The remaining 19 fragments were assessed for evidence of a delet-
ed homoeologue based on the absence of SNPs relative to wild type samples. Chromosome 5
series nullisomic-tetrasomic lines, previously demonstrated to lack A, B, and D homoeologues
of TaPFT1 [15] were incorporated as controls to assist with the identification of homoeologue-
specific SNPs. For four genes, no homoeologue-specific SNPs could be identified by compari-
son of wild type samples with nullisomic-tetrasomic controls, suggesting a translocation of
these genes in wheat relative to Brachypodium. For the remaining genes, deletion patterns in

Fig 1. Fluorescence profiles of TaPFT1 tetras detected using the high-throughput screeningmethod.
Note that for B-D tetras some off-target fluorescence from the D-specific probe was routinely observed.
However the signal could be clearly distinguished from that of the intact D target. Furthermore, the absence of
D target in B-D tetras was confirmed using an independent CAPS assay (see S2 File and S10 Fig.). All
images incorporate duplicate reactions and duplicate signals from each probe.

doi:10.1371/journal.pone.0117369.g001
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mutant and control samples are presented in Table F in S1 File and an overview of deletion
sizes removing TaPFT1 in the mutant lines, relative to the syntenic Brachypodium region, is
provided in Fig. 2. Our analysis suggests that TaPFT1 has been removed by deletions corre-
sponding to syntenic regions in Brachypodium from less than 200 kb, to greater than 2 Mb in
these mutants.

With the recent availability of the CSS, as outlined above, we performed an in silico analysis
of the synteny between Brachypodium and wheat for the genes assessed using this amplicon se-
quence approach (Materials and Methods). This analysis indicated that synteny was likely to
be conserved for 14 genes, while for three genes synteny was likely to be lost (Table G in S1
File). For the remaining two genes the results were inconclusive (Table G in S1 File). For 13
genes for which synteny appeared conserved based on our amplicon sequencing analysis, in sil-
ico analysis was in agreement; for the remaining gene (Bradi4g26877) in silico analysis was in-
conclusive (Table F in S1 File). Likewise, of the four genes that appeared translocated based on
our amplicon sequencing analysis, three were predicted as translocated while results for the
fourth (Bradi4g27777) were inconclusive (Table G in S1 File). The high degree of agreement
between the amplicon sequencing and in silico analyses is indicative of technical reliability of
both approaches.

Based on the deletion patterns of the genes analysed (Table F in S1 File), a rearrangement of
genes on chromosome 5D relative to Brachypodium is consistently predicted from the mutants
tapft1–723-d and tapft1–757-d. The wheat homologues of the genes Bradi4g27490, Bra-
di4g27340, Bradi4g27120, and Bradi26880 located ~ 200 kb, ~ 400 kb, ~ 700 kb, and ~ 1Mb up

Table 3. Genes targeted for the amplicon sequencing approach to assess the size of deletions removing TaPFT1 in HIB mutants.

Brachypodium gene Location relative to BdPFT1 Wheat EST

Bradi4g25620 * Up 2 Mb CJ633275

Bradi4g26150 * Up 1.5 Mb CK209311

Bradi4g26877 Up 1 Mb CK208423

Bradi4g27117 Up 700 kb CD916847

Bradi4g27270 ** Up 500 kb CD939242

Bradi4g27334 Up 400 kb CJ874674

Bradi4g27490 Up 200 kb CK162425

Bradi4g27607 Up 100 kb HX155210

Bradi4g27720 Up 50 kb CJ547672

Bradi4g27740 Up adjacent TA96658_4565

Bradi4g27760 Down adjacent EU714979

Bradi4g27777 * Down 50 kb CJ782327

Bradi4g27810 Down 100 kb HX128956

Bradi4g27880 Down 200 kb CJ617348

Bradi4g28040 Down 400 kb CJ825949

Bradi4g28150 Down 500 kb CJ690351

Bradi4g28310 * Down 700 kb CJ725966

Bradi4g28580 Down 1 Mb BQ161472

Bradi4g29060 Down 1.5 Mb CJ675064

Bradi4g29547 Down 2 Mb CJ534934

* Based on amplicon sequencing in conjunction with in silico assessment using the CSS sequences, synteny between wheat and Brachypodium appears

to have been lost for these genes.

** Based on inconsistency of SNP patterns in wild type control samples, the wheat homologue of this gene was excluded from further analysis.

doi:10.1371/journal.pone.0117369.t003
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from BdPFT1, respectively appear to have re-ordered with respect to the location of the genes
in Brachypodium, as outlined in Fig. 2. The loss of microsynteny within regions that are broad-
ly syntenic is known to be common in plants including cereals [29], and disrupted microsyn-
teny has previously been observed between wheat and Brachypodium spp. [30], [31], [32].
Thus, this observation is not unexpected.

Together, our in vitro and in silico analyses suggested that for eight of 19 genes assessed in
this region, there has been some degree of rearrangement in wheat relative to Brachypodium.
Therefore, we expanded in silico analysis to gain further insight into the conservation of syn-
teny within the region targeted by this approach (Materials and Methods); results are presented
in S3 File. Furthermore, we complemented this comparative analysis by retrieving information
on the putative functions of these Brachypodium-wheat homologues (Materials and Methods;
S3 File). This analysis suggests that for the region 1 Mb up to 2 Mb down from BdPFT1, syn-
teny is broadly conserved between wheat and Brachypodium. However, for the region 1 Mb to
2 Mb up, macrosynteny appears to have been lost, with sequence for the vast majority of wheat
homologues of genes in this region not identified on the group 5 chromosome long arms (S3
File). For most of these genes, best matches were identified in the 4AL, 4BS, and 4DS regions,
respectively (S2 File; S6 File).

Finally, we used information on the conservation of synteny in this region in conjunction
with the draft genomes of T. urartu and Aegilops tauschii, which represent the most complete
wheat subgenome assemblies currently available, to compare the physical size of the BdPFT1
and TaPFT1 regions. For T. urartu and A. tauschii, sequence was obtained for all unique scaf-
folds harbouring genes for which synteny appeared conserved between wheat and Brachypo-
dium (Materials and Methods). The total size of these scaffolds was 12291605 and 11145364
bp for T. urartu and A. tauschii, respectively.

Fig 2. Overview of synteny of genes flanking PFT1 in wheat and Brachypodium, and deletions removing TaPFT1 in wheat mutants. Light grey bar
represents Brachypodium BdPFT1 region on chromosome 4; dark grey bar represents wheat TaPFT1 region on chromosome 5 series. Left of PFT1 is treated
as ‘Up’, right of PFT1 is treated as ‘Down’. Blue, yellow, and red lines demonstrate relative gene order in Brachypodium and the A, B, and D homoeologous
wheat chromosomes, respectively. Where a line is absent (e.g. for 50 kb Up) data was insufficient to determine synteny of this gene for that subgenome.
Broken lines (e.g. 50 kb Down) indicate loss of synteny, i.e. a wheat homoeologue was not identified within the syntenic region. Blue, yellow, and red bars
represent deletions removing TaPFT1 in A, B, and D primary mutants, respectively. Bars extend to the gene furthest from PFT1 shown to be deleted in a
TaPFT1mutant; deletions may extend beyond this region until the location of the first gene shown to be intact (e.g. the size of the Brachypodium region
syntenic to the deletion in tapft1–616-a falls in the range of 400 kb Up—100 kb Down [500 kb], to 700 kb Up—200 kb Down [900 kb]).

doi:10.1371/journal.pone.0117369.g002
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Discussion
Reverse genetic approaches offer great promise for gene function analyses in crop plants. How-
ever, such analyses are technically challenging in plants with highly redundant genomes [13].
In this study, we have assessed the potential of a population developed using heavy ion irradia-
tion-mediated mutagenesis for reverse genetics in wheat using three candidate disease
susceptibility genes.

Extensive efforts to combine multiple homoeologous deletions using newly identified
TaWRKY11mutants and previously identified TaPLDß1 and TaPFT1mutants [15] were un-
dertaken. For this purpose, screening of F2 progeny from crosses involving multiple mutant
combinations (Tables 1 and 2) was performed using our previously developed high-throughput
method [15]. For all genes, tetra mutants (possessing homozygous deletions at two homoeo-
loci; lacking four of six homoeoalleles) could be produced, although this was dependent on the
specific homoeologue and/or mutant accessions being combined. However, viable hexa mu-
tants (lacking all of the six homoeoalleles) could not be produced for any of our
candidate genes.

Substantial screening of the HII population used in this study for deletions of candidate
genes has been performed, as reported here and in [15]. These efforts suggest that deletions are
relatively evenly distributed; in the order of 1 in 1000 mutant lines have been consistently ob-
served to possess a homozygous deletion at a specific homoeolocus. However, while the distri-
bution of mutations induced by chemical mutagenesis is known to be essentially random [12],
this has not been definitively established for heavy ion irradiation mutagenesis. Thus, it re-
mains possible that there are genomic regions more susceptible to mutation via HII, which
could potentially lead to incompatibility between mutant lines due to deletions at untargeted
loci. Nevertheless, unless such regions were tightly linked to the targeted loci, this would not
specifically affect the stacking of homoeologous deletions, and thus by far the greatest likeli-
hood is that the incompatibilities observed in this study are due to the targeted homoeoloci
themselves. It remains unclear, however, whether the cause of this incompatibility is 1. stacking
of deletions of the targeted candidate genes; 2. stacking of deletions of another gene at the tar-
geted homoeoloci; or 3. a cumulative effect of stacking of deletions of multiple genes at the tar-
geted homoeoloci. The inactivation of homologues of our candidate genes is tolerated in
diploid Arabidopsis, so the latter two possibilities may be more likely.

Our results indicate that relatively large deletions within the HII population may have con-
tributed to the observed incompatibilities. Nevertheless, these results are quite surprising given
that wheat is known to tolerate the loss of very large amounts of genetic material. For example,
the ditelosomic series [33] contains viable lines lacking whole chromosome arms. Therefore, it
appears that stacking of deletions at multiple homoeoloci may be comparatively poorly tolerat-
ed in wheat relative to deletions restricted to an individual subgenome.

For TaPFT1, screening to produce tetra mutants demonstrated that all combinations of
TaPFT1-A and TaPFT1-B deletion mutants used for this study were incompatible (Table 1)
and thus the production of TaPFT1 hexa mutants was not attempted. Similarly, for
TaWRKY11, we were not able to identify hexa mutants or TaWRKY11 B-D tetra mutants
(Table 2). These results suggest that there is strong negative selection against, or resultant le-
thality from the combination of deletions used in our attempts to produce TaPFT1 A-B tetras,
and TaWRKY11 B-D tetras.

For TaPLDß1, the majority of mutant combinations resulted in viable tetras (Table 1). Ad-
ditionally, hexas were detected at similar to expected frequencies within F2 progeny from both
of two crosses incorporating distinct primary mutant combinations (Table 2). However, all
mutants confirmed as hexas were male-sterile (S6 Fig.). This indicates that the combination of

An Assessment of Heavy Ion Irradiation for Reverse Genetics in Wheat

PLOS ONE | DOI:10.1371/journal.pone.0117369 February 26, 2015 10 / 23



deletions at the three TaPLDß1 homoeoloci within the mutants used for these crosses is incom-
patible with fertile pollen production. While it is possible that deletion of the targeted TaPLDß1
locus is responsible for this sterility, down-regulation/inactivation of PLDß1 does not appear to
affect fertility in rice [24] or Arabidopsis [34], suggesting that other unknown genes, or a com-
bination of the deletion of multiple genes, is a more likely explanation.

To gain insight into the size of deletions in the mutants identified for this study, we applied
an amplicon sequencing approach based on Brachypodium synteny. The intactness of wheat
homologues of genes flanking BdPFT1 in a region spanning ~ 4 Mb was assessed. Our results
suggest that deletion sizes corresponding to syntenic regions in Brachypodium from 100–200
kb, to greater than 2 Mb, removed TaPFT1 in the mutants used for this study (Fig. 2). Based on
these results in conjunction with in silico analysis using the recently released hexaploid wheat
Chromosomal Survey Sequences [27], we identified genes in this region for which there ap-
peared to be a loss of microsynteny between Brachypodium and wheat (S3 File). Interestingly,
we also identified a putative breakpoint of macrosynteny between Brachypodium and wheat
which occurred ~ 1 Mb from BdPFT1 towards the distal end of the short arm (‘Up’) of Brachy-
podium chromosome 4 (S3 File).

In addition to polyploidization, the wheat genome has undergone substantial expansion due
to the proliferation of transposable elements. Although the expansion of the wheat genome is
not uniform [35], it could be expected that the physical size of syntenic regions would generally
be larger in wheat than in Brachypodium. To compare the physical size of the regions flanking
PFT1 in Brachypodium and wheat, we obtained scaffolds from the draft genomes of T. urartu
and A. tauschii that harboured homologues of genes flanking BdPFT1 for which synteny ap-
peared conserved. The total length of these scaffolds was ~ 11.1 Mb and ~ 12.3 Mb for T. urartu
and A. tauschii genomes, respectively; approximately 3x the physical size of the region in Bra-
chypodium. However, these estimates are likely to be conservative. Firstly, as indicated above,
we detected a loss of macrosynteny from ~ 1 Mb up from BdPFT1, and thus scaffolds contain-
ing most genes beyond that region were not incorporated in these totals. Secondly, within the
macrosyntenic region from ~ 1 Mb up to ~ 2 Mb down from BdPFT1, we excluded genes for
which it appears that microsynteny has been lost between Brachypodium and wheat, but just
as there appear to be genes in Brachypodium that are not present in wheat in this region, it
could be expected that there are genes in wheat that are not present in Brachypodium; regions
containing such genes could not be captured by our analysis. Thirdly, the T. urartu and A.
tauschii genomes are incompletely assembled and thus there is likely to be additional sequence
within this region in these genomes that is not captured within the obtained scaffolds. Never-
theless, even based on this conservative analysis, it appears that substantial genomic expansion
has occurred in wheat relative to Brachypodium in the targeted region. This suggests that the
physical size of the deletions removing TaPFT1 in our wheat mutants is considerably larger
than the syntenic Brachypodium regions.

For two of the genes for which macrosynteny appears conserved between Brachypodium
and wheat within the region of TaPFT1, homologues in Arabidopsis have been previously char-
acterised as necessary for embryo development or fertility (S3 File). Polymorphisms in
At3g20780 (homologue to Bradi4g27057) encoding a DNA topoisomerase 6 subunit b are re-
sponsible for harlequin (dwarf, skotomorphogenic and sterile) phenotypes [36], and Arabidop-
sis mutants homozygous for T-DNA insertion within At4g29170 (homologue to
Bradi4g27110) encoding a meiotic nuclear division protein 1 homolog are sterile [37]. Howev-
er, our analysis suggests that these genes are located between ~ 700 kb and ~ 1 Mb up from
TaPFT1, which is outside of the regions removed in the TaPFT1-A and TaPFT1-B deletion mu-
tants used in this study (Fig. 2), suggesting that these genes are unlikely to be responsible for
the incompatibilities for deletion stacking observed here.
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An additional gene located between ~ 200 kb and ~ 400 kb up from TaPFT1 (within the re-
gion found to be incompatible for deletion stacking) is a homologue of Arabidopsis ‘embryo
defective 1381 protein’ (At2g31340), mutations of which reportedly lead to developmental ar-
rest of embryos (https://www.arabidopsis.org/servlets/TairObject?name=AT2G31340&type =
locus). It therefore appears plausible that this gene may have contributed to the observed
incompatibilities. Nevertheless, there may be other wheat genes in this region that have not
been identified by our comparative analysis using Brachypodium. Additional research is clearly
required to definitively determine the factor(s) responsible for the incompatibilities observed
here, not only for stacking of TaPFT1 deletions, but also for TaWRKY11 and TaPLDß1.

Although the number of mutants with varying deletion sizes used for this study is relatively
small, limiting our ability to make firm conclusions about correlations between deletion size
and the ability to combine homoeologous deletions, our data is suggestive of a relationship. We
observed that the TaPFT1 deletion mutant tapft1–734-d was most effective for the production
of tetras, with tetras produced from all crosses using this accession (Table 2), and based on our
assessment of deletion size tapft1–734-d possessed the smallest deletion of all mutants, restrict-
ed to a size syntenic to a region< 200 kb in Brachypodium (Fig. 2; Table F in S1 File). If it is
generally the case that smaller deletions are easier to combine, the ability to optimize mutation
dosage to minimize deletion size would be highly desirable for future reverse genetic ap-
proaches using heavy ion mutagenesis.

Several studies have explored the use of heavy ion mutagenesis in the model plant Arabi-
dopsis. This has provided preliminary evidence that the nature of mutations induced can vary
based on the conditions of treatment used. For heavy ion mutagenesis, parameters that can be
adjusted include the specific ion used, the quantity of ionizing radiation (e.g. as measured in
Gray; Gy), and the linear energy transfer (LET) of the particles. Based on a comparison of two
studies, substantially higher LET using carbon ions resulted in more frequent large deletions
with smaller differences in LET resulting in similar patterns of mutation [16], [38]. A further
complicating factor is the degree to which induced mutations are transmitted to offspring.
Naito et al. [39] observed that HII induced a range of deletion sizes at two loci in Arabidopsis.
Generally, the largest deletions (sizes of up to> 6 Mb) were not transmitted to progeny, mod-
erate sized deletions were transmitted in the heterozygous state only, and small deletions/point
mutations were transmitted normally.

Detailed information on the effect of adjusting HII dosage parameters on the pattern of in-
duced mutations is lacking in plants generally. Further study in this area may allow for the op-
timization of HII to induce a mutation spectrum in wheat that is more conducive to reverse
genetics, as posited above. However, given that wheat is highly tolerant to large deletions, the
information obtained from other species may not be predictive; e.g. large deletions appear to
frequently induce loss of viability in Arabidopsis and thus are underrepresented in a mutant
population [39]. Furthermore, a mutational dose that may be considered optimal may change
from one species to another. Therefore, direct study of the effect of HII on wheat deletion size
would be most desirable for this purpose.

In addition to presenting difficulties associated with deletion stacking in wheat, as suggested
by this study, large deletions such as those present in the mutants assessed here may complicate
reverse genetic approaches, since numerous other genes are removed with a gene of interest.
Nevertheless, the resource used for this study may be powerful for certain research approaches.
For example, it may be effective for forward genetic analyses, as large deletions contributing to
a characteristic of interest should be relatively easy to identify by genomic analysis, particularly
using modern high-throughput sequencing approaches [20]. Furthermore, the resource may
be very useful to assist with functional validation of QTL via phenotypic characterisation of
mutants featuring deletions of the QTL region.
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Additionally, despite the redundancy of the wheat genome, in some cases deletions of all
homoeoloci may not be required to obtain phenotypic alteration; the degree of functional re-
dundancy amongst homoeologues seems likely to be both gene and homoeologue dependent.
For example, Shaw et al. [40] have recently shown that loss of function of the B homoeologue
of the Photoperiod-1 (Ppd-1) gene confers substantially increased flowering time, while loss of
function of the A homoeologue confers a more subtle change in flowering phenotype, and loss
of function of the D homoeologue does not produce a phenotype independently (although ef-
fects are detected when combined with deletions of the B homoeologue). Whether a similar
phenomenon can be observed for the putative susceptibility genes studied here is now under
investigation through pathogen inoculation and defence gene expression analyses.

Material and Methods

Mutant population
The mutant population described in [15] was used for this study. To develop this population,
heavy ion irradiation of grain of cv. Chara (AWB Seeds Ltd., Australia) was performed by the
RIKEN-Japan RI-beam facility using a Neon ion beam at 50 Gy with LET at 63 KeV/mm2. An
M2 population comprising approximately 9100 lines was produced with leaf material sampled
for DNA extraction, and M3 seed indexed to M2 DNA samples.

Routine plant growth
Plants were grown in either 48-cell trays (Kwikpot K48, Garden City Plastics, Australia) using
UC mix with a sprinkling of Basacote Mini 3-month (Compo GmbH and Co), or 140 mm
ANOVA pots (http://www.anovapot.com/index.php) using Searles Peat80 potting mix (JC &
AT Searle PTY LTD, Australia).

DNA extraction
Approximately 0.05 grams fresh leaf tissue was harvested into 96-tube racks (MTS-11–8-C-R;
Fisher Biotec, Australia) and lyophilized. DNA extraction was performed by the Australian Ge-
nome Research Facility (Glen Osmond, Adelaide, Australia) using NucleoSpin Plant II kits
(Macherey-Nagel) with on-column RNase digestion. DNA concentration was assessed using a
Nanodrop 2000c (Thermo Scientific) and stored in indexed 96-well half skirt PCR plates
(PCR-96M2-HS; Axygen, USA).

Cloning and sequencing of TaWRKY11 homoeologue fragments
A TBLASTN [41] search of the TIGR Rice Genome Annotation Database (http://blast.jcvi.org/
euk-blast/index.cgi?project = osa1) using the protein sequence of Arabidopsis WRKY11
(AT4G31550.1) identified Os04g21950 as the best match (58.73% global similarity as assessed
using ‘SIAS’ http://imed.med.ucm.es/Tools/sias.html). Following this, a TBLASTN search of
the GrainGenes database (http://wheat.pw.usda.gov/GG2/index.shtml) with Os04g21950 iden-
tified the Triticum aestivummRNA sequence BT009449 as the best match (84.75% global simi-
larity). A subsequent TBLASTN search of the TAIR database (http://arabidopsis.org/index.jsp)
with translated BT009449 identified AT4G31550.1 (WRKY11) as the best match (55.42% glob-
al similarity), indicating BT009449 as a likely candidate wheat homologue ofWRKY11, and
this gene was designated TaWRKY11. BT009449 sequence was used to design primers for am-
plification of genomic TaWRKY11 sequence, using Primer Premier 5.1 (Premier Biosoft Inter-
national, Palo Alto, CA). An ~ 950 bp genomic fragment was amplified from DNA extracted
from wheat cv. ‘Chara’ using Phusion High-Fidelity DNA polymerase (Finnzymes Oy,
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Keilaranta 16 A, 02150 Espoo, Finland) with a manufacturer-reported error rate of 4.4 × 10–7.
Products were cloned using a TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA) and plas-
mid preparations were produced using a QIAprep Spin Miniprep kit (Qiagen GmbH) in con-
junction with a QIAcube (Qiagen GmbH) apparatus. The Australian Genome Research
Facility (AGRF) plasmid sequencing service (AGRF, Brisbane, QLD, Australia) was used to ob-
tain cloned fragment sequence using forward and reverse M13 primers. Sequence was analysed
using Sequencher Version 4.9 Software (Gene Codes Corporation, Ann Arbor, MI, USA).

45 fragments were sequenced and three unique, putatively homoeologous sequences were
identified (S1 Fig.) and deposited in GenBank (accession numbers KP036496, KP036497, and
KP036498).

High-throughput deletion screening
For TaPFT1 and TaPLDß1 deletion genotyping was performed using the method outlined in
[15] and the homoeologue-specific, multiplexed TaqMan assays targeting TaPFT1 and
TaPLDß1 described therein. Briefly, for a wheat gene of interest uniquely fluorophore-labelled
TaqMan SNP-detection probes are designed to specifically target each homoeologue. Multiplex
qPCR is performed using these probes and a gene specific primer mix, such that efficient fluo-
rescence from each probe is observed in the presence of its corresponding homoeologue.
Where a homoeolocus is deleted, fluorescence from its corresponding probe is inefficient or ab-
sent. By observing the fluorescence amplification plots of each fluorophore for a given reaction,
the presence or absence of a specific homoeolocus can be determined.

For TaWRKY11, a modified version of the method outlined in [15] was used. Homoeolo-
gue-specific TaqMan minor groove binding, non-fluorescent quencher (MGB-NFQ) probes
and a gene specific primer mix was designed as for the assays outlined in [15] (S7 Fig.; Table A
in S1 File). However, for this assay it was found that two probes, WRKY11prb1FAM and
WRKY11prb3NED, did not multiplex successfully. A functional ‘dual duplex’ assay for
TaWRKY11 was produced; for this assay, each sample was screened using two reactions, one
containing WRKY11prb1FAM andWRKY11prb2VIC, and the other containing
WRKY11prb3NED and WRK11prb2VIC (e.g. S3 and S4 Figs.). For both duplex assays 11 µL
reactions containing 1000 nM forward primer mix, 1000 nM reverse primer mix, 5 µL TaqMan
Universal PCR master mix (Life Technologies, Inc) and 2 µL ~ 100 ng/µL DNA were used. For
the ‘FAM/VIC’ duplex, 150 nM FAM and 50 nM VIC labelled probes were used. For the
‘NED/VIC’ duplex, 200 nM NED and 50 nM VIC labelled probes were used. Cycling condi-
tions were 50°C for 2 mins, 95°C for 10 mins, followed by 45 cycles of 95°C for 15s, 55°C for
30s and 60°C for 30s. qPCR screening was performed using an Applied Biosystems 7900HT
(Applied Biosystems, Foster City, CA) or a ViiA7 Real-Time PCR System (Life Technologies,
Inc).

Development of plant material

Attempts to produce lines lacking two of the three homoeoloci for candidate
genes
For TaWRKY11, TaPFT1 and TaPLDß1, independent ‘primary’mutant lines, possessing ho-
mozygous deletions for each of the individual homoeoloci of the genes were identified (Table B
in S1 File). For TaPFT1 and TaPLDß1, identification of these primary deletion mutants was re-
ported in [15]; for TaWRKY11 see Results. For each gene, multiple combinations of mutants
lacking different homoeoloci were artificially crossed to produce F1 seed (Table 1). F1 seed was
then selfed to produce F2 progeny and individual F2 progeny were planted and genotyped as
described above. For lines putatively possessing homozygous deletions of two of the three
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homoeoloci (‘tetras’), several F3 seed was grown to re-genotype for confirmation and to pro-
duce bulked F4 seed.

Attempts to produce lines lacking all homoeologous copies of candidate genes
For TaPLDß1, crosses were made between tetra lines lacking A and D homoeoloci (AD-tetras)
and B and D homoeoloci (BD-tetras) to produce F1 seed (Table 2). F1 seed was selfed to pro-
duce F2 progeny, and F2 progeny were planted and genotyped as described above.

For TaWRKY11, crosses between multiple independent tetra lines lacking the A and B
homoeoloci (AB-tetras) and the D-homoeolocus primary mutant tawrky11–300-d were con-
ducted (Table 2). F1 seed was selfed to produce F2 progeny and F2 progeny were planted and
genotyped as described above.

Amplicon sequencing to assess integrity of genes flanking TaPFT1 by
synteny to Brachypodium distachyon
A Brachypodium distachyon gene (Bradi4g27747) with 88.4% DNA sequence identity to the
full length TaPFT1 cDNA sequence (UniGene Ta.39294) was identified on Brachypodium
chromosome 4 by a BLASTN search of the Phytozome database (http://www.phytozome.net/).
This gene was designated BdPFT1. The Brachypodium genome annotation (version 1.92;
http://www.phytozome.net/) was used to identify genes flanking BdPFT1 at a range of distances
(Material and Methods). Genes flanking BdPFT1 at regular intervals (Table 3) within the ~4
Mb region from Bd4:30993677 to Bd4:35045079 were identified using the phytozome Brachy-
podium distachyon genome browser (http://www.phytozome.net/cgi-bin/gbrowse/brachy/).
‘Up’ is used to indicate the direction towards distal end of the short arm and ‘Down’ is used to
indicate the opposite direction. Genes were selected based on the presence of intron/exon
structure that would be likely to facilitate the design of primers to generate amplicons of ~
500–1500 base pairs in length, with the primers anchored in exons and the amplicon spanning
an intron/introns. BLASTN searches of wheat sequences within the NCBI (http://blast.ncbi.
nlm.nih.gov/) and JCVI (http://blast.jcvi.org) databases were used to identify homologous
wheat sequences to the Brachypodium genes selected (Table 3). Putative intron/exon structure
of the wheat genes corresponding to the ESTs identified was visualized by aligning wheat EST
to Brachypodium full gene sequence using the Spidey mRNA to genomics alignment tool
(http://www.ncbi.nlm.nih.gov/spidey/). Primers were then designed as described above using
Primer Premier 5.0 (Premier Biosoft International, Palo Alto, California). For each gene, two
independent primer pairs (Table H in S1 File) were designed to increase the likelihood of ob-
taining at least one successful primer pair per gene. Primers were synthesized by Integrated
DNA technologies (1710 Commercial Park Coralville, Iowa 52241, USA).

From each sample being analysed, PCR amplification was performed using all designed
primer pairs in single-plex reactions. Individual primer pairs at 10 µM per primer eluted in
DNase-free water were arranged in individual wells of a half-skirt 96-well PCR plate (PCR-
96M2-HS; Axygen, USA). PCR master mix stock composed of 5 µL High Fidelity Phusion PCR
Buffer (New England BioLabs, Inc.), 0.5 µL 10 mM dNTPs, 0.75 µL DMSO, 0.25 µL Phusion
proofreading DNA polymerase and 15.5 µL DNase-free water per 22 µL was prepared in a
2.0 mL safe-lock PCR tube.

An Eppendorf EpMotion 5070 (Eppendorf AG, Hamburg, Germany) was used to combine
1.5 µL of a specific primer pair, 1.5 µL of 100 µM DNA and 22 µL PCR master mix into individ-
ual wells of a new half-skirt 96-well PCR plates (PCR-96M2-HS; Axygen, USA). PCR was per-
formed on an Eppendorf Mastercycler ep gradient S (Eppendorf AG, Hamburg, Germany)
using a touchdown protocol as follows: hot start at 98°C; 1 min at 98°C; 15 cycles with-1°C
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annealing temperature per cycle starting with 98°C for 15s, 70°C for 15s, 72°C for 30s; 25 cycles
of 98°C for 15s, 58°C for 15s, 72°C for 30s; 72°C for 5 mins; hold at 22°C. PCR products from
were visualized on a 1.5% agarose gel run at 90V for 65 mins against a 1 Kb Plus ladder (Life
Technologies, Inc.) (e.g. S8).

For each individual sample, 10 µL of each successfully amplified PCR product was added to
a single 2.0 mL PCR tube using the EpMotion 5070. The pooled amplicons were then purified
using a QIAquick PCR purification kit (Qiagen, GmbH), visualized on 1.5% agarose and nor-
malized to a concentration of ~ 100 ng/uL as assessed using a NanoDrop 2000 (Thermo Scien-
tific, Inc.) using DNase free water. Amplicon sequencing was then performed by the Australian
Genome Research Facility (AGRF; Brisbane, Australia). For each sample, pooled amplicons
were enzymatically sheared using IonShear (Life Technologies, Inc.), purified with AmPure XP
(Beckman Coulter, Inc.) and barcoded adapters for sequencing ligated following a standard
Ion Torrent protocol. Samples were then pooled and sequenced across two Ion 318 chips (Life
Technologies, Inc.) using an Ion Torrent PGM sequencer (Life Technologies, Inc.). Samples in-
cluded on the first chip were: wild type Chara, wild type Chinese Spring, tapft1–616-a, tapft1–
157-b, tapft1–723-d, and the ditellosomic control lines CS5AL-14. Samples included on the sec-
ond chip were wild type Chara, wild type Chinese Spring, tapft1–616-a, tapft1–85-a, tapft1–
734-d, tapft1–757-d, and the nullisomic-tetrasomic control lines ‘N5AT5B’ (lacking the 5A
homoeologous chromosome), ‘N5BT5D’ (lacking 5B) or ‘N5DT5A’ (lacking 5D). The first
chip produced 299.6 Mb of Q20 or better data; the second chip produced 795.4 Mb of Q20 or
better data. The large discrepancy between data produced from the first and second chips was
primarily attributed to a bubble formed on the first chip during loading; however, based on the
proportion of Q20 bases from the first and second chips (62% and 84%, respectively) the over-
all run quality was higher for the second chip also.

Sample-specific sequences obtained were quality trimmed using CLC Genomics Work-
bench Version 5.1 (Qiagen, GmbH) using default settings for Ion Torrent data. A reference
alignment approach was used to map reads to individual genes. For reference sequence, A.
tauschii (D-genome progenitor of cultivated wheat) scaffolds containing sequence homologous
to target amplicons was obtained by a BLASTN search of the whole A. tauschii genome se-
quence. For individual samples, reads were aligned to all reference sequences using criteria of
minimum identity of 85%. SNP detection within all alignments was then performed using the
CLC Genomics Workbench SNP detection tool using criteria of minimum allele frequency of
5% and minimum read coverage of 50x. Alignments were visually inspected to assess the extent
of PCR duplication artefact with no substantial duplication observed.

SNP tables indexing SNPs detected within all reference alignments for individual samples
were exported from CLC Genomics Workbench in CSV format. Data was formatted using cus-
tom-written Perl scripts (chara_cs_overlap.pl and pft1_flank.pl). To call genes as intact or de-
leted, the approach used was as follows. 1. For each gene, SNPs present in all wild type Chara
E86 and Chinese Spring samples were considered useful; other SNPs were discarded as either
accession-specific or unreliable. 2. Of these SNPs, those absent from the nullisomic-tetrasomic
control lines ‘N5AT5B’ (lacking the 5A homoeologous chromosome), ‘N5BT5D’ (lacking 5B)
or ‘N5DT5A’ (lacking 5D) were considered homoeologue-specific (S4 File). The presence of
these homoeologue-specific SNPs was then assessed in TaPFT1 primary mutant samples, lack-
ing individual TaPFT1 homoeologues. Where SNPs were consistently deleted from a mutant
sample and its respective nullisomic-tetrasomic control, the gene was considered deleted in
that mutant (S5 File). For four of the genes targeted, deleted SNPs were not identified in any of
the nullisomic-tetrasomic controls. For the remaining 15 genes, intactness in the mutant and
control samples is outlined in Table F in S1 File. In addition to the wild type and nullisomic-
tetrasomic control accessions, the ditelosomic line CS5AL-14, from which TaPFT1-A was
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previously found to be absent [15] was included as a further control; A-homoeologue copies of
the targeted genes were found to be consistently absent in this line and the nullisomic-
tetrasomic control. Furthermore, one mutant sample, tapft1–616-a, was included in duplicate
(once in each of the two Ion Torrent sequencing chips used). Identical deletion patterns were
identified for both duplicates (Table F in S1 File).

Comparison of physical size and gene content between Brachypodium
and wheat in the region of PFT1
To compare the physical size and overall gene content in wheat and Brachypodium in the re-
gions harbouring BdPFT1 and TaPFT1, we undertook a strategy using the CSS in conjunction
with the genome sequences of Triticum urartu [42] and A. tauschii [43] (‘A’ and ‘D’ genome
diploid progenitors of hexaploid wheat, respectively), as follows.

cDNA sequence for all Brachypodium genes in the region flanking BdPFT1 from
Bd4:30993677 to Bd4:35045079, targeted for the approach outlined above, was obtained from
phytozome using the ‘BioMart’ tool (http://www.phytozome.net/biomart/martview/
6d4d3f098f4a29a be2240361a1c1ded6). A BLASTN search of gene sequences extracted from
the CSS using the associated GTF file (http://plants.ensembl.org/info/website /ftp/index.html)
in conjunction with a custom Perl script (gtf_to_genes.pl) was performed, and the best match
for all genes was identified. This sequence was then used for a MEGABLAST search against the
entire CSS, and additional matches with an e-value of zero (highly likely to be homoeologues/
gene duplications) were identified.

Data was formatted using custom Python scripts (PFT1_flank_CSS_hits_step1.py,
PFT1_flank_CSS_hits_step2.py, and PFT1_flank_CSS_hits_step3.py) to assess whether homo-
logues of these Brachypodium genes flanking BdPFT1 were present on the long arms of the
group 5 chromosome series, previously determined to harbour TaPFT1 [15]. Taking into ac-
count the high degree of gene duplication within the wheat genome [44] and the incomplete
nature of the CSS, for each gene we performed an assessment of the conservation of synteny be-
tween Brachypodium and wheat as follows.

Where no matches were identified on any of the group 5 chromosome long arms, this was
taken as evidence of a translocation of the gene in wheat relative to Brachypodium. Where a
match was identified on a given group 5 chromosome long arm, and no match of equal or
greater identity and length was identified outside of the group 5 long arms, it was considered
likely that this match represented a homoeologue. Where a match was identified on a given
group 5 long arm, but a match of equal or greater length and identity was identified outside of
the chromosome 5 long arms, it was considered uncertain whether this match represented a
homoeologue or a gene duplication located within the syntenic chromosomal region. If a likely
homoeologue was identified on at least one of the group 5 long arms, this was taken as evidence
of conservation of synteny for that gene between wheat and Brachypodium. Alternatively, if all
matches on the chromosome 5 long arms were considered uncertain by the criteria above, it
was considered unclear whether synteny was conserved between Brachypodium and wheat for
that gene. Based on these criteria, an overview of the conservation of synteny in this region is
provided in S3 File. Furthermore, functional descriptions of Brachypodium genes within re-
gions syntenic to deletion regions in wheat were assigned using BLAST2GO software [45] with
standard BLAST, mapping and annotation parameters.

Data restricted to the genes analysed using the amplicon sequencing approach is presented
in Table G in S1 File.

The size of the genomic regions harbouring genes for which synteny appeared conserved
was estimated using the draft genome sequences of both T. urartu and A. tauschii which
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contain an estimated 74% and 73% of the genome in scaffolds longer than 10 kb, respectively
[42], [43]. The length of unique scaffolds harbouring genes for which synteny appeared con-
served in this region was calculated for T. urartu and A. tauschii using the Biopython (http://
biopython.org/wiki/Biopython) SeqIO module.

Statistical analysis
Chi-square contingency analysis was performed using GraphPad software (GraphPad Software
Inc., 7825 Fay Avenue, Suite 230, La Jolla CA 92037).

Supporting Information
S1 Fig. TaWRKY11 sequence alignments. 1A. Alignment of putatively homoeologous
TaWRKY11 sequence fragments obtained from wheat cv. Chara. 1B. Global identity amongst
TaWRKY11 fragments.
(TIF)

S2 Fig. Fluorescence profiles of group 1 nullisomic-tetrasomic accessions using the high-
throughput TaPLDß1 assay. Fluorescence profiles using the TaPLDß1 high-throughput assay
from wild type Chinese Spring (all homoeologues intact) and the nullisomic-tetrasomic acces-
sions N1AT1B (1A chromosomes absent; four 1B chromosomes); N1BT1A (1B chromosomes
absent; four 1A chromosomes); N1DT1B (1D chromosomes absent; four 1B chromosomes).
Inefficient/absent fluorescence from a probe for a given nullisomic-tetrasomic accession indi-
cates that the probe targets the homoeologous copy of the gene located on the absent homoeo-
logous chromosome. All images incorporate duplicate reactions and duplicate signals from
each probe.
(TIF)

S3 Fig. TaWRKY11 screening of nullisomic-tetrasomic accessions with ‘dual duplex’ high-
throughput assay. Fluorescence profiles from wild type Chinese Spring (all homoeologues in-
tact) and the nullisomic-tetrasomic accessions N2BT2A (2B chromosomes absent; four 1A
chromosomes) and N2BT2A (2D chromosomes absent; four 1A chromosomes). Screening was
performed in ‘dual duplex’ assays (see Materials and Methods). 3A. Profiles for the
WRKY11prbFAM/WRK11prbVIC duplex. 3B. Profiles for the WRKY11prbNED/
WRKY11prbVIC duplex. Inefficient/absent fluorescence from a probe for a given nullisomic-
tetrasomic accession indicates that the probe targets the homoeologous copy of the gene locat-
ed on the absent homoeologous chromosome. All images incorporate duplicate reactions and
duplicate signals from each probe.
(TIF)

S4 Fig. Fluorescence profiles of TaWRKY11 tetras detected using the ‘dual duplex’ high-
throughput screening method. 5A. Profiles for the WRKY11prbFAM/WRK11prbVIC duplex.
5B. Profiles for the WRKY11prbNED/WRKY11prbVIC duplex. All images incorporate dupli-
cate reactions and duplicate signals from each probe.
(TIF)

S5 Fig. Fluorescence profiles of TaPLDß1 tetras detected using the high-throughput screen-
ing method. Note that for A-B tetras some off-target fluorescence from the A-specific probe
was routinely observed. However the signal could be clearly distinguished from that of the in-
tact A target. All images incorporate duplicate reactions and duplicate.
(TIF)
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S6 Fig. Male sterility in TaPLDß1 hexa lines. 4A. A TaPLDß1 hexa line with spikelets dissect-
ed demonstrating unemerged, sterile anthers. 4B. A TaPLDß1 hexa fertilized with wild type
pollen, at a similar stage of development as that depicted in 4A. 4C. Primary spikes from wild
type Chara and six TaPLDß1 hexa lines at grain fill stage. 4D. Wild type Chara and three hexas
spikes at maturity.
(TIF)

S7 Fig. Design of primers and probes for high-throughput deletion screening of
TaWRKY11. Light blue highlight represents binding sites for forward primers. Yellow high-
light indicates binding sites for reverse primers. Purple, green and dark blue highlights indicate
binding sites for D, B and A-specific TaqMan probes, respectively. Red highlight indicates
polymorphism between homoeologous sequences.
(TIF)

S8 Fig. Amplicons from genes putatively flanking TaPFT1 from wild type Chara and Chi-
nese Spring control samples. The bands from two independent primer pairs for each target
are shown (e.g. U50K = products from primer pairs targeting the wheat homoeologue of the
Brachypodium gene 50 Kb up from BdPFT1; Materials and Methods). Failed primers (one
each for D100K and U1M) were excluded from sequencing. POS is a positive control
primer pair.
(TIF)

S9 Fig. Binding sites for TaWRKY11 high-throughput assay within CSS sequences. Dark
blue indicates probe binding site (probe binds to the reverse strand), light blue and yellow indi-
cate primer sequences for the high-throughput assay (Table A in S1 File). 9A. WRKY11prbVIC
binding sites within TaWRKY11 sequence identified within the CSS sequence on chromosome
2AL. 9B. WRKY11prbNED binding sites within TaWRKY11 sequence identified within the
CSS sequence on chromosome 2BL. Dark blue indicates probe binding site (probe binds to the
reverse strand), light blue and yellow indicate primer sequences for the high-throughput assay.
(TIF)

S10 Fig. Gel based validation of TaPLDß1 hexas and TaWRKY11 and TaPFT1 tetras. 10A.
Products of a TaPFT1 CAPS assay [15] from the wild type control (WT), A, B and D primaries
(A1, B1 and D1) and AD and BD tetras (AD1, AD2, BD1 and BD2). 10B. Products of a
TaWRKY11 homoeologue-specific CAPS assay (Materials and Methods). A, B and D specific
bands are indicated with yellow, red and orange arrows, respectively. The presence of all bands
is observed in the wild type control (WT). A, B and D primary mutants (A1, B1 and D1) and
AB and AD-tetras (AB1, AB2, AD1 and AD2) lack the respective homoeologue-specific frag-
ments. 10C. PCR products from a duplex reaction with a universal TaPLDß1 primer mix (tar-
geting all homoeologues) and control primers. Amplification of the control band but not the
TaPLDß1 band in lines H1—H8 indicate the absence of all TaPLDß1 gene copies in these lines.
Amplification of the control band and the TaPLDß1 band from one putative hexa (labelled ‘X’)
and the wild type (WT) indicates the presence of at least one copy of TaPLDß1 in these lines.
(TIF)

S1 File. Table A, Details of the application of the high throughput screening method to
identify TaWRKY11 deletions. Table B, TaWRKY11, TaPFT1 and TaPLDß1 primary mu-
tant accessions used for this study. Table C, Chromosomal location of candidate genes and
homoeologous copy targeted by individual fluoro-labelled probes. Table D, Summary of
tetras selected for further development and assessment. All listed accessions had genotype
confirmed at the F3 stage. Table E, Expected genotypic ratios as detected by the probe screen
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of F2 progeny used in this study. Upper case indicates intact homoeologue and lower case in-
dicates deleted homoeologue. Index is provided for reference to Tables 1 and 2. E.g. Index 1 re-
fers to the expected detected genotypic ratio within an F2 progeny from a cross between an A-
deletion primary mutant and a B-deletion primary mutant. Table F, Intactness of wheat ho-
mologues of genes flanking BdPFT1 in control and mutant lines. A green cell containing a
✓indicates that the gene is intact. A red cell containing an X indicates that the gene is deleted.
A white cell containing a? indicates that homoeologue-specific SNPs could not be identified for
that homoeologue and intactness is unknown. Table G, Assessment of conservation of syn-
teny of genes flanking PFT1, targeted for the amplicon sequencing approach to assess dele-
tion size in wheat. Under ‘5AL homoeologue’, ‘5BL homoeologue’, and ‘5DL homoeologue’,
Yes/No indicates whether or not a homoeologue was identified within the CSS on that chromo-
some arm by in silico analysis; ‘?’ indicates a lack of confidence. Under ‘Translocated in vitro’,
Yes/No indicates whether or not a translocation is indicated by the amplicon sequencing ap-
proach. Under ‘Translocated in silico’, Yes/No indicates whether, overall, a translocation is in-
dicated by in silico analysis; ‘?’ indicates a lack of confidence. Table H, Primers used for
amplicon sequencing approach to assess the size of deletions removing TaPFT1. Table I,
MEGABLAST matches (E-value = 0) of candidate gene sequence obtained from wheat cv.
Chara against Chinese Spring ‘Chromosomal Survey Sequence’.
(DOCX)

S2 File. Supplementary Material and Methods, and Supplementary Results.
(DOCX)

S3 File. Synteny in the region 2 Mb ‘Up’ to 2 Mb ‘Down’ of PFT1 in Brachypodium and
wheat. Based on comparison of the Brachypodium distachyon 1.92 annotation (http://www.
phytozome.net/) and the wheat Chromosomal Survey Sequences (http://plants.ensembl.org/
index.html) as described in Materials and Methods. For each Brachypodium gene the presence
of the putative orthologue across the wheat chromosome 5 series long arms is indicated. On
the basis of this information, likely translocations are indicated. Homologues of genes with de-
scriptions labelled ‘A’ and ‘B’, and ‘C’ are required for viability in Arabidopsis; grey shading re-
gion indicates the minimum size of the region that was incompatible for deletion stacking, see
Fig. 2 and Discussion.
(XLSX)

S4 File. Identification of homoeologous chromosome-specific SNPs within amplicons from
TaPFT1 flanking genes. As described in Materials and Methods. ‘WT_1’ and ‘WT_2’ are du-
plicate Chara samples, and ‘CS_1’ and ‘CS_2’ are duplicate Chinese Spring samples, one from
each Ion Torrent chip; ‘N5A’ is the nullisomic-tetrasomic Chinese Spring accession N5AT5B,
‘N5D’ is N5DT5A, and ‘N5B’ is N5BT5D; ‘scaffold_ID’ is the ID of the Aegilops tauchii genome
scaffold used for reference alignment; ‘gene_ID’ is the accession given with respect to location
from TaPFT1; ‘ref_position’ is the position of the SNP with respect to the reference sequence;
‘ref_type’ is the reference base at the SNP position; ‘num_variants’ is the number of SNP vari-
ants at that position; ‘allele_variants’ is SNP variant detected in at least one sample at a specific
reference position; frequency indicates the percentage of bases for each variant; coverage is the
sequencing coverage for a specific SNP position.
(XLSX)

S5 File. Assessment of the intactness of homoeologous chromosome-specific SNPs within
amplicons from TaPFT1 flanking genes in TaPFT1mutant samples. As described in Materi-
als and Methods. ‘WT_1’ and ‘WT_2’ are duplicate Chara samples, and ‘CS_1’ and ‘CS_2’ are
duplicate Chinese Spring samples, one from each Ion Torrent chip; ‘N5A’ is the nullisomic-
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tetrasomic Chinese Spring accession N5AT5B, ‘N5D’ is N5DT5A, and ‘N5B’ is N5BT5D; ‘616-
A_1’ and ‘616-A_2’ are duplicate tapft1–616-a samples, one from each Ion Torrent chip; ‘85-A’
is tapft1–85-a; ‘5AL-14’ is the ditelosomic Chinese Spring accession CS5AL-14, ‘723-D’ is
tapft1–723-d; ‘757-D’ is tapft1–757-d; ‘734-D’ is tapft1–734-d; ‘157-B’ is tapft1–157-b; ‘scaffol-
d_ID’ is the ID of the Aegilops tauchii genome scaffold used for reference alignment; ‘gene_ID’
is the accession given with respect to location from TaPFT1; ‘ref_position’ is the position of the
SNP with respect to the reference sequence; ‘ref_type’ is the reference base at the SNP position;
‘num_variants’ is the number of SNP variants at that position; ‘allele_variants’ is SNP variant
detected in at least one sample at a specific reference position; frequency indicates the percent-
age of bases for each variant; coverage is the sequencing coverage for a specific SNP position.
(XLSX)

S6 File. Assessment of translocation of genes from the region from ~ 1Mb to ~ 2Mb ‘Up’
from BdPFT1 to regions within the wheat chromosome 4 series. Based on comparison of the
Brachypodium distachyon 1.92 annotation (http://www.phytozome.net/) and the wheat Chro-
mosomal Survey Sequences (http://plants.ensembl.org/index.html) as described in Materials
and Methods. For each Brachypodium gene the presence of the putative orthologue within the
4AL, 4BS, and 4DS wheat chromosomal regions is indicated.
(XLSX)
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