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Abstract: The research described in this article was aimed at determining the influence of hydraulic
additives on the foaming process and the stability of the produced geopolymer foams. These foams
can be used as insulation materials to replace the currently commonly used insulations such as
expanded polystyrene or polyurethane foams. Geopolymers have low thermal conductivity, excellent
fire- and heat-resistant properties, and have fairly good mechanical properties. Research on foamed
materials shows that they have the highest class of fire resistance; therefore, they are most often used
as insulation products in construction. Geopolymer foams were made of aluminosilicate materials
(fly ash) and foaming agents (H2O2 and Al powder), and the stabilizers were gypsum and portland
cement. Additionally, surfactants were also used. It was found that better foaming effects were
obtained for H2O2—it is a better foaming agent for geopolymers than Al powder. When using
a hydraulic additive—a stabilizer in the form of cement—lower densities and better insulation
parameters were obtained than when using gypsum. Portland cement is a better stabilizer than
gypsum (calcium sulfates), although the effect may change due to the addition of surfactants, for
example.

Keywords: geopolymer; foaming process; sustainable material technologies; surfactant; hybrid
additives; thermal conductivity

1. Introduction

The use of lightweight concrete (<1850 kg/m3) in the construction industry has
many advantages including better thermal insulation, reduced dimensions and dead
loads, savings in steel reinforcement and lower transportation costs. Unfortunately the
disadvantage of lightweight concrete is that it is less resistant to cracking and more brittle
than standard concrete. This is due to the use of lightweight materials, which are weaker
than the traditional cement matrix [1–3].

Geopolymer foams are inorganic, porous materials whose development has been
very dynamic in recent years. Geopolymer materials may be synthesized at elevated or
ambient temperatures by alkaline activation of industrial waste products (fly ash, slag) or
materials of geological origin (metakaolin, volcanic tuff) [4–6]. All over the world, access
to starting materials (raw materials) is very common, and the demand for this type of
materials also seems to be growing, hence their wide potential use and attractiveness.
The production of geopolymers is very economical as well as safe for people and the
environment. Due to the constant efforts to obtain the best insulation parameters of
buildings and to achieve the so-called passivity, many laboratories around the world are
working on solutions for new insulating materials with different properties from those
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commonly used. A properly selected thermal insulation material is a guarantee of effective
and properly functioning thermal insulation of a building. In winter, proper wall insulation
will allow you to reduce the heating costs of the building, while in summer, effective
insulation will protect against intense heating. Geopolymers seems to be one of the most
interesting alternatives to popular insulation materials here. Geopolymers have about
50% lower thermal conductivity value (<0.70 [W/(m × K)] compared to Portland cement
materials. The thermal insulation properties can be further improved by introducing voids
(pores) into the geopolymer matrix [7,8]. Geopolymer foam is a lightweight aluminosilicate
structure (after alkaline activation) with a high degree of porosity. This material is also
referred to as foam concrete, which by definition is a cellular concrete with a large number
of hollow spaces, with or without the addition of aggregate [9]. They have good thermal
insulation and acoustic properties [10–13] as well as mechanical properties, although their
compressive strength is lower than that of solid (not foamed) geopolymers [10,14]. The
comparison of fire-resistant properties of geopolymers and other materials is shown in
Figure 1 [15]. Lyon et al. in their paper studied the behavior of composite materials in a
fire test (ISO 9705). They described that geopolymer composites will never catch fire or
produce smoke compared to other engineering thermoplastics [16].
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Figure 1. Possible applications of geopolymers depending on the structure (based on [15]).

The following materials can be used as foaming agents: aluminum powder, sodium
hypochlorite, silica dust, and hydrogen peroxide. These agents react with alkaline activators
to create pores in the geopolymer structure [10,12,15]. In the case of aluminum powder,
voids are formed according to the following hydrogen release reaction [16–20]:

2Al + 2OH− + 6H2O » 2[Al(OH)4]− + 3H2
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Hydrogen peroxide decomposes into water and oxygen. The release of gaseous
oxygen causes the formation of empty air spaces [16,21,22]:

2 H2O2 » 2H2O + O2

The process of producing the foam itself is quite simple and well known. The problem
arises when the porous structure produced by foaming agents is stable only for a short
time and then falls after a while (before the bonding process—geopolymerization). Even if
the pore formation efficiency is very high, the foams produced will have a high density
and low insulating properties if the porous spatial structure is not stable. There are various
ways to prevent the foams from falling. The surfactant additive is the most common.

For the stabilization of fresh geopolymer foam, nonionic surfactants are also added,
e.g., Tween 80, and Polyoxyethylene 20 sorbitan monooleate—C64H124O26 (VWR BDH
Prolabo) and Triton X-100, a polyethylene glycol tertoctylphenyl ether—C14H22O (C2H4O)
n, n = −10 (Sigma-Aldrich) [23]. As a surfactant, for example, pork lard or butter [22]
was used. Olive oil has also been used as a surfactant [24]. Agents such as (e.g., Sika
Lightcrete 02) containing e.g., 40 wt% solutions of fatty acid, amide and sodium salt of
C14-C16 sulphonic acid in water are also often added. Chemicals are also added to reduce
the viscosity, e.g., polyacrylic acid (Dolapix CE-64) [25]. Good results are also obtained
with calcium stearate [26].

This paper presents the results of research on foamed geopolymer composites with
the addition (apart from surfactants) of hydraulic binders stabilizers such as Portland
cement and gypsum. The research results show that, in general, adding cement improves
all properties of fly ash-based geopolymers, except workability [27]. There are also studies
of geopolymer–cement hybrids that confirm good strength properties and other such
solutions [28]. The authors focused on determining the effect of adding hydraulic binders
hydraulic binders (Portland cement and building gypsum) combined with surfactants
(surfactants) on the foaming process and stability of geopolymer foams based on fly ash
and construction building sand. The main assumption of the research was to obtain a
material with the lowest possible thermal conductivity coefficient (lower or equal to the
Styrofoam) while maintaining low specific gravity of the finished product. Geopolymer
materials are durable and nonflammable, so they could compete with traditional insulation
materials used in the construction industry. The aim of the research was to determine
how the hydraulic binders used as stabilizers of the produced geopolymer foams will
behave in combination with surfactants. The main novelty of the presented results is that
the authors have carried out the analysis of the influence of both hydraulic additives and
surfactants on the properties of the produced geopolymer foams. Additives such as cement
or gypsum were aimed at foam stabilization and its faster setting while surfactants were
aimed at changing the surface tension. So far, no such analyses have been presented in
articles (published studies), although the effect of both types of these additives is commonly
known.

2. Materials and Methods

Geopolymer foams were made based on fly ash, which came from the Skawina Heat
and Power Plant (Skawina, Poland). Table 1 shows the oxide composition of the ash
determined using the XRF method.

Table 1. Oxide composition of fly ash.

Precursor
Oxide Composition (wt%)

SiO2 TiO2 Fe2O3 Al2O3 CaO MgO K2O Na2O

Fly ash 55.9 1.09 5.92 23.49 2.72 2.61 3.55 0.59
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Technical sodium hydroxide in the form of flakes and an aqueous solution of sodium
silicate R-145 with a molar module of 2.5 and a density of about 1.45 g/cm3 were used for
the production of geopolymers. The added make-up water was “mains” water; no distilled
water was used. The alkaline solution was prepared in such a way that the solid sodium
hydroxide was poured over an aqueous solution of sodium silicate and water. The solution
was thoroughly mixed and allowed to equilibrate until reaching a constant concentration
and temperature. For each sample, the same amount of construction sand (100 g) and fly
ash were used. Hydraulic additives used in the tests were building gypsum and CEM 52.5
Portland cement. Two types of agents were used as stabilizers: Syringaldehyde [29], in the
form of a beige powder and Poly(ethylene glycol) diacrylate; and (Average Mn575) [30], in
the form of a transparent liquid. Table 2 shows the characteristics of the stabilisers used to
produce the foamed geopolymers analysed.

Table 2. Characterisation of stablizers: Syringaldehyde [29] and Poly(ethylene glycol) diacrylate—Average Mn 575 [30].

Name of Stablizer Syringaldehyde Poly(Ethylene Glycol) Diacrylate—Average
Mn 575

Brand Sigma-Aldrich Aldrich
Chemical formula C9H10O4 (C2H4O)nC6H6O3
Molecular weight 182.17 g/mol -

Appearance (Form/color) solid/beige Liquid/colorless to faint yellow
Temperature melting point 110–113 ◦C 104 ◦C
Temperature range boiling 192–193 ◦C (in 14 mmHg) -

Density 1.01 g/cm3 1.12 g/cm3 (in 25 ◦C)

Application laboratory chemicals, production of
substances cross-linking reagent, polymerization reactions

The solid components, i.e., fly ash, sand, and stabilizer (Syringaldehyde), were mixed
dry until a homogeneous mixture was obtained, and then the alkali solution was added
and mixed thoroughly. Average Mn575 (the other stabilizer) was added after obtaining
a homogeneous mixture of fly ash and sand along with the alkali activator. Mixing
was carried out in a laboratory mixer (LMB-s [31]) for about 15 min. After obtaining a
homogeneous mass with a densely plastic consistency, foaming agents in the form of Al or
H2O2 powder were added, then the mixtures were transferred to appropriate molds. After
24 h, the samples were removed and demolded.

The heat conduction coefficient was tested on the HFM 446 plate apparatus (Wittels-
bacherstrasse, Germany). Figure 2 shows the thermal conductivity testing machine used in
the above test.

In a heat flow meter (HFM), the test specimen is placed between two heated plates
controlled to a user-defined mean sample temperature and temperature drop to measure
heat flowing through the specimen. The sample thickness (L) corresponds to the actual
sample dimension or to match the desired thickness of a compressible sample. The heat
flow (Q) through the sample is measured by two calibrated heat flux transducers covering
a large area of both sides of the specimen. After reaching a thermal equilibrium, the test is
done. For the tests, panels with dimensions of approximately 200 mm × 200 mm × 25 mm
were made, which were dried to a constant weight after 28 days of maturation and tested.

Density measurements were made using the geometric method. The actual density
of the foamed geopolymers produced was determined using a geometric method. The
density was determined as the average of measurements for 3 samples of a given type of
material. Samples were measured with a laboratory caliper with the measurement accuracy
of 0.01 mm, and the mass of samples was determined using a RADWAG PS 200/2000.R2
laboratory analytical balance (maximum load: 200/2000 g; reading accuracy: 0.001/0.01 g).
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Figure 3 below shows schematically the process of producing foamed geopolymers
with the addition of various types of stabilizers.
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Figure 3. The process of producing foamed geopolymers with the addition of stabilizers.

3. Results

Tables 3 and 4 below show the designation of the samples with an indication of the
ingredients used in their production. All variants of geopolymeric foam composites with
additives (stabilizers and surfactants) were presented. An alkaline solution of 10 M NaOH
was used for all samples together with a water glass. Table 3 shows the determinations and
composition of the samples foamed with 30 mL (in each case) of H2O2 (concentration 30%),
while Table 4 shows the determinations and composition of the samples foamed with 1.5 g
(in each case) of aluminum powder.
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Table 3. Characterization of samples with hydrogen peroxide (30 mL) as foaming additive.

Sample Name Building Sand
Mass Fly Ash Mass Hydraulic

Additive Stabilizer Weight Alkaline
Activator

R.1. 100 g 900 g - - 350 mL
P.1. 100 g 850 g 50 g gypsum - 350 mL
P.2. 100 g 850 g 50 g cement - 350 mL
P.3. 100 g 800 g 100 g gypsum - 400 mL
P.4. 100 g 800 g 100 g cement - 400 mL

P.1.1. 100 g 845 g 50 g gypsum 5 g syringaldehyde 360 mL
P.1.2. 100 g 845 g 50 g cement 5 g syringaldehyde 350 mL
P.1.3. 100 g 795 g 100 g gypsum 5 g syringaldehyde 400 mL
P.1.4. 100 g 795 g 100 g cement 5 g syringaldehyde 400 mL
P.1.5. 100 g 850 g 50 g gypsum 20 mL average Mn 575 360 mL
P.1.6. 100 g 850 g 50 g cement 20 mL average Mn 575 360 mL
P.1.7. 100 g 800 g 100 g gypsum 20 mL average Mn 575 400 mL
P.1.8. 100 g 800 g 100 g cement 20 mL average Mn 575 400 mL

Table 4. Characterization of samples with aluminum powder (1.5 g) as foaming additive.

Sample Name Building Sand
Mass Fly Ash Mass Hydraulic

Additive Stabilizer Weight Alkaline
Activator

R.2. 100 g 900 g - - 360 mL
P.5. 100 g 850 g 50 g gypsum - 360 mL
P.6. 100 g 850 g 50 g cement - 360 mL
P.7. 100 g 800 g 100 g gypsum - 400 mL
P.8. 100 g 800 g 100 g cement - 400 mL

P.2.1. 100 g 845 g 50 g gypsum 5 g syringaldehyde 365 mL
P.2.2. 100 g 845 g 50 g cement 5 g syringaldehyde 370 mL
P.2.3. 100 g 795 g 100 g gypsum 5 g syringaldehyde 400 mL
P.2.4. 100 g 795 g 100 g cement 5 g syringaldehyde 380 mL
P.2.5. 100 g 850 g 50 g gypsum 20 mL average Mn 575 360 mL
P.2.6. 100 g 850 g 50 g cement 20 mL average Mn 575 360 mL
P.2.7. 100 g 800 g 100 g gypsum 20 mL average Mn 575 380 mL
P.2.8. 100 g 800 g 100 g cement 20 mL average Mn 575 380 mL

Figures 4–7 below show an example of the appearance of the geopolymeric foams
produced. The photos show the distribution and size of the pores, as well as the color
change of the samples depending on the added additives. The samples without hydraulic
additives were characterized by the largest pores with irregular shapes and sizes. Their
uneven distribution in the sample volume is also noticeable. The samples foamed with
H2O2 than with Al powder had larger pores. The addition of cement changes the porosity
into more stable, smaller, and evenly spaced pores.

The Figures 8 and 9 below show the densities of the geopolymeric foams produced
with various additives. Samples P.1. and P.1.3. had the highest density, for the H2O2 frother,
and the lowest P.1.2 of only 317 kg/m3. For the Al powder foaming variant, samples P.7 and
P.2.7 had the highest density and P.2.6 had the lowest density of approximately 506 kg/m3.
It was observed that when using the foaming agent in the form of H2O2, lower density
values were obtained, which is of great importance in terms of insulation properties. It can
also be observed that in the case of H2O2, despite the lower density values, there is also a
large scatter of the results. It is a foaming agent very sensitive to changes in the surface
tension of the geopolymeric mass; therefore, the introduced surfactants as additives had a
great influence.
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Figure 9. The density of samples with aluminum.
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When using Al powder, the scatter of the results is much smaller and ranges from
about 770 kg/m3 to 506 kg/m3 (the results are less dependent on the type of additives
used).

Table 5 and Figures 10 and 11 below present the results of the heat conduction coef-
ficient test for foamed geopolymers with additives. The obtained values oscillate in the
range from 0.17 [W/(m × K)] to 0.08 [W/(m × K)]. The results are two times worse (for the
best samples) in terms of thermal insulation compared to conventional insulation materials,
but it should be remembered that such materials are completely nonflammable and have
much higher mechanical strength.

Table 5. Coefficient of thermal conductivity for samples with H2O2 and aluminum.

Foaming Agent Sample
Determination Results [W/(m × K)] Foaming Agent Sample

Determination Results [W/(m × K)]

H2O2 (30 mL)

R.1. 0.12596

Al powder (1.5 g)

R.2. 0.12698

P.1. 0.17359 P.5. 0.14107

P.2. 0.10913 P.6. 0.14961

P.3. 0.13936 P.7. 0.15875

P.4. 0.16986 P.8. 0.15750

P.1.1. 0.09564 P.2.1. 0.11186

P.1.2. 0.08696 P.2.2. 0.12789

P.1.3. 0.16108 P.2.3. 0.15054

P.1.4. 0.07985 P.2.4. 0.15299

P.1.5. 0.12154 P.2.5. 0.09914

P.1.6. 0.08251 P.2.6. 0.10271

P.1.7. 0.11655 P.2.7. 0.14576

P.1.8. 0.09647 P.2.8. 0.10214Materials 2021, 14, x FOR PEER REVIEW 10 of 14 
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Figure 10. Thermal conductivity of the samples with hydrogen peroxide.
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Figure 11. Thermal conductivity of the samples with aluminum.

As a result of the tests, it was observed that better results were obtained for samples of
foamed H2O2 than in the case of aluminum powder. This is also consistent with the density
studies. Better insulation parameters were obtained for samples with lower density.

The addition of surfactants had a beneficial effect on reducing density and improving
thermal conductivity. It should be noted that both hydraulic additives such as cement or
gypsum have a positive effect on the stability of the geopolymer foams produced, but also
the addition of surfactants has a positive effect. The combination of these two additives
gives the best results. The samples without the addition of surfactants, but only with
hydraulic stabilizers, performed worse.

The best thermal conductivity values were obtained for samples foamed with H2O2
and this was the case in several cases (P.1.2; P.1.4; P.1.6). These samples also had the lowest
density of all the materials obtained. They were all obtained for the stabilizer, which was
cement. It should be concluded that this is a better type of hydraulic additive than gypsum.
Based on the results obtained, it can be assumed that the best solution for obtaining the best
possible insulation materials from foamed geopolymers is the use of H2O2 together with
cement and surfactants. However, the obtained values of thermal conductivity coefficient
of 0.08 [W/m × K] are not sufficient for this material to compete with commonly used
insulation materials. It is expected that the use of higher amounts of H2O2 will give better
results in terms of thermal conductivity coefficient values.

Some values of thermal conductivity coefficients obtained for the tested materials in
the above article are better compared to the foamed metakaolin-based geopolymer material
with the addition of expanded polystyrene (0.12–0.21 [W/(m × K)]) [32]. Nezmatollahi
et al. investigated the effect of adding expanded glass, perlite and ceramic microspheres
embedded in a geopolymer matrix based on fly ash. The obtained values of ceipl conduc-
tivity on the above materials were 0.9 [W/(m × K)], 1.1 [W/(m × K)] and 1.1 [W/(m × K)],
respectively [33].

Investigations on fly-ash-based geopolymer foams were carried out by Feng et al.
The thermal conductivity coefficient for fly ash based geopolymer foam with a foaming
agent in the form of hydrogen peroxide was 0.07 [W/(m × K)] [34]. Figures 12 and 13
show that in the density and thermal conductivity coefficient relationships for both the
foaming agent, H2O2 and Al powder, a relationship is observed, showing a decrease in
thermal conductivity with a decrease in density. Novais et al. investigated the thermal
conductivity coefficients for foamed geopolymers based on fly ash and metakaolin. The
values they obtained oscillated around 0.08 [W/(m × K)] for a geopolymer of density
440 kg/m3 and 0.22 [W/(m × K)] for a geopolymer of density 1100 kg/m3, respectively [21].
Wu et al. for geopolymer foams based on fly ash and metakaolin obtained results of thermal
conductivity coefficient that oscillated in the range of 0.06–0.09 [W/(m × K)], at a density
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of 150–300 kg/m3 [35]. In both cases, the values of thermal conductivity were very close
to each other. Research on lightweight geopolymer materials was also conducted by
Wongsa et al. The values of thermal conductivity that they obtained ranged between
0.62–0.65 [W/(m × K)] for a material based on fly ash with the addition of crushed
ceramic brick and 0.62–0.65 [W/(m × K)] for a geopolymer with the addition of pumice
aggregate [36]. Material density and apparent porosity are correlated with the value of
thermal conductivity. A higher number of pores containing air leads to a decrease in the
material density and thus a decrease in the thermal conductivity value. However, some
sources confirm the opposite relationship [37].
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Figure 12. Relationship between thermal conductivity and density (samples with hydrogen peroxide).
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4. Conclusions

The results of the conducted research confirm that geopolymer foams are attractive
insulating materials both for the construction industry and for other specialized applica-
tions. Although they show heat conduction coefficients about twice as high (worse) than
polystyrene, what is particularly advantageous and is an advantage compared to other
solutions they are more durable and completely nonflammable. A prerequisite for their
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mass production and wide implementation, however, is the conduct of continuous and
subsequent research to optimize the processes of their products and improve the thermal
conductivity, as well as the possibility of application on existing facilities. It seems that
at present, the most difficulties in the production of foamed geopolymers result from the
instability of these foams (their fall). The implementation of research and the influence of
hydraulic additives such as Portland cement and building gypsum allowed the following
conclusions to be drawn:

1. Comparing the foaming efficiency of geopolymers using hydrogen peroxide and
aluminum powder as a foaming agent, it was found that better effects were obtained
for H2O2—it is a better foaming agent for geopolymers than Al powder.

2. By using the hydraulic additive—stabilizer in the form of cement—lower densities
and better insulation parameters were obtained than when using gypsum. Portland
cement is a better stabilizer than gypsum (calcium sulfates).

3. The relationship between density and thermal conductivity is visible. As density
increases, thermal conductivity increases. This relationship has also been confirmed
in other previous studies by authors including: [13,15,18,38–40].

4. The addition of surfactants had a beneficial effect on reducing density and improving
thermal conductivity. It should be noted that both hydraulic additives such as cement
or gypsum have a positive effect on the stability of the geopolymer foams produced,
but also the addition of surfactants has a positive effect. The combination of these
two additives gives the best results. The samples without the addition of surfactants,
but only with hydraulic stabilizers, performed worse.
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