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Abstract: In this paper, a new memcapacitor model and its corresponding circuit emulator are
proposed, based on which, a chaotic oscillator is designed and the system dynamic characteristics
are investigated, both analytically and experimentally. Extreme multistability and coexisting
attractors are observed in this complex system. The basins of attraction, multistability, bifurcations,
Lyapunov exponents, and initial-condition-triggered similar bifurcation are analyzed. Finally, the
memcapacitor-based chaotic oscillator is realized via circuit implementation with experimental
results presented.
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1. Introduction

Memcapacitor is a type of memory device composed of a memristor and meminductor [1],
which emerged after the realization of a real memristor prototype [2]. A memcapacitor is actually
a nonlinear capacitor with instantaneous responses depending on the internal states and the input
signals. Although several possible realizations of the memcapacitor were attempted, e.g., using a
micro-electro-mechanical system [2], ionic transport [3], or electronic effect [4], a memcapacitor is not
yet available commercially in any form. Therefore, building functional analog memcapacitor models
and emulators for computer simulations and laboratory experiments has become urgent, attracting
immense interest from both academia and industry.

There have been many papers about the memristor [5–9]. In [6], a novel complex Lorenz
system with a flux-controlled memristor is introduced and investigated. An active controller is
designed to achieve modified projective synchronization (MPS) based on Lyapunov stability theory.
In [7], a new memristor-based hyperchaotic complex Lu system is investigated, where an adaptive
controller and a parameter estimator are proposed to realize complex generalized synchronization.
Furthermore, the complex dynamics of fractional-order and diode bridge-based memristive circuits are
studied in [8] and [9]„ respectively. Compared with the reports concerning memristors, references of
memcapacitors are relatively fewer. Existing research involves designing a memcapacitor SPICE
(Simulation program with integrated circuit emphasis) simulator [10–12] and mutator that can
transform a memristor to a memcapacitor [13,14]. In [15], the boundary dynamics of a charge-controlled
memcapacitor is investigated, where Joglekar’s window function is used to describe the nonlinearities
of memcapacitor’s boundaries. In [16], a mathematical memcapacitor model is introduced and a
memcapacitor oscillator is designed, with theoretical and experimental analyses on their basic dynamic
characteristics given. In [17], a floating emulator circuit is built, using common off-the-shelf active
devices, to mimic the dynamic behaviors of flux-coupled memcapacitors.
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Memcapacitors are also employed to construct chaotic circuits. A smooth-curve memcapacitor
model and a memcapacitive chaotic circuit are presented in [18], where different kinds of coexisting
attractors are shown and their corresponding conditions are given. In [19], a Hewlett–Packard
memristor model and charge-controlled memcapacitor model are presented, based on which, a new
chaotic oscillator is designed to explore characteristics of memristors and memcapacitors in nonlinear
circuits. In [20], a chaotic oscillator composed of a meminductor and a memcapacitor is proposed,
and in [21] a chaotic memcapacitor-based oscillator with two unstable equilibrium points are studied,
along with its fractional form, for potential engineering applications. In the latest study [22], a buckled
membrane is used as the plate of a capacitor with memory to realize the function of a memcapacitor.

Along the same line as the above extensive investigations, in this paper, a new memcapacitor
model is proposed and its corresponding emulator is designed. The instantaneous responses of the
emulator to internal states and input signals are investigated experimentally by applying different
voltage excitations. Furthermore, a memcapacitor-based chaotic oscillator is constructed. The system
dynamic behaviors are analyzed theoretically, including coexisting attractors, basins of attraction,
extreme multistability, and so on. Compared with the previously published papers, a memcapacitor
with absolute value relation is first proposed and the corresponding emulator can be directly used
in application circuits. Besides, we further investigate the similar bifurcation structures triggered by
different initial conditions, which has not been reported in memcapacitive systems yet. Finally, the
proposed oscillator is realized via analog circuits, verified by laboratory experiments.

2. The Memcapacitor Model and Its Emulator

The concept of memcapacitor was presented by Chua et al. [1], where a charge-controlled
memcapacitor is described using: {

vc(t) = C−1(σM(t))qM(t)
.
σM(t) = qM(t)

(1)

where vc(t) is the voltage across the memcapacitor and C−1 is the inverse memcapacitance. The symbol
qM(t) is the charge going through the memcapacitor at time t, and σM(t) is the integral of qM(t).

To describe the proposed charge-controlled memcapacitor model, Equation (2) is used, where the
memcapacitance depends on the device charge and is changing nonlinearly. Since the meminductor
has not been fabricated, in this paper we assume the inverse memcapacitance to be precisely defined
as C−1 = a + b|σM(t)|, so as to obtain:{

vc(t) = (a + b|σM(t)|)qM(t)
.
σM(t) = qM(t)

(2)

An emulating circuit is designed, as shown in Figure 1, to realize the above charge-controlled
memcapacitor. In this circuit, it is assumed that all components are ideal without losses and the output
limitations are set as ±15 V.

The circuit resistors are set as R1 = R2, R3 = R4, and R5 = R6. The operational amplifier U1 is
used to reverse the sign of i, which is the current going into the floating terminal of the memcapacitor.
Then, the charge q going through capacitor C1 can be calculated by integrating i in the time domain.
The operational amplifier U2 constitutes a subtraction circuit, used to extract the voltage across the
capacitor C1, with output voltage:

vu2(t) = −
R6

R4
vc1 =

R6

R4

qM(t)
C1

(3)
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The operational amplifier U3 is an integral circuit and its output is:

vu3(t) = −
1

R7C2

∫
vu2(t)dt = − R6

C1C2R4R7

∫
qM(t)dt = − R6

C1C2R4R7
σM(t) (4)

where σM(t) is the integral of qM(t).
Operational amplifiers U4 and U5 construct an absolute-valued circuit with output voltage:

vu4(t) = |vu3(t)| =
R6

C1C2R4R7
|σM(t)| (5)

Now, based on Equations (3) and (5), the output voltage of the multiplier M1 can be calculated
using:

vM1(t) =
R2

6
C2

1C2R2
4R7
|σM(t)|qM(t) (6)

Then, the voltage across this grounded memcapacitor can be written as:

vC(t) = vC1(t) + vM1(t) =

(
− 1

C1
+

R2
6

C2
1C2R2

4R7
|σM(t)|

)
qM(t) (7)
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Figure 1. Equivalent circuit of the charge-controlled memcapacitor.

If the memcapacitor-based emulator have voltage signals applied, the instantaneous responses are
obtained as shown in Figure 2. The voltage signal is set as vinput = 5sin(2πf ), with f being tested at 50
Hz, 80 Hz, and 200 Hz. The simulations of pinched hysteresis loops, referred to qM–vC characteristics,
can be got from Multisim 12 software, which are shown in Figure 2.
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3. Memcapacitor-Based Chaotic Oscillator and Its Dynamics

3.1. Memcapacitor-Based Chaotic Oscillator

Based on the memcapacitor model in Equation (7), a chaotic oscillator is designed as shown in
Figure 3, which contains conductances G1 and G2, capacitor C1, inductor L, and memcapacitor CM.
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Taking the current iL through the inductor, the voltage v2 across the capacitor and the charge
qM on the memcapacitor as state variables, a set of four first-order state equations can be obtained,
as follows: 

L diL
dt = v2 − v1

C1
dv2
dt = −iL − G2v2

dqM
dt = iL + G1v1

dσM
dt = qM

(8)

where v1 = (a + b|σM(t)|)qM. Let the circuit parameters be chosen as shown in Table 1 with initial
conditions (0.02, 0, 0, 0). Then, System (8) is chaotic with chaotic attractors as shown in Figure 4.

Table 1. Circuit parameters for simulations and experiments.

Parameters Meanings Values

L Inductance 0.3 mH
C1 Capacitor 7.8 nF
G1 Conductance 0.42 mS
G2 Conductance 2.2 mS
a Variable −0.7
b Variable 0.5
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The system Lyapunov exponents were LE1 = 0.0382, LE2 = 0.0067, LE3 = –0.0097, and LE4 = –0.2142. 
The Lyapunov dimension was DL = 3.1643. Figure 5a shows the Poincaré map on z = 0 and Figure 5b 
shows the Poincaré maps with initial condition v2(0) varying in the range of (–0.08, 0.08), showing 
that the system’s dynamic behaviors were affected by initial conditions. All the above results verified 
that System (8) is chaotic [23]. 

Figure 4. Chaotic attractors and chaotic v1–qM hysteresis loops of the memcapacitor-based oscillator:
(a–c) chaotic attractors; (d) chaotic v1–qM hysteresis loops.

The system Lyapunov exponents were LE1 = 0.0382, LE2 = 0.0067, LE3 = −0.0097, and LE4 =
−0.2142. The Lyapunov dimension was DL = 3.1643. Figure 5a shows the Poincaré map on z = 0 and
Figure 5b shows the Poincaré maps with initial condition v2(0) varying in the range of (−0.08, 0.08),
showing that the system’s dynamic behaviors were affected by initial conditions. All the above results
verified that System (8) is chaotic [23].
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λ1 = 0, λ2 = 0.54411, λ3, 4 = – 0.45508 ± 0.26927i (14) 
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3.2. Equilibrium Points

The system equilibrium set can be calculated using E = {(x, y, z, w) | iL = v2 = qM = 0, σM = c} by
solving the equations of

.
iL =

.
v2 =

.
qM =

.
σM = 0, in which there is a real constant parameter c.
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The Jacobian matrix J at this equilibrium set E is:

J =


0 1

L − a+b|c|
L 0

− 1
C1
−G2

C1
0 0

1 0 G1(a + b|c|) 0
0 0 1 0

 (9)

The corresponding characteristic equation is:

λ4 − (G1a− G2/C1 + G1b|c|)λ3 +
(C1 − G1G2L)(a + b|c|) + 1

C1L
λ2 − (G1 − G2)(a + b|c|)

C1L
λ (10)

It is obvious that the characteristic equation has one zero value and three nonzero values.
Let a1 = −(G1a − G2/C1 + G1b|c|), a2 = [(C1 − G1G2L)(a + b|c|) + 1]/C1L, a3 = −[(G1 − G2)(a +

b|c|)]/C1L. Then, according to the Routh–Hurwitz condition, the system is stable if:
∆1 = a1 > 0

∆2 = a1a2 − a3 > 0
∆1 = a3(a1a2 − a3) > 0

(11)

When the parameters are set as in Table 1, one can find that:

1.4002 < |c| < 2.7431 (12)

To make the equilibrium set E unstable, which is a necessary condition for the possible existence
of chaos, the constant c should satisfy:

|c| < 1.4002 or |c| > 2.7431 (13)

Equation (13) demonstrates that the dynamical behaviors of the chaotic circuit (8) were strongly
dependent on the memcapacitor internal state variable σM. For example, if the system parameters
were set as in Table 1, with c = 1, then four eigenvalues at the equilibrium set E were obtained as:

λ1 = 0, λ2 = 0.54411, λ3, 4 = −0.45508 ± 0.26927i (14)

In this case, the equilibrium set E was unstable with one zero root, two complex conjugate roots
with negative real parts, and one positive real root. Thus, a self-excited attractor could be generated
via excitation from the unstable focal point in E.

3.3. Parameters Region

When the inductor L increased gradually with other circuit parameters fixed as in Table 1,
the bifurcation diagram of the state variable iL is shown in Figure 6a, where the orbits of the
system started from chaotic behavior and then entered into periodic behavior via the reverse
period-doubling bifurcation route. After that, the orbits returned to chaotic behavior through the
forward period-doubling bifurcation route, then jumped into chaotic behavior, and finally approached
infinity in the range of L > 1.25. The corresponding Lyapunov exponent spectra are presented in
Figure 6b, where the maximum Lyapunov exponent was positive within chaotic regions and equalled
zero within periodic regions. Several periodic windows can be observed in Figure 6b, which match
well with that of the bifurcation diagram shown in Figure 6a.
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the system orbit started from a limit cycle and then turned into the chaotic state through period-
doubling bifurcations in the range of (0, 0.6). When the parameter G1 > 0.6, the bifurcation diagram 
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Figure 6. Dynamic characters with respect to L: (a) bifurcation diagram, and (b) lyapunov
exponent spectrum.

The new system also had coexisting bifurcations. When the inductor G1 varied with other circuit
parameters fixed as in Table 1, the bifurcation diagram of the state variable iL is shown in Figure 7a,
where the red orbit started from initial conditions (0, −0.03, 0, 0), and the blue one starts from (0, 0.03,
0, 0). The symmetrically coexisting bifurcation orbits were generated by the symmetrical coexisting
attractors, which are shown in Figure 9. The corresponding Lyapunov exponent spectrum is shown in
Figure 7b. From the bifurcation diagram and the Lyapunov exponent spectrum, it can be seen that the
system orbit started from a limit cycle and then turned into the chaotic state through period-doubling
bifurcations in the range of (0, 0.6). When the parameter G1 > 0.6, the bifurcation diagram and the
Lyapunov exponent spectrum had blank areas since the system was diverging with no solution.
Between the two blank areas, the system stayed in a periodic state.
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3.4. Similar Bifurcation Structures with Initial Conditions

Different bifurcation parameters usually lead to different bifurcation structures. However, there
exist similar bifurcation structures with different initial conditions, which is rare compared with other
chaotic systems. When we set the circuit parameters as given in Table 1, similar bifurcation diagrams
with respect to iL(0), v2(0), and qM(0) were discovered, as presented in Figure 8. Although these
diagrams depended on the various bifurcation parameters, it is remarkable that the bifurcation
structures were almost the same and all symmetrical about the origin. As the bifurcation parameters
increased gradually, the system orbit went to a chaotic status via period-doubling bifurcations. Then,
the dynamics of the system settled down to periodic behaviors via reverse period-doubling bifurcations.
The origin was the boundary of the two processes. The corresponding Lyapunov exponent spectra are
given in Figure 8d–f, where the graphs also have similar shapes.
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Furthermore, the system’s dynamic maps are used to illustrate the similar initial-condition-
triggered bifurcation structures, which are shown in Figure 9. These dynamic maps describe different
dynamical regions with respect to the bifurcation parameters iL(0), v2(0), and qM(0), where the red
areas indicate a chaotic field, the blue regions represent a periodic status, and yellow areas show
unbounded zones. It is obvious the two dynamic maps own a similar distribution structure. Thus, we
can conclude that the initial conditions iL(0), v2(0), and qM(0) had a similar dynamic influence for the
presented system in the especial parameter spaces, which is not common in the other chaotic systems.
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3.5. Extreme Multistability and Coexisting Attractors

Multistability is a common phenomenon in many nonlinear dynamical systems, corresponding
to the coexistence of more than one stable attractor for the same set of system parameters [24].
When infinitely many attractors coexist for the same set of system parameters, multistability is
referred to as extreme multistability [25]. The previously published literature have reported that the
dynamical stability of memristive systems are heavily dependent on the initial conditions, which easily
leads the system to generate multistability or even extreme multistability [26–29].

One of the main features of extreme multistability is that the system track can present bifurcation
without varying any system parameter. When the circuit parameters were set as in Table 1, with initial
condition iL(0) varying, the resulting bifurcation diagram of the state variable iL is shown in Figure 10a,
where the system presents extreme multistability. It is remarkable to see that the bifurcation diagram is
symmetrical about the origin, which came from symmetrical coexisting attractors. As initial condition
iL(0) increased gradually within the region of [−0.94, 0], the system orbit started from a limit cycle and
turned into a chaotic state through period-doubling bifurcations, showing several periodic windows.
Within the region of [0, 0.94], the system orbit settled down to periodic behavior from the chaotic state
through reverse period-doubling bifurcations, which is the reverse evolutionary process of that in
the region [−0.94, 0]. The corresponding Lyapunov exponent spectra are shown in Figure 10b, where
the maximum Lyapunov exponents stay zero with limit cycles but were positive in chaotic states,
consistent with the bifurcation diagram.
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Figure 10. Dynamic characters due to iL(0): (a) bifurcation diagram, and (b) Lyapunov
exponent spectrum.

To show more details, various typical coexisting attractors are displayed in Figure 11. When the
circuit parameters were set as in Table 1, with different initial conditions, the main coexisting regimes
were symmetric pairs of limit cycles, chaotic attractors, and point attractors. Figure 11a shows limit
cycles coexisting with attractors for initial conditions (0.02, ±0.06, 0, 0). Figure 11b,c shows coexisting
chaotic attractors with initial values (0, ±0.04, 0, 0) and (0.02, 0, 0, 0), respectively. Figure 11d displays a
point attractor with initial conditions (−1, 0.18, 0, 0). Since the system track presented bifurcations with
initial conditions and had infinitely many coexisting attractors for the same set of system parameters,
the system presented typical extreme multistability.
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Basins of attraction can clearly display the distribution of different coexisting attractors. As shown
in Figure 11, the system had six kinds of coexisting attractors. When initial conditions iL(0) and v2(0)
were set as variables, with qM(0) = 0 and σM(0) = 0, the corresponding basin of attraction is displayed
in Figure 12a, where coexisting attractor distributions are painted with different colors. As shown in
Figure 12a, the system was divergent with no attractor in most blank areas and generated a narrow
distribution of each kind of the coexisting attractors in the middle areas. The evolution process of
coexisting attractors is shown in Figure 12b, which contains a complete process of period-doubling
bifurcations and reverse period-doubling bifurcations as v2(0) decreases. The system orbit started
from a point attractor (Type 6) to a limit cycle (Type 1), and then turned to a chaotic attractor (Type 5)
via period-doubling bifurcations (Type 3). As v2(0) decreased further, the chaotic attractor (Type 5)
returned to a limit cycle (Type 2) via reverse period-doubling bifurcations (Type 4) and finally settled
into a point attractor (Type 6).
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Similarly, the basin of attraction with respect to initial conditions qM(0) and σM(0) is displayed in
Figure 12c, which is roughly symmetric about the origin and each attractor distribution appears in a
narrow reverse ‘S’ shape. The corresponding evolution process of coexisting attractors is shown in
Figure 12d.
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4. Experimental Results

An analog electronic circuit was built to physically realize the above-presented chaotic oscillator
to verify the basic dynamic behaviors of the new system.

Since the inductor and the capacitor in the system were not standard, which made the circuit
difficult to design and implement, an equivalent circuit was designed to realize the system. The circuit
schematic of the experimental circuit is shown in Figure 13, and the corresponding chaotic attractors
obtained by Multisim simulation are displayed in Figure 14.Entropy 2019, 21, 188 12 of 14 
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Figure 14. Chaotic attractors observed via Multisim simulations: (a–c) chaotic attractors; and (d)
chaotic v1–qM hysteresis loops.

In practical experiments, since there are tolerances in resistors and capacitors, it is necessary to
adjust the actual resistance values in the analog circuit, which will lead to some deviations between
experimental results and the simulation ones. The experimental results shown on the oscilloscope
are depicted in Figure 15. The chip AD633JN was chosen as the analog multiplier and LF347N as the
operational amplifier with reference voltages of±15 V. It is clear that the dynamical behaviors observed
from the experimental circuit were generally similar with those displayed via numerical simulations.
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5. Conclusions 

In this paper, a new memcapacitor model and a novel memcapacitor-based chaotic circuit are 
presented. The system extreme multistability was analyzed, including bifurcation diagrams, 
Lyapunov spectra, coexisting attractors, coexisting bifurcations, and basins of attraction of various 
attractors. Moreover, the new memcapacitor-based system was realized using an experimental 
circuit, which agreed well with the numerical simulations and verified the theoretical analysis results. 
Due to the rich and unusual complex dynamical characteristics of the proposed memcapacitor 
system, it was deemed that it would find some novel and non-traditional applications in engineering 
and technology in the future. In our future works, we will continue to try to build physical 
memcapacitors and explore special dynamics in memcapacitive circuits.  
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5. Conclusions

In this paper, a new memcapacitor model and a novel memcapacitor-based chaotic circuit are
presented. The system extreme multistability was analyzed, including bifurcation diagrams, Lyapunov
spectra, coexisting attractors, coexisting bifurcations, and basins of attraction of various attractors.
Moreover, the new memcapacitor-based system was realized using an experimental circuit, which
agreed well with the numerical simulations and verified the theoretical analysis results. Due to the
rich and unusual complex dynamical characteristics of the proposed memcapacitor system, it was
deemed that it would find some novel and non-traditional applications in engineering and technology
in the future. In our future works, we will continue to try to build physical memcapacitors and explore
special dynamics in memcapacitive circuits.
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