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Abstract: Transparent object detection and reconstruction are significant, due to their practical
applications. The appearance and characteristics of light in these objects make reconstruction methods
tailored for Lambertian surfaces fail disgracefully. In this paper, we introduce a fixed multi-viewpoint
approach to ascertain the shape of transparent objects, thereby avoiding the rotation or movement of
the object during imaging. In addition, a simple and cost-effective experimental setup is presented,
which employs two single-pixel detectors and a digital micromirror device, for imaging transparent
objects by projecting binary patterns. In the system setup, a dark framework is implemented around
the object, to create shades at the boundaries of the object. By triangulating the light path from the
object, the surface shape is recovered, neither considering the reflections nor the number of refractions.
It can, therefore, handle transparent objects with a relatively complex shape with the unknown
refractive index. The implementation of compressive sensing in this technique further simplifies
the acquisition process, by reducing the number of measurements. The experimental results show
that 2D images obtained from the single-pixel detectors are better in quality with a resolution of
32× 32. Additionally, the obtained disparity and error map indicate the feasibility and accuracy of
the proposed method. This work provides a new insight into 3D transparent object detection and
reconstruction, based on single-pixel imaging at an affordable cost, with the implementation of a few
numbers of detectors.

Keywords: transparent object detection; single-pixel imaging; compressive sensing; disparity
map acquisition

1. Introduction

Many practical activities in industry, such as automatic inspection, oceanology, fluid mechanism,
and computer graphics, often require imaging of three-dimensional shapes of invisibles. Though
various techniques have been developed for deducing 3D images of transparent objects, this class
of objects poses difficulties due to many reasons. Firstly, these objects are colorless, and they gain a
form from neighboring background objects. Secondly, the complexity of light interactions within the
transparent objects makes its detection impossible. Finally, knowledge about the refractive index of
the material is needed for reconstruction.

The existing techniques for transparent object inspection required application of known or unknown
background (checkboard/striped) patterns in calibration with a camera, which is computationally a
long process and costly. The first implementation of an unknown background pattern at the bottom
of the water tank was performed to approximate the distorted water surface. Thereafter, structured
light patterns were introduced to extract the surface properties of the glass objects [1]. Subsequently,
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direct rays were collected from the refractive objects by placing multiple cameras in several positions,
with respect to the object to approximate the depth [2]. Later, the shape of transparent objects was
reconstructed from its known motion [3]. Dusting and submerging transparent objects in fluorescent
liquids deteriorated the structure of the object, therefore, it has limited its implementation in real-time
applications [4,5]. Presently, transparent object recovery is achieved by combining polarization analysis
and light-path triangulation [6]. Almost all the techniques for depth acquisition rely on some external
factors, such as system calibration, background patterns, less intensity environment, and object motion,
which will introduce a lot of errors to the inspection system. Hence, the accuracy is relatively low.

In addition, a range of sensors, such as color cameras, light detection and ranging (LIDAR)
systems, time of flight (TOF) cameras, IR cameras and Kinect sensors, have been developed to image
transparent objects, yet a general solution could not find for the detection of transparent objects [7–9].
In color cameras, object recognition can be performed when the background color of the object is
exactly the same as the color of the object. When LIDAR/TOF sensors are used to image a transparent
object, the reflected light from the object has recorded an approximate shape. The projected light
from these sensors is reflected multiple times before it hits the transparent object, which does not
cause object information in the camera. Hence, the shape cannot be recognized, and the edges of the
object have been missed, which made object reconstruction impossible. Kinect sensor is an alternative
method utilized for transparent object inspection, in which a sensor is moved in the scene to acquire
multiple views of the object [7]. Additionally, the work is limited to non-planar transparent objects
with a smooth surface. With an IR camera, Maldague et al., proposed a technique called “shape
from heating”, in which the transparent object surface was heated with a thermal camera source,
and the time sequence of thermograms (thermal images) was recorded to estimate the shape [10]. Later,
Eren et al. developed “scanning from heating” to detect 3D transparent objects on the basis of “shape
from heating” technique, used by Maldague et al. [11]. In this work, the object was heated with a laser
source, to a temperature at which the object turns opaque and then, irradiations were recorded by a
thermal camera for shape estimation. The main limitations of these studies were the non-uniform
surface heating of the object and the use of an infrared laser source, which restricted the performance
of both the studies. The identified limitations in the sensors can be solved with an alternative sensor
called a “single-pixel detector”.

Single-pixel imaging (SPI) is an advanced imaging approach that is applicable for acquiring spatial
information in low light, high absorption, and backscattering conditions [12]. SPI has been widely used
in myriad applications, such as infrared imaging [13], gas imaging [14], photoacoustic imaging [15],
three-dimensional imaging [16–18], terahertz imaging [19,20], X-ray diffraction tomography [21],
remote sensing [22], encrypted imaging [23], lensless imaging [24], shadowless imaging [25],
hyperspectral imaging [26], microscopy [27], and scattering imaging [28]. In this imaging modality,
a single-pixel detector that has no spatial resolution can detect the object by means of a modulated
structured light [29]. Though this imaging technique is affected by noises, the ability to work in
challenging environments with high resolution and precision enables single-pixel detection more
popular than any other conventional imaging systems [30]. Moreover, its sensitivity to a wide operating
spectrum extends its operation range beyond the visible spectrum [31]. All these characteristics
of single-pixel imaging have been utilized to recover the images from challenging environments.
The smart control of light propagation with prior knowledge of the modulated patterns in this technique
moderates the depletion of the ballistic photons. Tajahuerce et al. proposed an optical system using a
single-pixel camera, which can successfully reconstruct 2D objects, even under multiple scattering
conditions in turbid media [28]. In addition, this work compared the quality of 2D image reconstruction
with the result of CCD camera. In the presence of a scattering medium in front of the object, a CCD
camera can only capture the speckle pattern (no information regarding the object). On the contrary,
a single-pixel detector can record an excellent result. Based on the modulation involved, this technique
is classified as active and passive single pixel imaging. Both methods are implemented in many
imaging modalities for the acquisition of 2D and 3D objects.
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Magalhães et al. presented an active illumination single-pixel camera, in which a photodetector
approximated a replica of the object by averaging the inner product between the pattern and the object
sample [32]. The problem of spatial and temporal aberrations that occurs in imaging transparent object
was resolved in [12]. Later, Bertolotti et al. [33] proposed a non-invasive imaging technique that uses
an iterative algorithm to retrieve the image of a fluorescent object hidden in the opaque medium.
There are many published works on non-line of sight imaging, in which the object is sandwiched
between two layers of chicken pieces with a thickness of 2.84 mm and 2.92 mm [34,35]. The imaging
has performed using a single-pixel detector and estimated the image of the sandwiched object. Winters
et al. recommended a method to improve the speed of reconstruction in scattering media with the
help of help of x and y modulators. These modulators can operate at extremely high speed control the
illumination pattern before sampling the object [36]. All the above-mentioned works give an insight
into the reconstruction of 2D objects.

Three-dimensional image reconstruction approaches, such as time-of-flight (TOF), binocular
vision, photometric stereo, and shape-from-X techniques can estimate the depth information of opaque
objects. Sun et al. [37] proposed a model based on the “shape from shading” method, where multiple
cameras were placed at different positions of the reflective object. Two-dimensional images from each
camera hold the shadows of the object from which surface gradients are derived and 3D images are
reconstructed via photometric stereo. Wen-kai et al. [38] developed a 3D reconstruction system using
a binocular stereo vision algorithm and a single-pixel detector by placing the object on a rotating
platform. The limitations of using spatially separated multiple detectors and moving the object were
eliminated in [17]. The TOF technique is utilized to obtain the depth information and its accuracy
depends on a high-speed photodiode and precision in measurements. Similarly, other demonstrations
for scanning the scene and obtaining the depth and reflectivity information via TOF have also been
discussed [39–42]. Zhang et al. proposed a method to capture the images of opaque objects. In this
study, four photodetectors were implemented at different locations of the object to capture the reflected
light. The variations in shading information in the images were studied, and a photometric stereo
algorithm was utilized for 3D image reconstruction [43]. Salvador-Balaguer et al. [44] implemented a
basic active single-pixel imaging system to image opaque objects. They also used reflected light from the
object and processed it, based on an adaptive compressive algorithm for image reconstruction. All these
methods are suitable for recovering 3D images of objects for reflective surfaces. The perfect assembly
and tuning of all instruments with high precision are needed to achieve the target reconstruction.
If the relevant parameters of each instrument in the system are properly raised, and the high-precision
assembly is matched, all these techniques can assure the overall reconstruction quality of the system.

In this paper, we present a fixed multi-viewpoint 3D transparent object inspection system, based on
passive mode single-pixel imaging. Two single-pixel detectors are applied in the setup to eliminate
the need to move the object while imaging. The results show that it is possible to obtain the disparity
map of the object by using high-speed detectors to record the sampled refracted light, along with our
image reconstruction algorithm. The rest of the paper is organized as follows. Section 2 describes our
experimental setup for 3D transparent object detection. Section 3 examines how 3D depth information
is extracted from 2D images. This is followed by the conclusion, which is expounded in Section 4.

2. Experimental Setup

The schematic diagram of the proposed 3D transparent object detection system is shown in the
Figure 1. The system consists of a red laser to illuminate the transparent object, a dark framework to cause
streak effects at the object boundary, an imaging lens, a digital micromirror device (DMD) to modulate
the laser light with a computer-generated measurement matrix, collecting lenses, two single-pixel
detectors to collect the transmitted light from the object, a data acquisition (DAQ) system, and a
computer, to perform 2D and 3D image reconstruction.
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(LA1740, f-85mm) and directed to DMD micromirror (DMD6500 &9000) active area. To provide 
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combined with the transmitted light. Then, the modulated light from the DMD is projected to the 
environment, where two focusing lenses collect the light and the light is focused to the active area of 
the spatially unresolved single-pixel detectors. The pre-programmed patterns in the experiment 
provide spatial information to the transmitted light. The experimental setup is employed for passive 
modulation mode where two PDA36A2- photodetectors are used as single-pixel detectors to record 
the total light intensity from the object. DAQ(USB6001) digitizes the recorded light from left and right 
single-pixel detectors, and sends it to a computer to conduct 2D image reconstruction. The 2D image 
quality depends on patterns used and any distortions in it deteriorate the image quality. While 
choosing the passive mode, the intensity transformed object information is modulated with patterns 
in the DMD, which will reduce the distance at which modulated light beam travels, thereby reducing 
the distortion through ambient light. Any deviations in pattern structure can also be maintained in 
the passive method. 
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For a single-pixel imaging system, the orientation of the optical components and specifications 
of the lenses often play a crucial role for ensuring high quality images. Additionally, the proper 
selection of the lens and its focal length is essential to concentrate the transmitted light beam from 
the object to the very small active area of the single-pixel detector. Furthermore, combining lenses 
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Figure 1. Schematic of 3D transparent object detection and disparity map acquisition system. The red
dashed line indicates the laser light beam from the source to detectors.

The experimental set up is shown in the Figure 2. The fiber output red laser (650 nm, 1 W) is
to illuminate the target object. The refracted light from the target is collected by an imaging lens
(LA1740, f-85 mm) and directed to DMD micromirror (DMD6500 &9000) active area. To provide spatial
information to the captured image, the pre-programmed patterns stored in the DMD is combined
with the transmitted light. Then, the modulated light from the DMD is projected to the environment,
where two focusing lenses collect the light and the light is focused to the active area of the spatially
unresolved single-pixel detectors. The pre-programmed patterns in the experiment provide spatial
information to the transmitted light. The experimental setup is employed for passive modulation
mode where two PDA36A2- photodetectors are used as single-pixel detectors to record the total light
intensity from the object. DAQ(USB6001) digitizes the recorded light from left and right single-pixel
detectors, and sends it to a computer to conduct 2D image reconstruction. The 2D image quality
depends on patterns used and any distortions in it deteriorate the image quality. While choosing
the passive mode, the intensity transformed object information is modulated with patterns in the
DMD, which will reduce the distance at which modulated light beam travels, thereby reducing the
distortion through ambient light. Any deviations in pattern structure can also be maintained in the
passive method.
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Figure 2. Experimental setup implemented in our lab environment.

For a single-pixel imaging system, the orientation of the optical components and specifications of
the lenses often play a crucial role for ensuring high quality images. Additionally, the proper selection
of the lens and its focal length is essential to concentrate the transmitted light beam from the object
to the very small active area of the single-pixel detector. Furthermore, combining lenses such as
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planar and aspheric ensures sharp focus with fewer aberrations, resulting in better quality 2D images.
As disparity accuracy is closely related to the quality of the 2D reconstruction result, the lens must be
chosen cautiously. The proposed experimental setup is implemented in the lab environment with a
black framework around the sides of the object to provide a streak effect on the edges of the object.
The disparity calculation will depend on the quality of 2D images and edge sharpness. In our work,
transmitted light (majority of the light) is collected for image reconstruction, which will provide good
quality 2D images compared to conventional methods. Moreover, the features of a single-pixel detector,
such as increased detection efficiency, lower noise, and higher time resolution etc., provide additional
advantages. Additionally, the apparent directional illumination from DMD and shadow effect at the
edges of the object make the system superior in producing good quality 2D images. After obtaining
left and right single-pixel detector images, the 3D reconstruction algorithm first looks for the preserved
edges, and then finds out the disparity between the pixels for depth calculation.

Additionally, calibration of the left and right single-pixel detector images is required to maximize
the accuracy in disparity map calculation, because the 2D images are taken from different angles
of the object. In the calibration process, multiple images of the object are captured from different
perspectives, and self-calibration is performed to obtain the intrinsic and extrinsic parameters for
depth calculation [45,46]. To ensure accurate measurement, the trigger signal is set to initiate the DMD
to modulate the incoming light with preprogrammed patterns. The exposure time and dark time of the
DMD are decided by the number of samples to be recorded for a period. So, the calibration process
reduces the probability of error and consistently increases the measurement process systematically.

For the experimental setup, two single-pixel detectors are synchronized, such that both the
detectors can capture images at the same time when DMD project patterns. The number of samples to
be recorded is set as 100 in a second for each displayed pattern. DAQ takes an average of 100 samples
to obtain a single measurement that corresponds to each pattern and sends it to a high-performance
computer for further processing. This operation will continue until the DMD stops pattern projection.
In addition, the detectors are placed with a distance of 7 cm between them, to obtain the full view
of the object. The distance from the camera to the object is set as 65 cm, and the focal length of the
single-pixel detector is set as 8.5 cm, which is based on the focal length of the lenses used for focusing
the light on the single-pixel detector.

3. 3D Transparent Object Reconstruction

3.1. 2D Image Reconstruction

The advent of DMD and single-pixel imaging enables fast image reconstruction with a few
measurements. The transparent object detection and image acquisition process are shown in the
Figure 3. The object to be imaged is fixed at a position and it is scanned and sampled with a sequence
of the sparse matrix (up to M numbers). The resolution of the reconstructed image is decided based on
the resolution and number of the projected sparse matrix. For the following step, the measurements
required for reconstruction is fixed to m (m = O(K log N)), where the total number of pixels in the
object is N, due to the adoption of compressive sensing (CS) in acquiring the samples. The detectors in
the imaging system collect object samples, until DMD stops matrix pattern projection. The number of
patterns projected depends on the sparsity of the measurement matrix. At last, the total variation (TV)
minimization algorithm estimates the original signal X from the measurement vector Y with the prior
knowledge of the sparse matrix. The result obtained from the system is displayed in Figure 4.
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Figure 4. Two-dimensional image reconstruction results for the passive single-pixel imaging method.
(a) The original object for reconstruction: “G” has a thickness of 10 mm, “bulb” has a size of 20 × 26 mm
and “Transparent-circle” has a thickness of 5 mm. (b) The reconstructed 2D image from left and
(c) right detectors.
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Recovering an image, XN×N from a set of measurements vector, YN×N is straightforward with
matrix inversion techniques. With this technique, single-pixel imaging had limitations, such as
the requirement of N2 pixels for reconstruction, long data acquisition time, and large data storage.
These problems can be addressed by combining single-pixel imaging and compressed sensing. It enables
the single-pixel detector to reduce the number of measurements required for reconstruction to YM×1,
thereby reducing data storage and data transfer requirements. This method also solves a linear inverse
problem in the case where X has a sparse representation.

The SPI technique gathers light, which interacts with the object with the aid of a spatially
un-resolved single-pixel detector. The encoding of spatial information in the collected light is done by
the pre-programmed spatially resolved patterns. The single-pixel detector sequentially measures the
inner products between the N ×N pixelated scene and a set of M×N binary patterns. The principle
behind the CS imaging is summarized in equation [47]:

Y = ΦX (1)

where Y is an M× 1 column vector, Φ is the measurement matrix contains, M is the row vector, N is the
column vector, and X is the representation of original image, having N × 1 pixels. When the number of
measurements M in Y is less than the total number of pixels (N) in X, the Equation (1) will become an
ill-conditioned problem with infinite solutions. To solve such problems, the original image should obey
the property called sparsity, in which only the most significant co-efficients (K-sparse) in the image are
considered for processing, and all the less significant co-efficients are discarded. In CS, the K-sparse
information is acquired and stored in the column vector Y. If an image can be represented in some
basis, then it can be recovered via l1 minimization, with the knowledge of Y and Φ [47].

Consider a K-sparse signal X and it is sparse in orthogonal basis, Ψ = [Ψ1, Ψ2, . . .ΨN], then

X = ΨS (2)

where S is K-sparse, in which K coefficients are non-zero. According to CS theory, the signal X an be
recovered with m(m = O(K log N)) incoherent linear measurements when the original signal contains
such K-sparse co-efficients. Then, Equation (1) becomes:

Y = ΦX = ΦΨS (3)

where Φ s a pre-programmed pattern of the size M×N, which is uncorrelated with the sparsity basis
Ψ, and Y is the M× 1 measurement vector [48]. From the measurement vector Y, image recovery is
achieved by the TV-based minimization model. The directional change (gradient) in the object image
X can be determined at a pixel location xi j [49]:

Gi j =

(
Gh;i j(X)

Gv;i j(X)

)
Gh;i j(X) = xi+1, j − xi, j
Gv;i j(X) = xi, j+1 − xi, j

(4)

The TV minimization algorithm calculates the total variation and removes the undesirable
information by preserving the edges at each pixel location of the image X:

TV(X) =
∑

i j

√
Gh;i j(X)2 + Gv;i j(X)2 (5)

TV minimization has been adopted for most image processing fields due to its ability to keep
visual quality than l1 optimization [49]. To acquire the 2D image of the size 32× 32, the conventional
imaging system would take 1024 measurements. In SPI, 200 measurements, around 20% of the total
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number of pixels, are used for good quality image reconstruction. Three objects are tested, and the
resultant images reconstructed from the left and right single-pixel detectors are shown in Figure 4.

Our experimental setup contributes to the formation of good quality 2D images for transparent
objects along with CS algorithm. The 2D image reconstruction quality obtained from the SPI system
is better than the conventional imaging systems, such as LIDAR or TOF cameras [7–9], owing to
single-pixel sensors detection efficiency, lower noise, and higher time resolution. The apparent
directional illumination from DMD and shadow effect at the edges of the object also make the system
superior to traditional imaging methods in obtaining good quality image reconstruction.

3.2. Disparity Map Using Normalized Cross-Correlation (NCC)

The object in the experimental setup is observed by two single-pixel detectors. This is equivalent to
getting images of the object from two angles without changing the position of it. Binocular stereovision
determines the position of a point in space by finding the intersection of two lines passing through the
center of projection and the projection of point in the image. The images from the two viewpoints
are dissimilar in intensity distribution and the depth information of the images is lost. However,
depth can be inferred through the binocular vision algorithm, which works very similarly to human
eyes. Stereovision algorithms are classified as features based and window/area-based techniques.
Feature based algorithms are complex in finding the matching features for all the edges or corners from
two single-pixel images to build a disparity map. Thus, the area-based method is considered for depth
evaluation, in which the algorithm matches blocks of pixels to find correspondences in the images.
In this study, the NCC method is used to determine the correspondence between two windows around
a pixel of interest. NCC is defined as:

NCC(i, j, d) =

∑
(i, j)∈w

Xl(i, j).Xr(i′ − d, j′)√ ∑
(i, j)∈w

Xl
2(i, j).

∑
(i, j)∈w

Xr2(i′ − d, j′)
(6)

where w is the window size, Xl is the left detector image, Xr is the right detector image, and d is the
disparity. i, j and i′ , j′ are the blocks of pixels to be matched in the left and right detector images,
respectively. The window size can affect the quality of the disparity map, in this work we have chosen
window size as 6× 6 pixels.

Three-dimensional image reconstruction quality depends on the quality of 2D images and its edge
sharpness. The complete details about the edge features aid in estimating the boundaries of the object
from the background. Two-dimensional images obtained from SPI are noisy and edges are not uniform.
Hence, background noise has been removed first, and then the canny operator algorithm has been
applied for edge detection. After that, the image is processed using morphological operators to make
the edges smooth and perfect. The major difficulty for transparent object detection is the featureless
surface to compute the disparity. This issue is resolved to some extent in this work, owing to the tracing
of edges and the significant role of the NCC algorithm in depth computation. As the NCC algorithm
is less sensitive to the changes in the intensity value in each pixel, the depth computation with the
algorithm become more precise. Depth information from a pair of images can be calculated by first
computing the distance between the block of pixels at a location in the left image and its corresponding
location in the right image. The search for the best match is performed over a window. This will
produce a disparity map, as shown in Figure 5. Before the disparity calculation, the left and right
images are converted to grayscale images. Hence, the NCC algorithm determines the intensity range
in the images, normally between 0 and 255, and divides the range into multiple offsets (from 0 to 30
offsets), having a range of pixel intensities within each offset. At the same time, the offset adjust is also
calculated using the given formula:

O f f set adjust =
255
30

(7)



Sensors 2020, 20, 4211 9 of 13

where offset adjust is used in the final step of the algorithm to calculate the pixel range. For NCC
calculation, the left image is fixed, and the right image is moved across the window and intensities
of both left and right images get multiplied and further divided by their own intensity square or
standard deviation of the intensities across the window. Then, the disparity is calculated using the
following equations:

M =
∑
i, j

∑
i, j

Xl(i, j). ∗Xr(i′ − d, j′ )

Xr
2 =

∑
i, j

∑
i, j

Xr(i′ − d, j′). ∗Xr(i′ − d, j′)

X2
l =

∑
i, j

∑
i, j

Xl(i, j).∗Xl(i, j)

(8)

NCC =
M√(

X2
r ∗X2

l

) (9)

where M represents the dot product between the left and right images. The similarity of the pixels
from both left and right images is aggregated over the window size as shown in Equation (6) ariations
in window size will affect the quality of the reconstructed images. Increased window size makes the
disparity map smoother, however, there will be inaccuracies in object detailing at the boundaries. Hence,
smaller window size is chosen to provide maximum depth details with more noise. The obtained
disparity from the above equations is multiplied with the offset value to get the pixel range which is
given by the equation:

Disparity map = disparity ∗ o f f set adjust (10)

Depth “z” of the object from the photodetector is calculated using the following formula:

z =
b× f

d
(11)

where b represents the baseline distance i.e., the distance from the optical center of one detector to
other, f symbolizes the focal length of the photodetector, and d indicates the disparity between the
pixels in one image to another image.

The disparity map of the object is plotted in Figure 5 for various objects. The depth bar, which is
in cm, indicates the distance at which object is placed from the camera. From the depth bar, the pixel
value within the minimum offset range would indicate the farthest away information (background)
in the plot, or else the pixel value within the maximum offset range would indicate the nearest
information from the detector in the plot. The widely accepted bad matched pixel (BMP) measure
is used to quantitatively evaluate the disparity maps for error estimation, and it is calculated using
following formula:

BMP =
1
N

∑
(x,y)

ε(x, y); ε(x, y) =1 if
∣∣∣Dtrue(x, y)−Dreconstructed(x, y)

∣∣∣> δ

0 if
∣∣∣Dtrue(x, y)−Dreconstructed(x, y)

∣∣∣< δ

(12)

where Dtrue represents the ground truth data, and Dreconstructed represents the disparity map data.
The error tolerance value δ is commonly taken as 1. The BMP value computed for the three disparity
maps in Figure 5a–c is given by 0.221, 0.218, and 0.202, respectively. The values obtained are the
measure of the quantity of errors occurring in disparity maps.
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To verify the effectiveness of our method, the reconstructed images are aligned with the original
ground truth images to compute the error map shown in Figure 6. The percentage error (%) is
calculated from the difference between the ground truth image and reconstructed image. The equation
for calculating the percentage depth error is given by the formula:

Absolute depth error(%) =

∣∣∣ground truth image− reconstructed image
∣∣∣

ground truth image
× 100 % (13)

The Otsu method is implemented by setting the threshold value as one while comparing the ground
truth image with the reconstructed image.
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The results show that the proposed transparent object inspection system works very well in
capturing images and finding the disparity. When comparing our work with existing techniques,
the proposed system is superior in reconstructing the shapes under visible light with cost effective
single-pixel detectors. In addition, the movement of object or the camera in the scene for acquiring
multiple views of the object is not needed in the proposed setup. Moreover, images are reconstructed
with a smaller number of measurements, due to the application of CS, thereby reducing the storage
requirements and time-consuming computations. Some parts of the objects are not detected in the
reconstructed results, because of fewer transmissions from the object. Additionally, the quality of
the 3D reconstruction results is not as good as expected, due to some missing parts in reconstructed
2D images. Post-processing of the 2D images is necessary before feeding the 2D images for the
disparity calculation program. Moreover, an increase in window size to obtain the finer details of
the reconstruction adds more noise into the image which causes the 3D image to become blurrier
and noisier.
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4. Conclusions

In conclusion, we have experimentally demonstrated a 3D transparent object inspection system
with two single-pixel detectors by collecting the transmission from the object. The employment of two
single-pixel detectors overcomes the limitation of object movement during imaging. Two-dimensional
images are reconstructed using convex optimization algorithms based on CS. The employed NCC
algorithm successfully deduced the depth map from the 2D image. The resultant 3D image using the
proposed passive single-pixel imaging setup and NCC algorithm ensures better quality, compared to
conventional imaging methods. The system developed for transparent object inspection can detect
objects with flat and homogeneous surfaces with limited thickness. More experiments will be conducted
for complex objects, and the 3D image reconstruction algorithm will be further improved in the future.
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