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Abstract
Computer vision (CV) technologies are assisting the health care industry in many respects, i.e., disease diagnosis. How-

ever, as a pivotal procedure before and after surgery, the inventory work of surgical instruments has not been researched

with the CV-powered technologies. To reduce the risk and hazard of surgical tools’ loss, we propose a study of systematic

surgical instrument classification and introduce a novel attention-based deep neural network called SKA-ResNet which is

mainly composed of: (a) A feature extractor with selective kernel attention module to automatically adjust the receptive

fields of neurons and enhance the learnt expression and (b) A multi-scale regularizer with KL-divergence as the constraint

to exploit the relationships between feature maps. Our method is easily trained end-to-end in only one stage with few

additional calculation burdens. Moreover, to facilitate our study, we create a new surgical instrument dataset called SID19

(with 19 kinds of surgical tools consisting of 3800 images) for the first time. Experimental results show the superiority of

SKA-ResNet for the classification of surgical tools on SID19 when compared with state-of-the-art models. The classifi-

cation accuracy of our method reaches up to 97.703%, which is well supportive for the inventory and recognition study of

surgical tools. Also, our method can achieve state-of-the-art performance on four challenging fine-grained visual classi-

fication datasets.
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1 Introduction

The health care sector has long been an early adopter and

benefited greatly from technological advances. In recent

years, artificial intelligence (AI) technologies, i.e., deep

neural networks, play a key role in many health-related

realms, including disease prediction [17] and diagnosis

[19], intelligent robot-assisted surgery [16], health moni-

toring [46], the development of new medical procedures

[1], etc.

Computer vision (CV), as one of the most successful

research directions in the field of AI, has achieved

remarkable breakthroughs in the health care industry,

helping medical professionals in saving their valuable time

on basic tasks while also saving patients’ life. The focus of

CV in health care has been placed on solving various

medical tasks by processing different types of medi-

cal/pathological images. For example, in the early recur-

rence prediction of hepatocellular carcinoma [50],

radiomics features are extracted from arterial and portal

venous-phase CT images for evaluating the preoperative

clinical factors. Besides, medical image processing has also

been applied to solve different medical tasks, including

computer-aided detection (CADe) in radiological diag-

noses [34], prostate image analysis based on 3D image

segmentation [30], 3D MRI brain coronal slices image

registration [3], detection of critical findings in head CT

scans [7], etc. These studies or designs in the field of CV

have mainly been considered as auxiliary tools for doctors

in numerable analysis or operations, thereby providing
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instructions to obtain a higher precision on diagnosis,

prediction, screening, tracking and so on.

Despite the remarkable success of CV on auxiliary

medical diagnosis, recent studies have also actively ven-

tured into other emerging application domains in the health

care sector, for example, the robot-assisted surgery based

on a 3D camera [15], rehabilitation training based on vision

reconstruction for people with visual impairment [6],

health monitoring on patients for disease prediction and

prevention [33], etc. Among these studies, relevant

research works on medical instrument images, i.e., the

surgical instruments, which are the most important tools in

the procedure of surgery, have less been explored. Notably,

the inventory work of the surgical instruments before and

after surgeries is of great importance for medical safety. At

present, the surgical instrument inventory work is mostly

carried out by the professional medical staff. Nevertheless,

mistakes occur inevitably due to the negligence or fatigue

of human beings. In 2020, the Australian Productivity

Commission released a number of medical records that

indicate the nationwide medical malpractice has taken off,

and 430,000 patients have suffered. Medical malpractices

related to medical devices are even more noticeable among

these patients. As the Daily Mail goes, the Bungling sur-

geons left medical instruments inside at least 23 patients

who were poisoned, infected, or injured in hospital in just a

year. Therefore, it is much of significance to ensure the

reliability of inventory work of surgical instruments.

In the surgical instrument inventory work, the medical

staff is mainly responsible for checking the type and

quantity of surgical instruments. And the identification of

surgical instruments is one of the focuses of the verification

work. Taking this cue, this paper takes a series of research

works on surgical instrument inventory work, with the aim

to accurately identify surgical instruments before and after

surgery. This work not only saves human resources, but

also quickly identifies whether surgical instruments are

missed, which is beneficial in preventing secondary

infections or fatal medical accidents. At present, medical

image studies regarding surgical instruments have mainly

focused on surgical tool detection, segmentation and

tracking during surgery, so that doctor assistants take a

more accurate grasp of the operation process [11]. To the

best of our knowledge, the surgical instrument recognition

work in this paper serves as the first attempt to identify and

classify a surgical instrument kit for the inventory work of

surgery.

To support the work, a novel surgical instrument dataset

is built. As reported in statistics from the University of

Rochester Medical Center, the most common surgical

operations in the USA mainly include appendectomy,

breast biopsy, carotid endarterectomy, cataract surgery, etc.

Accordingly, this work considers 19 categories of surgical

instruments from surgical kits of appendix resection,

cholecystectomy surgical and cesarean section (including

Alice forceps, hemostatic forceps of different sizes, oval

forceps, suction head, four kinds of hooks, needle holders,

cloth forceps, long and short tooth forceps, thread scissors,

tissue scissors, intestinal plate, etc.) as the raw materials to

create our surgical instrument dataset (labeled as SID19).

Notably, in the proposed SID19, there exist certain surgical

tools that belong to the fine-grained classes, which possess

the very subtle differences that are intractable to distin-

guish from one another. Among them, surgical forceps and

surgical scissors both contain several sub-categories,

namely fine-grained classes. In the proposed SID19, cate-

gories of surgical forceps include Alice forceps, hemostatic

forceps of different sizes, oval forceps, long and short tooth

forceps, and cloth forceps. Categories of surgical scissors

include thread scissors, tissue scissors, etc. Objects in these

sub-categories usually share large intra-class and small

inter-class variances, introducing difficulties for identifi-

cation task. For example, Fig. 1 displays two forceps cat-

egories: Alice forceps and appendix forceps with different

states, views and angles. Alice forceps and appendix for-

ceps have a tiny difference in their fore-end, where the

fore-end of appendix forceps is much rounder than that of

Alice forceps. Therefore, different from the common nat-

ural image classification, the presented surgical instrument

classification task reveals unique characteristics of fine-

grained visual classification (FGVC), thus bring additional

difficulties.

To tackle the FGVC problem, recent works for FGVC

mainly focus on weakly supervised learning, which can be

roughly grouped into two categories: attention-based

methods to strengthen the intermediate feature maps and

other methods to exploit the relationships between feature

maps. However, the whole framework is fairly complex

due to the additional attention network for the first group

and the design of regularizer for the other group is com-

plicated too. Additionally, leveraging the strengthened

intermediate feature maps extracted from different stages

to explore the relationships of feature maps is rarely

exploited. In this paper, we propose a novel fine-grained

visual classification framework named SKA-ResNet to

explore the efficacy of surgical instrument classification.

Our method involves two novel components: a feature

extractor with stacked standard residual blocks with

selective kernel attention (SKA) module to boost the

intermediate feature maps and a multi-scale regularizer to

explore the relationships of strengthened intermediate

feature maps.

In the feature extraction stage, we propose to embed the

SKA module into the end of standard residual block

forming a new block called SKA block. As the core of our

feature extractor, SKA module is capable of generating
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special attentions with different receptive fields informa-

tion to strengthen the intermediate feature maps, which can

be described into three different stages, including Divide,

Fuse and Aggregation. Particularly, an attention factor with

special information is generated by leveraging adaptive

kernel selection and SGE attention mechanism, so that the

informative expression can be strengthened efficiently.

Besides, we introduce a multi-scale regularizer to explore

the relationships of different scale feature maps boosted by

SKA module. The mid-level and high-level feature maps

extracted from different stages are strengthened through a

CBAM-layer similar to the CBAM module [42]. Then, the

enhanced feature maps and the last outputs of the feature

extractor are concatenated before classification. Mean-

while, the relationships of the enhanced feature maps are

constrained by a regularizer that matches the prediction

distribution of the mid-level features to the high-level ones

with KL-divergence. The experimental results demonstrate

that our method achieves the best performance on SID19

by around 97.703%, which is feasible for assisted decision-

making in inventory work. Moreover, our method outper-

forms the state-of-the-art models on four standard bench-

mark datasets.

Main contributions of the work are summarized as

follows:

1. Considering the medical accidents about loss of

surgical instruments during surgeries, surgical instru-

ment classification is proposed for the first time to

assist medical staff in inventory work for reducing the

medical accidents risk.

2. To explore the work of surgical instrument classifica-

tion, we adopt the surgical kits corresponding to three

most common surgeries (appendectomy, cholecystec-

tomy and cesarean section) as origin materials to create

a dataset, SID19, wherein 19 kinds of surgical tools

consisting of 3800 images are collected.

3. A novel attention-based model called SKA-ResNet is

proposed to explore the classification work. The

network can capture subtle differences among fine-

grained classes by embedding the selective kernel

attention module into feature extractor. Further, a

multi-scale regularizer is proposed to boost the

classification.

4. Results show that our method achieves a high accuracy

of around 97.703% on SID19, which is superior to

existing methods. Also, it achieves superior perfor-

mance on four challenging fine-grained visual classi-

fication datasets when compared to the state-of-the-

arts.

The rest of this paper is organized as follows. Section 2

introduces background of the work. Section 3 describes the

proposed SKA-ResNet in detail. In Sect. 4, we describe the

details of our proposed SID19 dataset. Section 5 shows the

experimental settings and results on SID19 and other

datasets. Section 6 concludes the paper.

2 Background

2.1 CV applications in health care

Computer vision, as one of the most successfully applied

technologies in AI, has been introduced into a wide range

of fields to solve specific tasks. Nowadays, various CV-

powered technologies are assisting the health care industry

in all respects. As a result, medical professionals get a

better knowledge about diseases so that they make a sound

judgment or even save patients’ lives.

Today’s health care industry strongly relies on precise

diagnostics provided by medical imaging, which works

with data obtained by different diagnostic technologies

including X-ray, computed tomography (CT), magnetic

resonance imaging (MRI), etc. Based on heterogeneous

pathologic images, medical image analysis has focused on

disease prevention, prediction, detection, diagnosis,

screening and so on. For example, in the early diagnose of

chronic obstructive pulmonary disease, Filho et al. [8]

propose to utilize information from lung CT images to

Fig. 1 Two distinct forceps categories from the proposed SID19 dataset. a Alice forceps with different states, views and angles; b Appendix

forceps with different states, views and angles

Neural Computing and Applications (2022) 34:1577–1591 1579

123



identify and classify lung diseases with the automatic

feature extractor. Moreover, to detect the stages of cancer if

affected, Sekaran et al. [36] utilize CNN to predict the

cancer images of the pancreas, which is embedded with the

model of Gaussian mixture model with EM algorithm to

identify the essential features from the CT Scan. More

recently, under the screening work of the coronavirus dis-

ease (COVID-19), Wang et al. [40] extract COVID-19’s

specific graphical features and provide a clinical diagnosis

ahead of the pathogenic test derived from the radiograph-

ical changes in CT images, thus saving critical time for

disease control. In the detection of COVID-19, Apos-

tolopoulos et al. [2] suggest that the state-of-the-art CNN

architectures proposed over the recent years for medical

image classification with transfer learning are successful in

extracting significant biomarkers related to the COVID-19

disease based on X-ray imaging.

Besides the success of CV in medical pathologic anal-

ysis, new applications in the health care sector have also

emerged. For example, under health monitoring, Suo et al.

[39] build a personalized time fusion framework to predict

patients’ risk of developing certain diseases by monitoring

changes in patient visit time. In computer-assisted surgery,

Pakhomov et al. [31] focus on binary instrument segmen-

tation by leveraging deep residual learning and dilated

convolutions. Moreover, Zhao et al. [47] propose a visual

tracking approach using the CNN with a spatial trans-

former network and a spatiotemporal context learning

algorithm for the process of tool tracking frame by frame,

which is devoted to enhancing the context-awareness of

surgeons in the operating room. Sanchez-Garcia et al. [35]

present a new CNN-based fusion approach to build a

schematic representation of indoor environments for sim-

ulated phosgene images, which aims to train and partially

recover the retinal stimulation of visually impaired people

in rehabilitation training.

In this paper, we propose to take a series of study cen-

tered around the identification of surgical instruments

before and after surgery. The study aims to save human

resources and reduce the risk of secondary infections or

fatal medical accidents incurred by the loss of surgical

instruments. The proposed work is carried out upon a

newly designed surgical instrument dataset, which is quite

different from those relying on pathological images.

Additionally, in comparison with tool detection, segmen-

tation and tracking relying on surgery videos in computer-

assisted surgery, our study works before and after surgery

for the inventory of surgical tools.

2.2 Fine-grained visual classification

Research works for FGVC tasks mainly proceed along two

dimensions, namely strongly supervised learning and

weakly supervised learning. Specifically, strongly super-

vised learning methods add the object bounding boxes, part

annotation information and image level labels to the

training network for learning specific discriminative loca-

tion information of the targets [14, 24, 45]. Nevertheless,

this sort of methods suffer as (a) a huge amount of human

resources are demanded to label the original images, and

(b) the information marked by humans is not accurate

sometimes. On the contrary, weakly supervised learning

networks are only given the categories of images for

classification.

As the most frequently used method in CV research

works, attention mechanisms have been widely employed

in various classification, detection and segmentation tasks,

especially in weakly supervised FGVC tasks. According to

attention mechanisms, the informative features are

strengthened and the less useful ones are suppressed,

simultaneously. Lots of lightweight attention modules are

introduced in recent years. For example, a high-efficiency,

lightweight gating mechanism is introduced in SENet [13]

to strengthen the intermediate feature maps via channel-

wise importance. Beyond channel dimension, BAM [32]

and CBAM [42] generate attention maps along spatial and

channel dimensions for adaptive feature reinforcement.

Based on group convolution, SGENet [21] proposes a

novel spatial group-wise enhanced attention, which focuses

on learning different semantic sub-feature maps of each

group, intentionally self-enhancing its spatial distribution.

Except for spatial and channel dimensions, SKNet [22]

firstly suggests to explicitly exploring the adaptive recep-

tive field (RF) size of neurons by introducing a dynamic

kernel selection mechanism which is constructed by multi-

branch convolutions based on different kernels. All the

above attention mechanisms constitute lightweight atten-

tion modules, which can be embedded into majority

backbone networks, promoting the performance of net-

works. Based on attention mechanism, some methods

[9, 38, 44] construct the additional attention networks for

FGVC problem. Although these methods can obtain

excellent performance, the architectures of these methods

are complicated due to the additional attention networks

when comparing with lightweight attention modules.

On the other hand, there are other weakly supervised

models introduced in FGVC for feature relationship

learning. Methods based on high-order statistics are pro-

posed in visual classification, especially for solving the

FGVC problem. Specifically, bilinear CNN (BCNN) [25]

performs element-wise square root normalization followed

by ‘2� normalization for bilinear features, achieving

impressive performance. Compact bilinear CNN [10] pro-

poses two compact bilinear representations with the same

discriminative power as the full bilinear representations but

with only a few dimensions compared with bilinear
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features. By the same token, the core of iSQRT-COV [20]

is a meta-layer with loop-embedded directed graph struc-

ture, specifically designed for ensuring both convergence

of Newton-Schulz iteration and performance of global

covariance pooling networks. Other methods propose to

exploit relationships of different scale feature maps. Cross-

x learning [29] introduces an approach to exploit the

relationships between different images and different net-

work layers for robust multi-scale feature learning.

However, our method differs from previous works in

two aspects: First, embedding adaptive kernel selection

mechanism with SGE attentions, our SKA module can

strengthen the expression of discriminative regions auto-

matically which is lightweight and efficient. Second, we

utilize a multi-scale regularizer to exploit the relationships

between the strengthened feature maps for robust perfor-

mance. In particular, the two parts are complementary in

our approach. On the one hand, the feature extraction

network based on the attention mechanism can generate

feature maps with rich semantic information for multi-scale

learning and fundamentally improve the performance of

multi-scale feature learning; on the other hand, multi-scale

feature learning uses attention-enhanced feature maps

combining with constraint conditions to guide the genera-

tion of feature maps in the feature extraction stage.

3 Method

In this section, the detailed architecture of SKA-ResNet is

delineated. As depicted in Fig. 2, the whole network is

composed of two main components: (1) A novel feature

extractor consisting of stacked standard residual blocks

with Selective Kernel Attention (SKA) modules that

extracts informative feature maps for discriminative

regions without additional attention networks. (2) A multi-

scale regularizer taking relationships between feature maps

and images as a constraint that learns the relationships of

different fine-grained categories. Different from existing

attention-based methods focusing on additional attention

networks, our method embeds lightweight SKA modules

into the standard residual blocks in a scattered way. Fur-

thermore, the relationships between different feature maps

and images are exploited by a multi-scale regularizer for

robust fine-grained feature representation. And the entire

network is trained end-to-end simply relying on image

level labels.

3.1 SKA module

In the stage of feature extraction, we introduce a novel and

lightweight SKA module as depicted in Fig. 3. The feature

extractor can localize the discriminative regions and

strengthen the corresponding feature maps automatically

by embedding the SKA modules into stacked standard

residual blocks of ResNet. Operations in the proposed SKA

module are summarized into Divide, Fuse and Aggrega-

tion. As shown in Fig. 3, we take the SKA module with a

two-branch case as an example for the detailed illustration.

Divide In the Divide stage, given intermediate feature

map X 2 RW�H�C, it is first sent into two different con-

volutional layers to generate two feature maps with dif-

ferent semantic information. The convolution layers are

grouped with convolutions, Batch Normalization and

ReLU function in sequence. Specifically, the two convo-

lution layers are conducted by a 3 � 3 kernel size and a

5 � 5 kernel size, respectively. The two obtained feature

maps are expressed as Y1 2 RW�H�C and Y2 2 RW�H�C.

Note that, the size of the two obtained feature maps is the

same as the original feature map X. The procedure can be

summarized as:

Y1 ¼d BN Conv3 � 3 Xð Þð Þð Þ 2 RW�H�C; ð1Þ

Y2 ¼d BN Conv5 � 5 Xð Þð Þð Þ 2 RW�H�C; ð2Þ

where d, BN and Conv refer to ReLU function, Batch

Normalization and convolutions, respectively.
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Fig. 2 The framework of our SKA-ResNet consists of two parts. A: A feature extractor with SKA module embedded to extract high expression

feature maps; B: A multi-scale regularizer taking relationships between feature maps as a constraint to exploit multi-scale learning
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Fuse To enable neurons to adaptively adjust their RF

sizes according to the stimulus content, an element-wise

summation gate is adopted to integrate different informa-

tion from the two branches. We generate the mixed feature

map Y 2 RW�H�C by a summation gate. Then, the global

information of Y is generated by utilizing global average

pooling, which is noted as g 2 RC. To prevent the biased

magnitude of coefficients between various samples, we

employ a normalization in g over the channel. Further, the

obtained global feature vector is sent to a fc layer, which is

conducted with convolutional layers with 1 � 1 kernel size,

Batch Normalization and ReLU function, meanwhile

reducing the dimension of g for better efficiency. The

obtained compact feature vector is expressed as g1 2 RC1 ,

where C1 is the dimension after reduction in dimensionality

by 1 � 1 convolutions. The relationship between C and C1

is controlled by a parameter defined as r, where C1 ¼
maxðC=rÞ and the minimum value of C1 is not less than 32.

Specially, we embed SGE module into the different bran-

ches to generate Y
0

1 and Y
0

2 with spatial group-wise

enhanced attentions, respectively. The procedure can be

summarized as:

g1 ¼ fc N F gp Y1 þ Y2ð Þ
� �� �

2 RC1 ; ð3Þ

Y
0

1 ¼ SGE Y1ð Þ 2 RW�H�C;Y
0

2 ¼ SGE Y2ð Þ 2 RW�H�C;

ð4Þ

where fc, N and F gp �ð Þ refer to the above fc layer, Nor-

malization and Global Average Pooling. And SGE refers to

the operations of SGE module.

Aggregation A softmax operator is applied to the global

feature vector g1 to select different RFs of information,

which can be regarded as a soft attention mechanism.

Through the operation, we obtain two different informative

feature vector v1 and v2 corresponding to Y1 and Y2,

respectively. For the two generated weights vector v1 and

v2, we generate the strengthened feature maps A 2 RW�H�C

and B 2 RW�H�C by employing v1 to scale Y
0

1 and v2 to

scale Y
0

2. The final feature map X
0

is obtained by

summation of the result of two branches. The procedure

can be summarized as:

v1; v2½ � ¼ softmax g1ð Þ; ð5Þ

X
0 ¼ v1 � Y

0

1 þ v2 � Y
0

2; ð6Þ

where softmax refers to the softmax function.

As shown in Fig. 4, the standard residual block with our

proposed SKA module is exhibited. The proposed SKA

module is lightweight without introducing too many vol-

umes of calculations and parameters, so that it can be easily

embedded into any mainstream backbone network. Further,

it is of high-efficiency in learning informative feature maps

for fine-grained visual classification tasks. We employ

SKA module to the standard residual block of ResNet for

structuring a novel and efficient block that constitutes the

core of our feature extractor. By the above feature

extractor, we can extract informative feature maps.

3.2 Multi-scale regularizer

Multi-scale learning (MSL) has been shown to be useful

for numerable visual tasks [5, 18, 27, 28] . Mid-level fea-

ture maps usually bear more precise location information,

while the high-level ones take more discriminative

semantic information. Thus, we apply the simple idea that

multi-scale feature maps extracted from different layers are

combined to form a pyramid structure for prediction like

FPN [26] does. However, the relationships between

Fig. 3 The detailed procedure of our SKA module with two selective kernel branches is illustrated
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Fig. 4 The example standard residual block with SKA module called

SKA block, in which ‘‘Residual’’ refers a sequence of convolutional

layers in standard residual block of ResNet
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different feature maps are rarely exploited. Further, the

combination of attention module and feature relationship

learning is not explored.

Under the above feature extractor, we first extract fea-

ture maps from mid-level layers and high-level layers. As

shown in Fig. 2, let F3 and F4 be the feature maps of

different layers (3 and 4 refer to stage3 and stage4 of

ResNet depicted in Fig. 2), which can be defined as:

F3 ¼ f3
c

� �C3

c¼1
2 RC3�H3�W3 ;F4 ¼ f4

c

� �C4

c¼1
2 RC4�H4�W4 ;

ð7Þ

where C is the number of feature channels and H �W is

the spatial size of the feature map. Then, F3 and F4 are fed

to a CBAM layer [42] to strengthen the semantic infor-

mation. The procedure can be summarized as:

eF ¼ r MLP AvgPool Fnð Þð Þ þMLP MaxPool Fnð Þð Þð Þ; ð8Þ

F̂n ¼ r f 7�7ð½AvgPoolðeFÞ;MaxPoolðeFÞ�Þ
� �

; ð9Þ

where r, AvgPool, MaxPool and MLP refer to Sigmoid,

Global Average Pooling, Global Max Pooling and Multi-

layer Perceptron. And f 7�7 refers to a convolutional layer

with a kernel size 7 � 7. F̂
n

is the output of CBAM layer.

Especially, F̂
3

and F̂
4

are the corresponding outputs of F3

and F4.

Afterward, three prediction distributions, P3, P4 and P,

are obtained from the last full connection layer and a

SoftMax function. Note that, P is corresponding to F4,

which is the output feature maps of the original feature

extractor. To explore the relationships between feature

maps extracted from stage3 and stage4, we propose a

regularizer to match different prediction distributions. In

terms of implementation, KL-divergence is applied in this

paper as a constraint, which can be expressed as:

Lmsl P
4;P3

� �
¼ KL P4kP3

� �
¼ 1

N

XN

i¼1

XC

j¼1

p4
ij log

p4
ij

p3
ij

;

ð10Þ

where C refers to the class number, and N donates the

number of a mini-batch. pij refers to the probability value

of the i-th sample belonging to the j-th category. KL-di-

vergence suggests P3 to match with P4 by minimizing the

loss function Lmsl. A similar regularizer can be added to

constrain P3, P and P, P4 as well.

3.3 Optimization

Given prediction distributions P3, P4 and P, the loss

function for classification can be expressed as:

Lcls ¼
XN

i¼1

XC

j¼1

Lc P3
ij þ P4

ij þ Pij;P
�

� �
; ð11Þ

where Lc donates the cross-entropy loss and P� is the

ground-truth label vector. C refers to the class number, and

N donates the number of a mini-batch. Finally, the whole

model is optimized by the loss function defined as:

Ltotal ¼ Lcls þ aLmsl; ð12Þ

where a is a hyper-parameter to balance the contribution to

different parts. In our settings, a ¼ 1.

3.4 Network architecture

Using standard residual blocks with SKA modules, the

overall feature extractor architecture of SKA-ResNet50 is

listed in Table 1. Besides, as the backbone network of the

proposed method and two existing excellent methods based

on lightweight attention modules, architectures of the other

three models, ResNet50, SGE-ResNet50 and SK-

ResNet50, are displayed in Table 1, as well. Similar with

ResNet, the proposed SKA-ResNet mainly consists of a

stack of repeated residual blocks termed as ‘‘SKA blocks.’’

Each SKA block is composed of a sequence of convolution

layers and a lightweight SKA module. Generally, the

proposed SKA module can be regarded as an independent

unit. We obtain the SKA block by adding the unit to the

end of sequence operations within the standard residual

block. Due to the high-efficiency design of SKA module,

SKA-ResNet50 only leads to 2% increase in the number of

parameters and 1.8% increase in computational cost,

compared with ResNet50. Further, combining adaptive RFs

with SGE attention mechanism, SKA-ResNet50 yet intro-

duces the increase in parameters compared with SK-

ResNet50, because there are no convolution layers in the

SGE attention mechanism. Meanwhile, it brings only a

little bit of an increase in computational cost.

In SKA block, there is an important hyper-parameter

called cardinality which dominates the number of group

convolutions in the SGE attention mechanism and a

reduction ratio r that controls the number of fc layer

parameters in the Fuse stage. In the integral structure of the

network, we adopt a similar topological architecture with

ResNet. Especially, Table 1 shows the structure of a 50-

layer SKA-ResNet which has four stages with 3; 4; 6; 3f g
SKA blocks, respectively. By varying the number of SKA

blocks in each stage, one can obtain different architectures.

In the study, we adopt SKA-ResNet50 as the primary

architecture by default.

Neural Computing and Applications (2022) 34:1577–1591 1583

123



4 Dataset

In this paper, we propose a new dataset called surgical

instrument dataset (SID19) about the surgical instruments

for the inventory work. To our knowledge, it is the first

dataset to support the research of surgical instrument

classification and recognition that collects surgical tools

from particular surgical instrument kits of the most com-

mon surgeries. Existing works revolving around surgical

instruments, i.e., the dataset of NeuroSurgicalTools [4],

mainly focus on real-time tool detection, segmentation and

tracking. All of these relevant datasets are proposed to

provide a more precise operation understanding for doc-

tors. Different from previous works, SID19 is introduced

for the classification of inventory work and has two unique

attributes. The one is various surgical instruments are

collected from several certain surgical tool kits for the

corresponding common surgeries. And the other is that the

dataset is collected in an individual view for every tool to

ensure accurate classification results under different views.

There are majority of fine-grained categories in the pro-

posed dataset which are difficult to distinguish, and the task

is regarded as a medical task where high precision should

be guaranteed. Hence, each image in this dataset only

contains one surgical instrument object. In order to support

the research of surgical instrument and present our sample

library more clearly, we will publish SID19 on GitHub

platform soon.

Generally speaking, one operation corresponds to one

surgical instrument kit. And in fact, some surgical instru-

ment kits contain a lot of the same surgical instruments,

such as appendectomy kit and cholecystectomy kit.

Therefore, based on the three most common operations

including appendectomy, cholecystectomy and cesarean

section, we introduce a new dataset, SID19, to collect the

images of surgical tools in the three corresponding kits.

Concretely, surgical instrument classes in SID19 include

Abdominal wall hook, Alice forceps, Appendix forceps,

Attraction tube, Bending plate, Curved tip surgical scissors,

Dressing tweezers, Elbow hemostatic forceps, Integrated

tissue scissors, Intestinal tract, Needle holder, No.4 tool

holder, Oval forceps, Pad towel forceps, S deep pull hook,

Straight hemostatic forceps, Straight tip surgical scissors,

Tissue hook and Tissue tweezers.

SID19 consists of 19 classes with 3,800 images. And

each class in this dataset contains 200 images. Note that,

the dataset not only contains coarse-grained classes easy to

identify, but also contains fine-grained classes that are

difficult to differentiate. For example, Alice forceps and

Tissue tweezers belong to coarse-grained classes, but Alice

forceps and Appendix forceps belong to fine-grained ones

as shown in Fig. 5. Note that, we generate the dataset in the

Table 1 The four columns refer to ResNet50 backbone, SGE-ResNet50, SK-ResNet50 and the proposed SKA-ResNet50, respectively

Stage Output ResNet50 SGE-ResNet50 SK-ResNet50 SKA-ResNet50

conv1 112 � 112 7 � 7, 64, stride 2

conv2 56 � 56 7 � 7 max pool, stride 2

1 � 1; 64

3 � 3; 64

1 � 1; 256

2

4

3

5� 3

1 � 1; 64

3 � 3; 64

1 � 1; 256

SGEmodule

2

664

3

775� 3

1 � 1; 64

3 � 3; 64

1 � 1; 256

SK module

2

664

3

775� 3

1 � 1; 64

3 � 3; 64

1 � 1; 256

SKAmodule

2

664

3

775� 3

conv3 28 � 28 1 � 1; 128

3 � 3; 128

1 � 1; 512

2

4

3

5� 4

1 � 1; 128

3 � 3; 128

1 � 1; 512

SGEmodule

2

664

3

775� 4

1 � 1; 128

3 � 3; 128

1 � 1; 512

SK module

2

664

3

775� 4

1 � 1; 128

3 � 3; 128

1 � 1; 512

SKAmodule

2

664

3

775� 4

conv4 14 � 14 1 � 1; 256

3 � 3; 256

1 � 1; 1024

2

4

3

5� 6

1 � 1; 256

3 � 3; 256

1 � 1; 1024

SGEmodule

2

664

3

775� 6

1 � 1; 256

3 � 3; 256

1 � 1; 1024

SK module

2

664

3

775� 6

1 � 1; 256

3 � 3; 256

1 � 1; 1024

SKAmodule

2

664

3

775� 6

conv5 7 � 7 1 � 1; 512

3 � 3; 512

1 � 1; 2048

2

4

3

5� 3

1 � 1; 512

3 � 3; 512

1 � 1; 2048

SGEmodule

2

664

3

775� 3

1 � 1; 512

3 � 3; 512

1 � 1; 2048

SK module

2

664

3

775� 3

1 � 1; 512

3 � 3; 512

1 � 1; 2048

SKAmodule

2

664

3

775� 3

1 � 1 7 � 7 global average pool, 1000-d fc, softmax

#Params. 25.56M 25.56M 26.15M 26.15M

GFLOPs 4.122 4.127 4.185 4.195

Inside the brackets is the general shape of a residual block, including filter sizes and feature dimensionalities. The number of stacked blocks on

each stage is presented outside the brackets. All modules are embedded into the end of the standard residual block. #Params. denotes the number

of parameters and GFLOPs represents the number of multiply-adds
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daytime and night with powerful lights to simulate the

circumstance of an operating room. When collecting ima-

ges, each surgical instrument is placed on a black light-

absorbing cloth with various postures. Especially, as to

forceps and scissors classes, we adopt two strategies

including open state and closed state to collect the images.

Furthermore, the collecting strategy about different angles

is adopted when capturing images, which is of great sig-

nificance because some surgical instruments are identical

in the main view but belong to different fine-grained

classes, such as Straight hemostatic forceps and Elbow

hemostatic forceps. Thus, it is essential to obtain their

images in a side view with a specific angle. In the proce-

dure of collecting data, we take an angle between 30 and 60

to collect images in a side view. Above all, all images in

SID19 are collected during different time slots, exhibition

states, postures and views. The collection environment is a

unified workbench with a black light-absorbing cloth.

Besides, all images are obtained with a camera in the same

resolution of 3456 � 3456. In a word, the same shooting

environment and different shooting requirements are

implemented to guarantee the unity and variety of the

dataset.

5 Experimental results

5.1 Implementation details

We conduct the experiments on the new proposed surgical

instrument dataset, SID19, in which there are 19 classes

and 200 images for each class. The ratio of training set to

testing set is three to two. We use data sharding for dis-

tributed training on SID19, evenly partitioning the data

across GPUs. In the data processing stage, the images are

RGB-normalized via mean/standard-deviation rescaling.

The size of input images is resized to 256 � 256 for both

training and testing. And then, a random resized crop is

conducted for each image to get a 224 � 224 size.

Furthermore, random horizontal flip and vertical flip are

employed in the training and testing stage. Besides, we

train on SID19 for 50 epochs, and the default batch size is

set to 64. The base learning rate is set to 0.01 (0.1 for

VGGNet [37]), which decays by 10 in half and three-

quarters of 50 epochs. The parameter cardinality is set to

32 for generating 32 group-wise enhanced attention maps

because of the fixed optimal structure of ResNeXt50 [43].

And the reduction ratio r is set to 16. Specially, we employ

the CBAM layer after conv4 6 and conv5 3 to generate

the enhanced feature maps F̂
3

and F̂
4

for multi-scale

learning in ResNet50. The sizes of two enhanced feature

maps are 28 � 28 � 1024 and 14 � 14 � 2028. Then, there

are two different fc layers to generate the corresponding

prediction distributions. We adopt top-1 accuracy as the

evaluation criterion and the loss is measured by using the

cross-entropy function. All experiments are implemented

based on Python 3.6 and PyTorch framework.

5.2 Ablation study

Batch Size The number of batch size controls the number

of mini-batch in a training and testing iteration. As batch

size is one of the most vital factors which has a great

influence on the weights update and generalization per-

formance of models, an appropriate batch size is essential.

In the experiments, we adopt 16, 32, 64 and 128 as the size

of a mini-batch, respectively. From Table 2, it is concluded

that with the increase in batch size, the performance of

SKA-ResNet and ResNet shows a trend of increasing first

and then tending to be stable. Through the experimental

results, we recommend the batch size to be 32 or 64 so that

there will be an accurate result without occupying too

much memory space. In subsequent experiments, we use 32

as the batch size by default.

Scale The scale of input data is resized generally before

being sent to the network and has a direct impact on the

classification results. If the scale is too small, there will be

serious information loss. On the contrary, the abstract level

Fig. 5 The contrast between coarse-grained classes and fine-grained classes. a coarse-grained classes: Alice forceps and Tissue tweezers; b fine-

grained classes: Alice forceps and Appendix forceps
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of information is not high enough and large calculations are

brought. Generally, input data are resized to a scale of

224 � 224. In the experiments, four different scales are

investigated as shown in Table 3. It is concluded that the

performance tends to increase gradually with the scale

increasing. However, the grown of tendency is inconspic-

uous from the scale of 224 to 448. Therefore, the scale of

input data is resized to 224 � 224 in the conditions without

special instructions.

Effectiveness of MSL Table 4 reveals the effectiveness

of our multi-scale learning along with the proposed regu-

larizer utilizing different constraint strategies. Specially,

we express the regularizer by ’?,’ indicating which two

feature maps have such constraint. There are three rela-

tionships among P3, P4 and P. The strategy of P3 þ P4

means that we encourage the prediction distribution P3 to

match with P4. The intention of Pþ P4 and P3 þ P is

similar with P3 þ P4. In the experiments, we also combine

the three strategies forming the other three strategies. As

shown in Table 4, the strategy combining all the individual

strategy of P3 þ P4;Pþ P4;P3 þ P can achieve the best

performance. We also obtain that the effectiveness of

individual strategy P3 þ P4 can also achieve a better per-

formance comparing with Pþ P4 and P3 þ P. P3 corre-

sponds to stage3 which contains more precise location

information and P4 is the output of stage4 which bears

more discriminative semantic information. Exploring the

relationship between two parts is more effective than the

other two strategies. Besides, the results of methods with

CBAM layer outperform that without CBAM layer.

Effectiveness of SKA module The effectiveness of our

SKA module is studied in Fig. 6 and Table 5. For a fair

comparison, all the methods do not use the strategy of

multi-scale learning. As the core of SKA-ResNet, SKA

block adds a novel selective kernel mechanism with

attention to the end of the standard residual block, which

further improves the accuracy of ResNet50 from 95.014%

to 97.042%. Comparing with SGE module and SK module,

SKA module is equivalent to equipping multi-branch

adaptive kernel selection feature maps with spatial group-

wise enhanced attentions, and accuracy is further boosted

from 96.203% and 96.197% to 97.042%. Meanwhile, the

rate of convergence of SK-ResNet50, SGE-ResNet50 and

our model are obviously faster than ResNet50. Apparently,

the convergence rate of the proposed model lies at a near

level with the highest performance as shown in Fig. 6.

Furthermore, the number of parameters and calculations

about the four models are displayed in Table 5. It is con-

cluded that our model can obtain the best performance

without introducing too many parameters and calculations

at almost the same time.

5.3 Comparison with state-of-the-Art on SID19

Comparison with Lightweight Attention modules We

compare our SKA-ResNet with several prevailing methods

that are embedded into lightweight attention modules. In

Table 6, quantitative experimental results on SID19 are

exhibited. For a fair comparison, all displayed methods are

implemented with the proposed multi-scale regularizer

based on a unified ResNet50 backbone. And all of the

attention modules are employed after the last BatchNorm

layer within every bottleneck in ResNet50. As shown in

Table 6, it is observed that the proposed SKA-ResNet with

SKA module for generating attention maps with adaptive

kernel selection mechanism achieves the best overall per-

formance against the prevalent attention modules. SGE-

ResNet and SK-ResNet achieve a close accuracy of around

96.9% by leveraging spatial group-wise enhanced attention

Table 2 Performance of ResNet50 and SKA-ResNet50 as a function

of batch size

Batch_size 16 32 64 128

ResNet50 top-1 acc (%) 93.026 94.817 95.014 95.313

SKA-ResNet50 top-1 acc (%) 95.925 97.703 97.754 97.758

Table 3 Performance of ResNet50 and SKA-ResNet50 as a function

of scale of input data

Scale 112 224 336 448

ResNet50 top-1 acc (%) 91.341 95.014 95.483 95.804

SKA-ResNet50 top-1 acc (%) 95.187 97.703 97.739 97.813

Table 4 Ablation performance on SID19 with CBAM layer and dif-

ferent MSL regularizer strategies alternatively employed on ResNet-

50 with SKA module

Method top-1 acc (%)

w/o CBAM layer w/ CBAM layer

w/o MSL 97.042 -

Pþ P4 96.985 97.117

P3 þ P4 97.476 97.611

P3 þ P 97.002 97.183

P3 þ P4;Pþ P4 97.538 97.646

P3 þ P4;P3 þ P 97.497 97.619

P3 þ P4;Pþ P4;P3 þ P 97.602 97.703
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and adaptive kernel selection mechanism, respectively.

However, our SKA-ResNet model embeds the multi-

branch SGE attentions into adaptive kernel selection

module, which outperforms SGE-ResNet and SK-ResNet

about 0.7%. Other mainstream methods based on attention

modules, such as SE-ResNet, BAM-ResNet, CBAM-

ResNet, can achieve an accuracy of around 96.6%, which is

lower than SGE-ResNet and SK-ResNet with a margin of

0.35%. In particular, our method has fewer parameters and

calculations compared with SE-ResNet and CBAM-

ResNet. Importantly, there is no great amount of parame-

ters and calculations are introduced in our proposed model

in contrast to other methods.

Comparison with Attention-based Methods for

FGVC In Table 7, we compare our SKA-ResNet to

attention-based methods for FGVC on SID19. All the

displayed models are weakly supervised and introduce

additional attention networks to learn the representation of

discriminative regions. The attribute column ‘‘1-Stage’’ in

table indicates that these methods can be trained and tested

end-to-end in only one stage. From the presented statistics,

our method achieves the state-of-the-art performance on

SID19, even though RA-CNN and NTS-Net employ

recurrent crops and multi-scale crops, respectively. MA-

CNN and MAMC attain a similar result around 96.8% due

to the introduction of multiple feature maps. However,

compared to our method, the classification performance is

reduced by around 0.9%. Focusing on one discriminative

region, RA-CNN obtains a better result than MA-CNN and

MAMC, but our SKA-ResNet can further obtain 0.8%

relative improvement. Furthermore, we can also observe

that our method achieves the best performance comparing

with other one-stage methods. More than anything, com-

pared with these attention-based methods introducing

additional attention networks, our method only introduces

few computational burdens and the number of parameters

with the best performance due to the lightweight attention

module and multi-scale regularizer.

Comparison with Other Methods for FGVC There

are other methods introduced for solving FGVC, such as

high-order statistics learning and multi-scale feature rela-

tionship learning. As is shown in Table 8, non-attention-

based methods for FGVC are implemented on SID19. For a

Fig. 6 Top-1 error curves on SID19 based on ResNet50, SGE-

ResNet50, SK-ResNet50 and SKA-ResNet50

Table 5 Comparing our SKA-ResNet50 with ResNet50, SGE-

ResNet50 and SK-ResNet50 on SID19

Method Param. GFLOPS top-1 acc (%)

ResNet50 [12] 25.56M 4.122 95.014

SGE-ResNet50 [21] 25.56M 4.127 96.203

SK-ResNet50 [22] 26.15M 4.185 96.197

SKA-ResNet50(w/o MSL) 26.15M 4.195 97.042

Table 6 Experimental results on SID19. All state-of-the-art methods

with lightweight attention modules are displayed

Model Param. GFLOPS top-1 acc (%)

ResNet [12] 25.56M 4.122 95.621

SE-ResNet [13] 28.09M 4.130 96.607

BAM-ResNet [32] 25.92M 4.205 96.622

CBAM-ResNet [42] 28.09M 4.139 96.618

SK-ResNet [22] 26.15M 4.185 96.947

SGE-ResNet [21] 25.56M 4.127 96.913

SKA-ResNet(ours) 26.15M 4.195 97.703

That all these methods are implemented with the proposed multi-scale

regularizer

Table 7 Experimental results based on specific attention-based

methods for FGVC

Method Backbone 1-Stage top-1 acc (%)

FCAN [28] ResNet50 U 97.227

RA-CNN [9] VGG-19 96.932

MA-CNN [48] VGG-19 U 96.859

MAMC [38] ResNet50 U 96.883

DT-RAM [23] ResNet50 96.765

DFL-CNN [41] ResNet50 U 97.197

NTS-Net [44] ResNet50 U 97.314

SKA-ResNet(ours) ResNet50 U 97.703

The third column indicates whether the method is trained and tested in

one stage or not
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fair comparison, all of the displayed models possess the

same unified ResNet50 as the backbone. Especially, we

also implement the bilinear pooling and cross-X learning

on VGG-D and SENet, respectively. From Table 8, we

observe that iSQRT-COV, a high order statistic method

based on bilinear pooling and compact bilinear pooling,

achieves an accuracy of 97.185%, which outperforms the

two methods by about 0.5%. As to multi-scale feature

relationship learning, two models based on cross-X learn-

ing achieve a close performance around 97.2%, decreasing

by 0.5% of our method. It is concluded that all of the

methods in Table 8 hold lower accuracy than the proposed

method. The improvement indicates the effectiveness of

the two main components of SKA-ResNet.

5.4 Comparison with state-of-the-art on FGVC
datasets

The comparison results on four challenging FGVC datasets

including CUB-200-2011 (Birds), Stanford Cars (Cars),

Stanford Dogs (Dogs) and FGVC Aircraft (Aircraft) are

reported in Table 9. Considering that we do not use any

bounding box/part annotations in all our experiments, some

of the compared approaches depending on bounding

box/part annotations are not presented in parentheses for

direct comparisons. From Table 9, we can see that our

approach achieves state-of-the-art or comparable results on

four datasets. In particular, we obtain the best performance

in terms of accuracy (as highlighed by the bold values in

Table 9 on CUB-200-2011, Stanford Cars, Stanford Dogs.

Meanwhile, the result of our method on Aircraft is com-

parable with the state-of-the-art methods.

Experimental results are grouped into three parts in

Table 9. As a strong baseline, the results of ResNet-50 by

itself are shown in the first part, while our SKA-ResNet

outperforms it on all datasets. The results of a certain

number of attention-based methods are presented in the

second part. Compared with these approaches focusing on

constructing complex attention networks for discriminative

regions, our approach embeds a lightweight adaptive kernel

selection module with SGE attentions into the residual

blocks to strengthen the intermediate feature maps. It is

clearly summarized that we achieve state-of-the-art per-

formance on four datasets, and it is worth noting that our

approach does not introduce too many parameters and

calculations. Furthermore, we report the results of other

FGVC methods in the third part. We find that the perfor-

mance of our approach outperforms that of iSQRT-COV

and cross-X learning, which are state-of-the-art feature

relationship learning methods. However, the optimization

of our method is much easier due to the embedding SKA

module in the feature extractor.

5.5 Network visualization

Fig. 7 depicts the resized activation maps of six images

from SID19 (including Elbow hemostatic forceps1, Elbow

hemostatic forceps2, Needle holder, Integrated tissue

scissors, Straight surgical scissors1 and Straight surgical

scissors2) based on four different models including

ResNet50, SGE-ResNet50, SK-ResNet50 and SKA-

ResNet50. The activation map of a certain layer usually

strongly emphasizes discriminative regions of the input

image. It is intuitively understood that how the network

works in a certain layer by observing the highlighted

regions in the activation map. We obtain activation maps

by using the same method [49]. As the probability for

target class, the softmax scores are displayed below the

corresponding activation maps for the qualitative analysis.

From Fig. 7, we can obviously observe that SKA-

ResNet50 covers more complete object regions than the

Table 8 Experimental results based on other methods for FGVC

Method Backbone Top-1 acc (%)

VGG-D 94.978

Bilinear Pooling [25] ResNet50 96.574

Compact Bilinear Pooling [10] ResNet50 96.697

iSQRT-COV [20] ResNet50 97.185

ResNet50 97.220

Cross-X [29] SENet 97.213

SGENeXt(ours) ResNet50 97.703

The displayed methods include high-order statistics learning and

multi-scale feature relationship learning

Table 9 Comparison of our approach to recent results on four stan-

dard FGVC datasets: CUB-200-2011, Stanford Cars, Stanford Dogs

and FGVC-Aircraft

Method Accuracy(%)

Birds Cars Dogs Aircraft

ResNet-50 [12] 84.5 92.9 88.1 90.3

FCAN [28] 84.7 93.1 88.9 –

RA-CNN [9] 85.3 92.5 87.3 88.2

MA-CNN [48] 86.5 92.8 – 89.9

MAMC [38] 86.2 93.0 84.8 –

DFL-CNN [41] 87.4 93.1 – 91.7

NTS-Net [44] 87.5 93.9 – 91.4

B-CNN [25] 84.1 91.3 – 84.1

iSQRT-COV [20] 88.1 92.8 – 90.0

Cross-X [29] 87.7 94.6 88.9 92.6

SKA-ResNet(ours) 88.3 94.7 89.1 92.6
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other three models. Meanwhile, the discriminative regions

in activation maps based on SKA-ResNet50 are even

brighter. In the aspect of softmax scores, SKA-ResNet50

takes a more precise probability than other networks, which

is harmonious with the activation maps.

6 Conclusion

In this paper, we take a series of research works on surgical

instrument image classification. Firstly, the work for sur-

gical instrument image classification is proposed to assist

medical staff with the inventory work of medical

instrument under the background of reducing the risk of

surgical instrument loss after surgery. Secondly, we collect

the first surgical instrument dataset called SID19 based on

the three most common surgeries to support the research.

More importantly, we propose a novel attention-based

model called SKA-ResNet with lightweight SKA modules

to strengthen informative feature maps of discriminative

regions and a multi-scale regularizer to exploit the rela-

tionships between different feature maps. And a myriad of

state-of-the-art classification models are implemented on

the proposed dataset and four challenging FGVC datasets.

Experimental results show that our approach achieves

state-of-the-art performance, which is enough to be the

Input 
image

ResNet50

SK-
ResNet50

SGE-
ResNet50

SKA-
ResNet50

P=0.98591

P=0.98840
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P=0.81504
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P=0.49499
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Elbow hemostatic 
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Elbow hemostatic 
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scissors
Straight tip surgical 

scissors1
Straight tip surgical 
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Fig. 7 Visualization results of ResNet50, SK-ResNet50, SGE-

ResNet50 and SKA-ResNet50. The activation map is calculated for

the last convolutional outputs. The ground-truth label is shown on the

top of each input image and P denotes the softmax score of each

network for the ground-truth class
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theoretical basis for inventory work. Ablation studies fur-

ther prove the effectiveness of the components in SKA-

ResNet.

In the future work, it is planned to be processed into the

object detection task of surgical instruments when solving

the inventory work of surgical instruments. Specifically,

firstly, object annotation is performed on the existing sur-

gical instrument dataset and combined with the fine-

grained image classification algorithm proposed in this

paper and object detection algorithm, the object detection

of single object image is initially realized. Then, the object

detection task of multiple similar surgical instruments can

be realized step by step, which further serves the inventory

work of surgical instruments.
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