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ABSTRACT

T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the 
epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-
17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing 
of injured tissues. Despite their protective function, type17 lymphocytes are also responsible 
for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and 
colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms 
could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic 
inflammatory disorders and the prevention of cancer. In this review, we discuss the current 
understanding of the development and function of type17 immune cells at the intestinal 
barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier 
homeostasis and disease etiology.
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INTRODUCTION

Mammalian mucosal barriers of the intestine interact with the external environment and 
consequently are exposed to potential immune modulators, including microbiota and dietary 
antigens (Ags) (1-6). As such, maintaining the barrier's homeostasis requires a precise 
balance of immune surveillance and tolerance (1). Due to large communities of commensal 
microbes found in the gut, the intestinal barrier requires continual surveillance by immune 
cells (1-9). Along with their canonical protective activities, resident and recruited immune 
cells provide instructional signals to intestinal barrier compartments to stimulate healing 
(3,4,10,11) (Fig. 1 left). In contrast, uncontrolled immune responses caused by gut microbiota 
disturbance can lead to life-threatening chronic inflammatory disorders such as inflammatory 
bowel disease (IBD) (2,12) and colitis-associated cancer (CAC) (3,13,14) (Fig. 1 middle and 
right). Therefore, clarity around the interaction between immune cells and intestinal microbes, 
in addition to non-immune parenchymal compartments of the intestinal barrier, will contribute 
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to our understanding of tissue homeostasis, which may lead to improved therapeutic strategies 
for infections, wound healing, and inflammatory diseases.

Type17 immunity, also known as type3 immunity, encompasses both innate and adaptive 
immune cells which are mediated by the transcription factor RORγt, and defined by the 
expression of cytokines IL-17A, IL-17F, and IL-22 (4-6). At epithelial barrier sites, the type17 
signature cytokines stimulate antimicrobial immune responses and enhance wound healing 
and tissue regeneration following bacterial and fungal infections, particularly those caused by 
Klebsiella pneumoniae (15,16) and Candida albicans (6,17,18) (Fig. 1 left). In human, mutations in the 
IL-17 signaling (IL17RA, IL17RC, ACT1, IL17F) and type17 master-regulating (signal transducer 
and activator of transcription 3 (STAT3), RAR Related Orphan Receptor C (RORC) genes have 
been linked to chronic mucocutaneous candidiasis (17,18). IL-17A signaling in Lgr5+ intestinal 
stem cells (ISCs) promotes secretory cell lineage commitment, such as Paneth, tuft, goblet, 
and enteroendocrine cell, by expression of transcription factor ATOH1 during homeostasis 
and injury responses (19) (Fig. 1 left). These findings indicate that type17 immunity plays a 
dominantly protective role that maintains the integrity of the intestinal barrier. On the other 
hand, type17 immune cells are also important drivers of a variety of chronic inflammatory 
disorders, including autoimmune diseases and IBD, and have been linked to inflammation 
associated with epithelial carcinogenesis (20-22) (Fig. 1 middle and right). The increased entry 
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Figure 1. Dynamic interactions between the microbes and type17 immune cells at intestinal barrier in homeostasis and illness. Gut microorganisms have a 
critical role in the formation and function of type17 immune cells in the lamina propria. Colonization with SFB stimulates Th17 cell accumulation in the ileum via 
IEC-production of SAAs, which can induce Th17 differentiation by acting on APCs or directly influence Th17 effector functions. Moreover, microbial antigens and 
metabolites participate into regulation of type17 immunity, which is illustrated detailed on Fig. 4. Type17 immune cells secrete cytokines, including IL-22 which 
stimulates antimicrobial responses via intestinal epithelium AMPs production and immune effector functions. In addition, IL-17A/F mediated crosstalk between 
the immune cells and ISCs modulates the secretory cell lineage commitment and mucosal integrity. IL-17A/F promotes differentiation of ISCs into Tuft, goblet 
and endocrine cells by increasing ATOH1 expression. These actions of type17 cytokines contribute to immune defense against pathogenic microorganisms, 
such as Klebsiella pneumoniae and Candida albicans. On the other hand, when bacteria such as Citrobacter rodentium or Helicobacter hepaticus induce 
tissue inflammation by generating a pro-inflammatory Th17 response, this is referred to as microbial dysbiosis or immunological dysregulation. By secreting 
chemokines and proinflammatory cytokines, pathogenic Th17 cells recruit neutrophils and inflammatory monocytes to the inflamed intestinal lamina propria 
in response to IL-23 and IL-1β signaling. In genetically predisposed hosts, dysbiosis of gut microbiota and bacterial biofilm formation lead to intestinal 
inflammation, which is associated with cancer progression. The signaling of IL-17/IL-17RA promotes carcinogenesis by inducing the growth and survival of 
transformed IEC deficient Adenomatous polyposis coli (APC) gene expression.
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of bacterial components into host epithelium and intestinal lamina propria can contribute to 
the formation of a tumor-promoting environment by activating type17 immune responses and 
promoting the tumorigenesis of colorectal cancer (21,23) (Fig. 1 right).

The dynamic interaction between commensal microbiota and the mammalian immune 
system manifests in both homeostasis and disease (3-6,24,25). Specific species of the 
intestinal microbiota are essential for the formation and maturation of both innate and 
adaptive type17 immune cells, whereas type17 immunity orchestrates the maintenance of 
fundamental host-microbe symbiosis characteristics (24,25). In genetically susceptible hosts, 
perturbations in microbiota-immune interactions under specific environmental conditions 
result in the pathogenesis of a variety of type17-mediated disorders (4,6) (Fig. 1). In this 
review, we illustrate and discuss the current knowledge and key concepts that critically 
impact the microbiome's role in the development and function of the type17 immune system 
in intestinal lamina propria. We review the existing mechanistic dissections of complex 
microbiome-immune interactions within the intestinal barrier during homeostatic and 
diseased states. Additionally, we discuss the challenges and opportunities associated with 
studying disease pathogenesis of IBD and CAC and developing new type17-related therapeutic 
interventions using microbiome-targeted strategies.

MICROBIOME-MEDIATED TYPE17 IMMUNE RESPONSE

Numerous subsequent studies in mice (26-31) have shown that intestinal microbiota and 
the ability of the host to recognize and respond to its constituents are important in the 
generation and optimal function of local immune cells, especially Th17 cells and peripheral 
regulatory T cells. Intriguingly, microflora from IBD patients can trigger inflammatory Th17 
responses and predispose mice to chronic colitis (32,33), suggesting that these bacteria may 
contribute to the pathogenic T cell responses observed in IBD patients. In addition to the 
extensively researched Th17 cells, type17 immunity also consists of lymphocytes with innate-
like properties (4-6). The Innate-like and unconventional type17 lymphocytes, including 
group 3 innate lymphoid cells (ILC3), γδ T cells, intraepithelial lymphocytes (IELs), invariant 
natural killer T (iNKT) cells, and mucosal-associated invariant T (MAIT) cells, seed the 
intestinal barrier, and play a role in the long-term maintenance of homeostatic responses to 
microbiota (4-6) (Fig. 1). These unconventional type17 lymphocytes recognize entire groups 
of microbes simultaneously by detecting microbe-derived lipid and glycolipid Ags as well as 
microbial metabolic intermediates through monomorphic Ag-presenting molecules such as 
MHC class I–related protein 1 (MR1) and CD1d (34-36). Indeed, the capacity of innate-like 
type17 lymphocytes to respond to non-canonical Ags originating from a broad proportion of 
the microbiota makes them potent regulators of tissue physiology, such as intestinal barrier 
protection, wound healing, and the augmentation of conventional T cell-mediated responses 
(4-6). The following section summarizes our current understanding of microbiota immune 
recognition by type17 lymphocytes with a particular emphasis on the ontogeny, specificity, 
and function of commensal-specific responses at barrier sites.

Context-dependent Th17 responses to the microbiota
Two functionally distinct populations of Th17 cells develop differently in response to context-
dependent environmental cues: tissue-resident, homeostatic Th17 cells that contribute to gut 
homeostasis (5,6), whereas proinflammatory Th17 cells are involved in the development of a 
variety of inflammatory disorders (37-39) (Figs. 1 and 2).
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The microbiota plays a significant role in regulating the differentiation of homeostatic and 
pathogenic Th17 cells in the gut. Of this microbiota, the most studied segmented filamentous 
bacteria (SFB) attach to epithelial cells in the terminal ileum and induce naïve Ag-specific CD4+ 
T cells in the draining mesenteric lymph nodes (mLN) to increase transcription factor RORγt 
expression and differentiate into Th17 cells (6,26,27,32,40,41) (Fig. 2 left). These Th17 cells then 
migrate to the intestinal lamina propria, where they perform homeostatic functions, such as 
wound healing (42-44). An SFB-triggered circuit in which ILC3 secretion of IL-22 is critical for 
local epithelial production of serum amyloid A (SAA)1 and SAA2, which act directly on poised 
Th17 cells to amplify effector cytokine production (42) (Fig. 2 left). In the SFB-colonized ileum 
lamina propria, CD11c+ cells stimulate SFB-specific Th17 cells via MHCII loaded with bacterial 
Ags (32,40). Commensal-induced Th17 cells strengthen the epithelial barrier by increasing the 
expression of antimicrobial defensins, apical NADPH oxidase, and the transcytosis of secretory 
IgA, thereby enhancing the host’s protection against pathogens (45) (Figs. 1 and 2).

While SFB induces non-inflammatory and protective Th17 cells, enteric pathogens, such 
as Citrobacter rodentium (C. rodentium) (39), trigger pathogenic Th17 cell differentiation in 
inflammatory conditions, indicating that Th17 cell function is context-dependent (Fig. 2 
right). Contrary to conventional pathogens that cause disease in healthy hosts, emerging 
data suggest that microbial species associated with chronic inflammation are typically 
harmless and widely colonize in healthy persons (46). These types of resident pathogenic 
microorganisms, such as Helicobacter hepaticus (H. hepaticus) (46-49), Enterococcus faecalis (50,51), 
have been referred to as “pathobionts” (46) because their pathogenic function is “dual-faced” 
depending on an additional factor such as genetic susceptibility or environmental context 
of the host. Particularly, H. hepaticus has been causally linked to large-bowel inflammation in 
immunocompromised mice (e.g. IL-10/IL-10R-knockout), but it induces no overt pathology 
in wild-type animals (47,52). At steady state, the majority of H. hepaticus-induced Th cells 
are RORγt+FOXP3+ peripheral Treg (pTreg), which are necessary for gut homeostasis 
maintenance (47) (Fig. 2 left). In contrast, under inflammatory conditions and/or Treg 
dysfunctions, T cells specific for H. hepaticus differentiate into pathogenic Th17 cells with 
features including T-BET expression together with RORγt and pro-inflammatory cytokines 
IFN-γ and IL-17 (47) (Fig. 2 right). Proinflammatory cytokines, IL-1β, IL-23 and SAAs signal 
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Figure 2. Context-dependent regulation of the Th17 plasticity during homeostasis and disease. During homeostasis, SFB colonization in the small intestine 
promotes homeostatic Th17 cell differentiation, whereas H. hepaticus induces RORγt+ Treg, expressing c-MAF, and limiting Th17 cells during homeostasis. The 
neuropeptide VIP released from enteric neurons following food intake induces IL-22 production in ILC3s, protecting the intestinal epithelial barrier integrity by 
promoting fucosylation and AMP production in IECs. Bacterial colonization in mice with immune dysfunction such as IL-10/IL-10 receptor loss or Treg dysfunction 
(MAF-deficient), leads to the development of a pathogenic Th17 phenotype, secreting the pro-inflammatory cytokines, GM-CSF and IFN-γ, which are induced by 
H. hepaticus through SAAs, IL-23R signaling, as well as IL-1R signaling.
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into T cells promoting their proliferation and accumulation in the colon and favor the 
development of the IL-17A+IFN-γ+ pathogenic Th17 cells while inhibiting FOXP3 expression 
(38,48,53) (Fig. 2 right). Additionally, the transcription factor c-MAF is necessary for pTreg 
differentiation (54) (Fig. 2). c-MAF affects both the differentiation and function of CD4+ T 
cells in distinct T cell subtypes, including the regulation of IL-10 production in various Th 
cell populations and repression of IL-22 in Th17 cells, via a TGF-β-dependent mechanism 
involving direct binding of c-MAF to the IL-22 promoter (55). During colonization with H. 
hepaticus, the homeostatic state is maintained by RORγt+ Treg, which mediate host tolerance 
to bacteria and inhibit pro-inflammatory Th17 cells in a c-MAF-dependent manner, however 
pTreg-specific deletion of c-MAF leads to impaired intestinal Treg differentiation and 
function, including diminished IL-10 production and promotes differentiation of bacteria-
specific specific pathogenic Th17 cells and spontaneous colitis (Fig. 2 right) (47).

Despite extensive in vitro and in vivo research (37,56,57), however, the local differentiation 
cues that distinguish homeostatic type17 functions, such as those that maintain intestinal 
epithelial integrity, from pathogenic type17 functions associated with the pathogenesis 
of chronic inflammatory diseases are not fully understood. For the development of more 
effective treatments, a deeper understanding of the upstream regulators that initiate cell 
type-specific and context-dependent pathogenic Th17 programs will be necessary.

ILC3 cells
ILC3 cells are Ag-independent innate-like type17 cells that express RORγt and contribute 
to maintaining intestinal homeostasis using a variety of mechanisms (57-60). Unlike the 
adaptive lymphocytes, which are activated in lymph nodes following Ag recognition and 
migrate to the inflammation site, activation of the tissue-resident ILC3s occurs directly in the 
intestine, mediated by inflammatory cytokines (58-61). ILC3s are a heterogeneous population 
that may develop into either the lymphoid tissue inducer (LTi) lineage or ILC3 cells that 
express the natural cytotoxic receptor (62). By stimulating intestinal epithelial cells (IECs) 
and regulating Th17 cell function, ILC3 cells play a key role in the control of host-microbiota 
interactions (63) (Figs. 1 and 2). The relationship between the intestinal microbiota and ILC3 
is bidirectional; gut microbes and microbial metabolites regulate IL-22 production in ILC3s, 
while ILC3-secreted IL-22 acts on the microbiota both directly and indirectly through IEC 
regulation (61) (Figs. 1 and 2). ILC3-produced IL-22 induces antimicrobial peptide (AMP) 
production in IECs (61) and play a prominent role in epithelial fucosylation, which is required 
for the establishment of an environmental niche for commensal bacteria in the small 
intestine (64) (Figs. 1 and 2). ILC3s interact with non-immune parenchymal cells as well as 
gut microorganisms to control IL-22 production (65). The neuropeptide vasoactive intestinal 
peptide (VIP), which is generated by enteric neurons, is triggered by food intake and aids in 
nutrient absorption and mounts immunological responses by suppressing IL-22 production 
in ILC3s in a VIP receptor VIPR2-dependent manner, increasing host vulnerability to C. 
rodentium infection (65) (Fig. 2 left).

MAIT cells
MAIT cells are another unconventional subset of T cell that responds to vitamin B2 
derivatives such as ribityl-lumazines (7-hydoxy-6-methyl-8-d-ribityllumazine) and 
6-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), which are generated by 
bacteria delivered through MR1 (66) (Fig. 3-1). MAIT cells identify MHC class Ib protein MR1 
Ags through the invariant TCR (Vα19 Jα33 in mice and Vα7.2 Jα33 in humans) (35). The notion 
that the microbiota is critical for the formation and education of immune cells also pertains 
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to MAIT cells. MAIT cells are absent in animals deficient in microbiota, demonstrating that 
MAIT cell formation is dependent on commensal bacteria (2). Although the precise activities 
of these cells in host health and disease remain unclear, barrier-resident MAIT cells are 
RORγt+ and exhibit a type17 effector phenotype in mice (67). In response to local commensal 
sensing, skin MAIT cells produce IL-17A, which is IL-1 and IL-18 dependent (68) and promotes 
wound healing (69). MAIT cells provide resistance to various pathogen infections including 
Escherichia coli, Mycobacterium, Klebsiella, Francisella, and Legionella (70). MAIT cells also detect 
acute viral infections through IL-18, IL-15, and type I IFN sensing (71).

γδ T cells
γδ T cells, which are found between the intestinal epithelial cells as IELs, are the initial line 
of defense against enteric infections (72). γδ T cells are important early responders in a 
variety of infectious disease models, releasing cytokines such as IL-17 and IFN-γ (73). Certain 
commensals may increase the frequency of IL-17+IL-1R1+ T cells, therefore preventing disease 
(74). γδ T cells generate IL-17A, which protects mice against Clostridium difficile infection (75). 
Vγ9Vδ2+ and Vγ9Vδ1+ T cell subsets in humans recognize lipids and phosphoantigens such 
as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a microbial precursor of 
isopentenyl pyrophosphate (76) (Fig. 3-1). Microbiota deficiency has no discernible influence 
on the formation or number of intestinal IELs (72). However, microbiota depletion results 
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Figure 3. Antigen-dependent regulation of Type17 immune response. 1) Antigen-driven activation of unconventional T cells. NKT cells and MAIT cells recognize 
bacterial antigens loaded on the Cd1d molecule and MR1 molecule, respectively, which are expressed by APCs. Also, γδ T cells recognize the microbial antigens 
presented on APCs via γδ TCR. 2) Antigen presentation by immune populations. Professional antigen presenting cells, such as dendritic cells and macrophages, 
modulate T cell responses to microbiota through MHCII signaling. ILC3 cells also express MHCII molecules and directly interact with T cells. Antigen presentation 
by ILC3s is essential for Treg cell differentiation in response to Helicobacter hepaticus colonization in a CCR7- and αV integrin (ITGAV)-dependent manner. 3) 
Antigen presentation by IECs. Intestinal epithelial expression of MHCII regulates the crosstalk between epithelial cells and CD4+ T cells. The contact between 
ISCs and Tregs promotes self-renewal of stem cells, whereas ISC-Th17 interactions induce differentiation. 4) MHCII transfer from IECs to MNPs. Epithelial MHCII 
might induce an immune response against microbes through MHCII molecule transfer from IECs to myeloid cells via exosomes.
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in altered patterns of IEL localization along the crypt-villus axis, with a considerable shift 
toward the small intestine crypts due to their high mobility (72). Additionally, regenerating 
islet-derived protein type 3 (REGIII) synthesis is elevated in small intestine IELs in response 
to bacterial colonization and in colon-resident IELs following colonic injury caused by 
dextran sulfate sodium (DSS) (77,78).

iNKT cells
iNKT cells are a distinct type of unconventional T cell that recognize microbial and host-
derived glycolipids through the MHC class Ib protein CD1d and express an invariant chain 
in conjunction with a limited number of TCR chains (34) (Fig. 3-1). When activated, iNKT 
cells rapidly release cytokines and in mice, subsets equivalent to Th1, Th2, and Th17 cells are 
identified based on their lineage-specific cytokine production (79); however, these features 
are less apparent in humans (79). Despite recent studies recognizing reciprocal crosstalk 
between iNKT cells and the microbiota (80), the processes that lead to the differentiation 
of iNKT cells, particularly those at barrier sites, remain poorly understood. Germ-free (GF) 
mice exhibit a greater number of immature, hyporesponsive iNKTs in the lamina propria and 
epithelium of the small intestine and colon (81). Increased CXCL16 chemokine production 
in the intestines of GF mice lead to increased iNKT cell accumulation compared to SPF 
animals (81). Additionally, the impact of altered gut microbiota on iNKT cell-dependent 
inflammation at mucosal surfaces has been reported in research employing GF mice that 
show CD1d-dependent severe tissue damage and inflammation in IBD (81).

MICROBIAL AG-SPECIFIC PRIMING OF TYPE17 IMMUNITY

Intestinal Ag presenting cells (APCs), which are required to initiate CD4+ T cell responses, 
are composed of a diverse population of subsets that are defined by cell surface features, 
transcription factor requirements, ontogeny, and function (82). Although APC subsets are 
associated with specific functions, the published data are confusing and these interactions are 
still debated (83-85). This is due to technical challenges associated with identifying all APC 
subsets in a variety of conditions, most notably during inflammation when multiple subsets 
change their cell surface markers and alternative subsets form (86). Although it is uncertain 
which APC subset(s) preferentially trigger or sustain intestinal Th17 or Treg responses, a more 
comprehensive understanding of this interaction will significantly impact IBD treatment. Recent 
research has shown that non-traditional APCs are critical regulators of mucosal homeostasis. 
The expression of MHCII by ILC3 is thought to be required for the clonal eradication of 
effector Th17 cells (87,88) (Fig. 3-2). Additionally, ISCs express MHCII and function as non-
conventional APCs, and it is hypothesized that interactions with Th cells govern ISC renewal and 
differentiation in order to maintain the intestinal barrier integrity (89) (Fig. 3-3).

Microbial Ag presentation by immune populations
APCs are a heterogeneous group of immune cells that mediate the cellular immune 
response by processing and presenting Ags for recognition by lymphocytes. Bacterial 
activation of Th17 cells in the gut is dependent on intestinal dendritic cells (DCs) presenting 
commensal bacterial Ags, such as from SFB through MHCII (90,91). During inflammation, 
the inflammatory DCs, differentiated from Ly6Chi monocytes, are recruited to the site of 
inflammation where they present Ag to both CD4+ and CD8+ T cells (92). Inflammatory DCs 
promote the development of naive CD4+ T cells into Th17 cells via activation of STAT3 by 
IL6R signaling, which induces expression of the lineage-specific transcription factor RORγt 
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(70-72) (Fig. 3-2). On the other hand, ILC3s restrict the differentiation of Th17 cells by serving 
as unconventional APCs by directly triggering cell death of activated commensal bacteria-
specific T lymphocytes (63) (Fig. 3-2). Unsurprisingly, deletion of MHCII on ILC3s leads to 
low-grade systemic inflammation as a consequence of CD4+ T cell activation and spontaneous 
IBD formation due to elevated amounts of IL-17, IFN-γ, and TNF-α producing CD4+ T cells in 
the colon (88,93). ILC3s are also required for microbiota-specific pTreg induction, carried out 
by the presentation of MHCII Ags, the chemokine receptor CCR7, and αv integrin (ITGAV) that 
regulates TGF-β activation (Fig. 3-2) (94). Additionally, ILC3 expression of MHCII negatively 
impact the interaction between T follicular helper (TFH) cells and B cells, resulting in decreased 
mucosal IgA production in the colon and associated effects on the microbiota (95).

Ag presentation by IECs: MHCII linking IEC to mucosal immunity
MHCII expression on IECs was first described more than two decades ago (98), but its 
potential role in mucosal immunity has only recently drawn attention. However, the precise 
function of epithelial MHCII is still unknown. A recent study revealed that ISCs express 
MHCII and function as non-conventional APCs, and their interactions with Th cells control 
ISC renewal and differentiation, thereby shaping the gut microenvironment homeostasis 
(89) (Fig. 3-3). Treg and their major cytokine IL-10 contribute to the maintenance of the 
small intestinal LGR5+ ISC niche, whereas Treg deficiency leads to aberrant epithelial cell 
differentiation, resulting in a decreased LGR5+ ISC pool and an accumulation of developed 
cells (89) (Fig. 3-3). IEC-specific MHCII-deficient mice exhibit worse disease outcomes 
following T-cell transfer or chemical (DSS)-induced colitis, as well as greater susceptibility 
to enteric infection, while effector T-cell activation in mesenteric lymph nodes (mLNs) is 
unaffected (100). Moreover, mice with an IEC-intrinsic deletion of MHCII are healthy, but 
have reduced amounts of microbial-bound IgA, regulatory T cells (Tregs), and immunological 
repertoire selection due to altered interindividual microbiota diversity (101). Microbial 
adhesion-triggered endocytosis is another mechanism by which commensal bacteria affect 
the development and function of host T cells. This indicates that IECs acquire antigens from 
commensal bacteria by direct contact in order to generate T cell responses to the resident 
microbiota (102). Although this strategy is adequate to initiate a CD4+ T cell response and 
commensal-specific homeostatic Th17 cell development, the mechanisms by which these 
Ags are processed and delivered to immune cells remain unknown (102). IECs can also 
secrete exosomes containing MHCII molecules, which intestinal mononuclear phagocytes 
(MNPs) can obtain and use to mediate adaptive responses to microbial Ags (101) (Fig. 3-4). 
Furthermore, Graft-versus-host disease model studies demonstrate that CD4+ and CD8+ T 
lymphocytes inhibit bone marrow transplantation-induced intestinal injury by targeting 
ISCs expressing MHCI and MHCII (99). Thus, MHCII on intestinal epithelium, in addition 
to conventional and unconventional APC immune compartments, is essential for limiting 
adaptive responses to gut microbial antigens and sustaining intestinal homeostasis.

REGULATION OF TYPE17 IMMUNITY BY NON-ANTIGENIC 
MICROBIOTA-DERIVED MOLECULES
Intestinal microbes drive differentiation of effector T cells not only by supplying Ags, but 
also by secreting metabolites and acting on epithelial cells in Ag-independent manner. In 
this section, we will cover the interplays between intestinal microorganisms and the host 
mediated by bacterial metabolites and host cytokine signals, which contribute to both 
homeostasis and inflammation in the gut via immune cell modulation.
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Secondary bile acids (BAs)
BAs, a byproduct of cholesterol metabolism, are synthesized in the liver, secreted into the 
duodenum and flows to terminal ileum where most primary bile acids are reabsorbed. The 
remainder travel to the large intestine, in which they are metabolized by commensal bacteria to 
form secondary bile acids with modified chemical structures (103). Secondary BAs are well-
known for their anti-inflammatory effects on CD4+ T cells in the intestine. Inhibiting secondary 
BA production in bacteria causes a drop in Th17 levels, whereas secondary BA therapy 
activates RORγt+FOXP3+ pTreg and reduces gastrointestinal inflammation (104) (Fig. 4). Both 
isoalloLCA and 3-oxoLCA, which are derivatives of lithocholic acid (LCA), are T cell regulators 
inhibiting the differentiation of Th17 cells while promoting the differentiation of Treg cells 
(105) (Fig. 4). 3-OxoLCA inhibits the differentiation of Th17 cells by directly binding to the 
key transcription factor RORγt, whereas isoalloLCA promotes the differentiation of Treg cells 
via the production of mitochondrial ROS (mitoROS), resulting in the upregulation of FOXP3 
(105) (Fig. 4). The isoalloLCA-mediated enhancement of Treg cell differentiation requires an 
intronic Foxp3 enhancer, the conserved noncoding sequence3 (105). In addition, the nuclear 
hormone receptor NR4A1 is required for the isoalloLCA mediated Treg induction (106). 
Moreover, Bacteroidetes is the intestinal bacterial phylum capable of metabolizing 3-oxoLCA 
to isoalloLCA, which implies that a specific commensal bacterium can modulate the immune 
system by changing host metabolites (106).
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Figure 4. Regulation of type17 immunity by non-antigenic molecules. Bacterial metabolites shape intestinal immune responses using different mechanisms. 
Secondary bile acids regulate Th17/Treg balance by enhancing Treg differentiation and reducing Th17 cell differentiation. Among SCFAs, the most well-studied 
butyrate promotes Treg differentiation. Propionate suppresses IL-17- and IL-22-producing γδ T cells by inhibiting histone deacetylase. The SCFAs, propionate 
and acetate, are recognized by the colonic ILC3s through G protein-coupled receptor FFAR2 and these metabolites induce IL-22 production and proliferation 
of ILC3s, respectively. Pentanoate also acts on CD4+ T cells through HDAC-inhibition. Although it inhibits IL-17, IL-10 production in Th17 cells is induced by this 
SCFA. Dietary tryptophan is metabolized by host cells or microbes: a) The kynurenine pathway in IECs and immune cells, b) the serotonin pathway mediated 
by TPH1 in enterochromaffin cells and c) Direct conversion of tryptophan to smaller molecules, including AHR ligands by gut microbiota. Trytophan metabolites 
and AHR ligands may provoke distinct type17 cell subsets, including Tregs, Th17 cells, or ILC3s through AHR. Th17 cells transdifferentiate into Tr1 cells producing 
IL-10. This process is induced by TGF-β1 signaling and depends on AHR activity. IECs act as gatekeepers of AHR ligand supplies to the host by CYP1A1 expression. 
Dysregulated production of CYP1A1 results in Ahr-deficient state, which leads to loss of AHR-dependent ILC3 and Th17 cells and increased susceptibility to enteric 
infection. Moreover, AHR upregulates GPR15 expression, which is positively regulated by FOXP3 and negatively regulated by RORγt in an AHR-dependent manner. 
On the other hand, SAAs produced by host cells in response to microbial stimuli, induce IL-6 and IL-23 production in CD11c+ cells, which promote Th17 cell 
differentiation. SFB stimulates IL-23 secretion from APCs, acting on ILC3 cells to upregulate the IEC-derived SAAs via IL-22 signaling. Vitamin A can also induce 
SAA-production in IECs. SAAs deliver retinol to intestinal myeloid cells via direct interaction with LRP1. The transfer of retinol promotes vitamin A-dependent 
adaptive immunity, inducing homing of both T cells and B cells to the intestine.
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Short chain fatty acids (SCFAs)
SCFAs, such as formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), and 
valeric acid (C5), can induce immune responses or suppress inflammation through a variety 
of mechanisms, including histone deacetylase (HDAC) inhibition, Acetyl-CoA production, 
metabolic integration, and G-protein-coupled receptor (GPR) signaling (107) (Fig. 4). 
SCFAs promote T cell responses depending on the cytokine milieu or host circumstances 
(107). While SCFAs induce immunological tolerance via IL-10 in the steady state, they boost 
effector T cells during immune system activation against infection (107) (Fig. 4). Butyrate, 
which has been recognized for the favorable anti-inflammatory properties, produces 
functional Treg in the colon using a T-cell intrinsic epigenetic mechanism (108). The 
pentanoate alters the metabolism of CD4+ effector T lymphocytes and B cells, and increases 
IL-10 production, which is independent of Treg (109). Similar to butyrate, which ameliorates 
colitis by acting on HDAC1 in Th17 cells, pentanoate suppresses IL-17A production 
by inhibiting HDAC in CD4+ T cells (110) (Fig. 4). SCFAs also suppress the intestinal 
Th17 development upon SFB colonization of GF mice (110). Another SCFA metabolite, 
propionate, is a key regulator of IL-17 and IL-22 expression in γδ T cells of the lamina propria 
and represses IL-17-producing γδ T cells through suppression of HDAC in the caecum and 
colon (111). Moreover, propionate and acetate are essential for ILC3 homeostasis and IL-22 
production in the colon, respectively. Both metabolites act through G protein-coupled 
receptor free fatty acid receptor 2, which mainly regulates CCR6+ ILC3s through activation of 
AKT and STAT3 signaling pathways (112).

Tryptophan (Trp) metabolites and aryl hydrocarbon receptor (AHR) ligands
Trp is an essential amino acid degraded by gut microbes, intestinal epithelial, and 
immune cells across three main pathways: a) the kynurenine pathway in both IECs and 
immune cells, b) the serotonin (5-HT) pathway via Trp hydroxylase 1 (TPH1) in IECs called 
enterochromaffin, and c) direct conversion of Trp by gut microbes into smaller molecules, 
such as AHR ligands (113). The AHR, a transcription factor activated by small molecules 
derived from microbes, diet, and metabolism, contributes to immune homeostasis (114). 
AHR modulates the Treg/Th17 cell balance, and the direction of this AHR-dependent shift is 
mediated by the type of ligand that activates the AHR (115,116) (Fig. 4). A potent activator of 
AHR, 6-formylindolo[3,2-b]carbazole (FICZ), induces Th17 activation and IL-22 production 
(Fig. 4) (115). Inversely, the deletion of AHR prevents the localization of Th17 cells in the 
lamina propria and reduces the disease severity in a colitis mouse model (117). Moreover, 
AHR can mediate the cell plasticity of Th17 cells in the presence of TGF-β1, enhancing the 
transdifferentiation of Th17 cells to T regulatory type 1 cells (Tr1), which are IL-10 producers 
with immunosuppressive function independent of FOXP3 (118). Despite low levels of AHR 
detected in extraintestinal Treg, it is highly expressed in gut tissue-associated Treg (119). 
Supporting the functional role of AHR in intestinal homeostasis, the expression of FOXP3, 
the Treg lineage-defining transcription factor, is reduced in the absence of AHR, and an 
AHR agonist, dioxin, promotes Treg differentiation and depletes Th17 cells (115). Treg cell-
specific deletion of the AHR attenuates intestinal Treg (119). AHR mediates expression of an 
essential intestinal-homing gene, GPR15, an AHR-target gene in Treg and Th17 cells regulated 
positively by FOXP3 and negatively by RORγt in an AHR-dependent manner (120) (Fig. 4). In 
cases of AHR deficiency, reduced levels of GPR15 lead to defective intestinal-homing of Treg in 
the large intestine (120). Impaired AHR signaling attenuates ILC3, Th17 cells and IL-22 levels 
following AHR ligand-metabolizing enzyme, Cytochrome P450 Family 1 Subfamily A Member 
1 (CYP1A1), dysregulation in IECs, and causes increased disease susceptibility by infection 
with C. rodentium (121).
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Serum amyloid A (SAA)
SAAs comprise a family of acute-phase reactants that are abundantly produced during 
inflammation and often correlate with the severity of multiple Th17-associated chronic 
inflammatory disorders (38). In the intestine, colonization with SFB triggers SAA production, 
which in turn promotes Th17 cell differentiation directly, as well as indirectly by acting on 
dendritic cells of lamina propria (Figs. 2 and 4) (26). The epithelial expression of SAA1 and 
SAA2 is regulated by IL-23 and ILC3-derived IL-22 involving an immune circuit triggered by 
SFB (Figs. 2 and 4) (42). Recent research has shown that SAAs can substitute for TGF-β in 
the production of Th17 cells, but that they drive a distinct signaling pathway that results in 
a proinflammatory differentiation program (38,42) (Fig. 2). As a result, SAAs contribute in 
vivo to Th17-mediated pathophysiology, as demonstrated in chronic colitis and EAE in both 
gain- and loss-of-function models (38). In addition, SAAs support the H. hepaticus-driven 
colitis, inducing pathogenic features exemplified by T-BET expression during Th17 priming 
and sensitization of the T cells to cytokines essential for Th17-mediated autoimmune 
pathogenesis, such as IL-23 and IL-1β (38,42) (Fig. 2). It remains unclear what distinguishes 
the SAA-dependent properties associated with pathogenic versus homeostatic Th17 cells. 
It may be due to the milieu of T cell priming (e.g., lymph nodes draining a healthy small 
intestine versus an inflammatory large intestine), the presence of other cytokines, the 
concentration of SAAs encountered, or the cell types that make SAAs (122).

Vitamin A can also induce the SAA production in epithelial cells by retinoic acid-dependent 
activation of the transcription factor retinoic acid receptor β, which binds directly to SAA 
promoters (123) (Fig. 4). SAAs transfer retinol to intestinal myeloid cells that produce RA 
through low-density lipoprotein receptor-related protein 1 (LRP1) (Fig. 4) (124). Thus, SAA or 
myeloid cell-specific LRP1 deficiency causes impairments to vitamin A-mediated immunity, 
involving both B and T cell trafficking to gut IgA production (124). Although there is evidence 
suggesting that retinol and SAAs affect the Th17 cell function, it remains unclear whether 
these molecules influence the Th17 response through the LRP1 pathway.

DYSREGULATION OF HOST-MICROBIOTA INTERACTIONS

Defective host-bacteria interactions are associated with various intestinal diseases, including 
IBD and CAC (4,125). Recent advances in our understanding of the immunopathogenesis of 
IBD have revealed that dysbiosis and the resulting pathogenic type17 immunity may play a 
critical role in the etiology of IBD (33). This section discusses the relationship between the 
gut microbiota, type17 immunity and the pathophysiology of IBD and CAC. Additionally, we 
discuss treatment options for re-establishing a normal gut microbiota, including probiotics 
and fecal microbiota transplantation.

Inflammatory bowel disease (IBD)
IBD is a chronic inflammatory disorder in the gastrointestinal tract and manifests as either 
ulcerative colitis (UC) or Crohn’s disease (CD) (125). IBD is characterized by a changed gut 
microbial composition, accumulated intestine resident type17 immune cells, and elevated type17 
cytokine levels in inflammatory lesions of IBD patients and animal models of colitis (126,127).

Dysregulation of gut microbial composition and metabolites in IBD
Increased Proteobacteria and decreased Firmicutes species are associated with IBD (125) 
(Table 1). Levels of Faecalibacterium prausnitzii (F. prausnitzii), one of the most abundant 
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commensal bacteria belonging to Firmicutes phylum, are lower in both UC and CD (125,128) 
(Table 1). Mouse studies demonstrate that F. prausnitzii play an anti-inflammatory role in 
colitis through the regulation of Th17/Treg balance by inhibiting IL-6/STAT3/IL-17 pathway 
and inducing FOXP3 (110). Moreover, several Clostridium strains derived from humans 
promote FOXP3+ Treg via butyrate-production and induction of IL-10, TGF-β1, and inducible 
T cell costimulatory (ICOS), thereby suppressing mucosal inflammation in colitis mouse 
models (129). A significant decrease in Roseburia hominis (R. hominis), a member of the 
Clostridia cluster XIVa, is observed in UC patients, whereas mouse studies reveal R. hominis 
upregulates genes involved in promoting gut barrier function, innate immunity, and Treg 
differentiation in a TLR5-dependent manner (130) (Table 1). Together with Firmicutes, 
Bacteroidetes dominate the intestine in healthy adults (131). Bacteroidetes species are also 
altered in IBD, with a decreased abundance in CD and increased numbers in UC (132,133). 
The Bacteroidetes species, Bacteroides fragilis (B. fragilis) and enterotoxigenic B. fragilis (ETBF), are 
present in the stool and biopsy specimens of healthy individuals, yet increased levels of toxin 
genes are observed in UC and CAC patients (134) (Table 1). Although the nontoxigenic B. 
fragilis promotes the anti-inflammatory function of Treg through secretion of Polysaccharide 
A in the mouse intestine, colonization of mice with ETBF upregulates activation of STAT3 in 
the colon and induces Th17 immune responses (125) by producing a metalloprotease toxin 
termed B. fragilis toxin (135).

Dysregulation of the metabolite-mediated host-microbiota crosstalk contributes to disease 
progression in IBD as well. SCFAs and SCFA-producing bacteria are present at reduced levels 
in IBD. In addition to the regulatory role of SCFAs in T cell differentiation and function, 
SCFAs act directly on γδ T cells and restrict IL-17 and IL-22 production by these cells (111). 
Given that human IL-17-producing γδ T cells accumulate in the intestinal mucosa of IBD 
patients (136), SCFAs, particularly propionate, are proposed to prevent chronic inflammation 
through their inhibitory effect on γδ T cell activity (111). Impaired BA metabolism and 
reduced levels of secondary BA-producing bacteria Ruminococcaceae have been identified in 
IBD (137). Intestinal BAs are essential for the maintenance of the colonic RORγ+FOXP3+ Treg 
in a BA-receptor, the vitamin D receptor (VDR)-dependent manner (104). Therefore, human 
VDR genetic variants may influence host susceptibility to disease through defective control of 
the intestinal Treg pool (104).

Type17 signatures in the disease lesions of IBD
Pathogenic heterogeneity of IBD significantly contributes to the failure of typically 
successful novel therapeutics (146). Recent advances in single-cell sequencing technologies 
allow for unbiased investigation of distinct cell types within a tissue during health and 
disease, facilitating our progressive knowledge of the interplay between immune cells and 

https://doi.org/10.4110/in.2022.22.e46

Microbial Regulation of Intestinal Type17 Immunity

Table 1. Altered microbiota during IBD that are associated with type17 immune modulation
Microbiota Abundance Function Reference
Faecalibacterium prausnitzii Decreased in IBD Butyrate-producer, regulates Treg/Th17 balance. (110)
Roseburia hominis Decreased in IBD Butyrate-producer, modulate Treg expansion. (130)
Roseburia intestinalis Decreased in IBD Inhibits IL-17 secretion and stimulates Treg differentiation. (138)
Bacteroides fragilis, non-toxigenic Decreased in IBD Induces CD4+ T cells to produce IFN-γ and IL-10. (139,140)
Enterotoxigenic Bacteroides fragilis (ETBF) Increased in IBD Stimulates STAT3 activation and Th17 response. (141)
Akkermansia muciniphila Decreased in IBD Drives colonic Treg differentiation. (142,143)
Bifidobacterium adolescentis Decreased in IBD Induces Th17 cells in the mouse small intestine. (143,144)
Lactobacillus Decreased in IBD Upregulates Treg activity and suppresses Th1, Th17. (143,145)
Clostridium clusters (IV and IXV) Decreased in IBD Increase the number and function of colonic Tregs. (129)
Escherichia coli Increased in IBD Induces Th17 response. (32,145)
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non-immune cells (147). The integration of multi-omics data, including epigenomics, 
transcriptomics at the single-cell level, proteomics, metagenomics, and metabolomics will 
elucidate the crosstalk between different cell types of the intestine and their interactions with 
gut microbes (4).

Emerging studies that exploit single cell RNA sequencing (scRNA-seq) to identify the cellular 
and molecular events behind disease pathogenesis provide insights into cell subsets, as well 
as interactions that are involved in the progression of intestinal inflammation (148,149). The 
comparison of inflamed and non-inflamed tissues from CD patients and healthy individuals 
reveals that activated Th17 cells are increased in the IEL compartment of inflamed lesions, 
whereas CD8+T, γδT, TFH and Treg cells are decreased (148). Moreover, greater levels of 
CD8+ and Th17 cells are observed in the lamina propria, alongside reduced TFH cells and 
Treg (148). A recent study identified a distinct cellular module, consisting of IgG plasma 
cells, inflammatory MNP, activated T cells, and stromal cells in the inflamed tissue of CD 
patients and designated these modules as GIMATS, which are associated with anti-TNF 
therapy non-responsiveness (149). Both GIMATS-positive and -negative CD patients display 
an active T cells-driven inflammatory pathway, whereas activated DCs and monocyte-
derived inflammatory macrophages accumulated within GIMATS-enriched lesions (149). 
Furthermore, MHCII molecules are enriched in distinct cell types of the intestinal epithelium 
and stromal lineages (149). Additionally, the genes in IL-17 signaling pathway are upregulated 
in some types of IEC and in fibroblasts (150). With the help of the scRNA-seq, a wider 
range of Th17 subtypes were identified, including classic CD4+ Th17 cells, that regulates the 
inflammation and the cytotoxic Th17-like subtype, which is a heterogeneous population of 
CD4+ and CD8+ T cells (149,151,152).

CAC
The chronic inflammation observed in the patients with IBD is a potent risk for colorectal 
cancer development, particularly CAC (153). CAC progresses rapidly and is associated with 
high mortality in 10%–15% of patients with IBD (153). The exact mechanisms underlying the 
progression from IBD to CAC are not clear, however an overproduction of pro-inflammatory 
cytokines, including IL-6, TNF-α and IL-17, by both immune and non-immune populations 
is related to cancer development (154). Recently, various studies report that the intestinal 
microbial composition is altered both in colitis and CAC and may be involved in chronic 
inflammation and the tumorigenesis. Increased levels of Bacteroidetes and decreased levels 
of Firmicutes are found in CAC patients compared to healthy individuals across various 
studies (155,156). Furthermore, a comparison between CAC patients and sporadic cancer 
patients reveals that CAC is associated with increases to the Enterobacteriacae family and 
Sphingomonas genus and reduced levels of Fusobacterium and Ruminococcus genus (157). On the 
other hand, some specific bacteria mitigate tumorigenesis. B. fragilis can prevent cancer 
progression by inhibiting the NLRP3-mediated inflammatory signaling pathway through 
butyrate production (158), whereas fecal microbiota transplant (FMT) can induce anti-cancer 
immunity by promoting Treg within the tumor microenvironment (159).

Treatment of IBD targeting type17 immunity
Due to increased levels of Th17 and related cytokines in IBD, several therapeutics were 
developed to target these cells (126,160,161) (Table 2). Anti-IL-17A antibodies are effective 
in the treatment of a variety of inflammatory diseases, including IBD (146). Anti-IL-17R 
Ab treatment exacerbate CD (162), whereas anti-p40 subunit antibodies (Ustekinumab, 
Briakinumab) (126,163) and anti-IL-6 receptor antibodies (Tocilizumab) target cytokines 
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that control Th17 cell differentiation and thus IL-17 secretion have shown efficacy (126) 
(Table 2). These findings suggest that IL-17 plays a protective role in inflammatory bowel 
disease by preserving the integrity of the intestinal barrier, which outweighs its potential for 
tissue destruction. Blockades of the key cytokine of Th17 cells, IL-17, exacerbate the disease 
outcome in patients with CD, implicating an enrichment of Th17 and increased levels of 
IL-17 might exhibit beneficial effects, such as promoting enterocyte proliferation, tight-
barrier formation, and epithelial barrier integrity in the intestine (44), a cause for study 
termination. On the other hand, targeting IL-23 is effective in clinical trials treating Crohn’s 
disease, specifically in patients with anti-TNF therapy resistance, displaying a good response 
to ustekinumab, an FDA-approved treatment for moderate-to-severe CD and UC (164). The 
JAK-STAT pathway is a promising target for the treatment of inflammatory diseases including 
IBD, however contradictory results are observed in patients with CD or UC (164). Clinical 
trials applying JAK inhibitor tofacitinib show improved disease outcomes in UC patients, a 
medication approved by the FDA and EMA for the treatment of moderate-to-severe UC in 
2018 (164). Furthermore, selective JAK1 inhibitors, such as upadacitinib and filgotinib, show 
promising results in early clinical trials in CD (164). The clinical application of antibodies 
directed against IL-17 signaling provides insights into the function of IL-17 in humans.

As an alternative to immunosuppressive and anti-inflammatory therapies, microbiota-
based therapies, including probiotics, prebiotics, and FMT may modulate dysregulated 
immune responses by correcting gut dysbiosis (125). Initial clinical studies of FMT exhibit 
promising results in improving UC, however subsequent results are varied (125). Compared 
to FMT, treatment with individual or a combination of specific microbial strains or bacterial 
metabolites with anti-inflammatory functions might be a safer therapy option. In particular, 
due the immune regulatory role of Treg, IL-10 producing Treg inducers such as Faecalibacterium 
prausnitzii (128), Clostridium species (129), and Bacteroides species (143) may be effective as live 
biotherapeutic products (LBP) to treat IBD, however there is currently no FDA-approved LBP. 
Clinical trials with a human-derived multibacterial FMT-derived spore-based drug product 
SER-287 by Seres Therapeutics failed in Phase IIb due to non-efficient therapy responses 
(165), whereas trials using the orally-administered rationally-defined bacterial consortium 
candidate VE202 produced Vedanta Biosciences are ongoing (166).
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Table 2. Therapeutic agents for CD and UC targeting type17 immunity
Therapeutic 
agent

Target Disease Phase of clinical 
trials

Trial ID

Brazikumab IL-23p19 CD II/III NCT03759288
UC II NCT03616821

Guselkumab IL-23p19 CD II/III NCT03466411
UC II/III NCT04033445

Mirikizumab IL-23p19 CD III NCT04232553, NCT03926130
UC III NCT03519945, NCT03524092, NCT03518086

Risankizumab IL-23p19 CD III NCT03105102, NCT03105128
UC II/III NCT03398148

Tocilizumab IL-6R CD II NCT01287897
Filgotinib JAK1 CD III NCT02914600

UC III NCT02914535
Tofacitinib JAK UC III NCT03281304
Upadacitinib JAK1 CD III NCT03345823

UC III NCT03006068
Ustenikumab IL-12/23p40 CD III NCT04963725

UC III NCT02407236

http://clinicaltrials.gov/ct2/show/NCT03759288
http://clinicaltrials.gov/ct2/show/NCT03616821
http://clinicaltrials.gov/ct2/show/NCT03466411
http://clinicaltrials.gov/ct2/show/NCT04033445
http://clinicaltrials.gov/ct2/show/NCT04232553
http://clinicaltrials.gov/ct2/show/NCT03926130
http://clinicaltrials.gov/ct2/show/NCT03519945
http://clinicaltrials.gov/ct2/show/NCT03524092
http://clinicaltrials.gov/ct2/show/NCT03518086
http://clinicaltrials.gov/ct2/show/NCT03105102
http://clinicaltrials.gov/ct2/show/NCT03105128
http://clinicaltrials.gov/ct2/show/NCT03398148
http://clinicaltrials.gov/ct2/show/NCT01287897
http://clinicaltrials.gov/ct2/show/NCT02914600
http://clinicaltrials.gov/ct2/show/NCT02914535
http://clinicaltrials.gov/ct2/show/NCT03281304
http://clinicaltrials.gov/ct2/show/NCT03345823
http://clinicaltrials.gov/ct2/show/NCT03006068
http://clinicaltrials.gov/ct2/show/NCT04963725
http://clinicaltrials.gov/ct2/show/NCT02407236
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CONCLUSION

Understanding of the immune system and its relationship with its symbionts has been 
revolutionized by the increased incorporation of the microbiome into our knowledge of host 
physiology. The exceptional plasticity and motility of immune cells and their dependence 
on the highly dynamic microbiota connect practically all physiological systems, making 
the immune system, particularly type17 immunity, and microbiota essential regulators 
of host homeostasis. At the same time, however, type17 immunity has been also linked 
to immunopathologies other than conventional inflammatory autoimmune disease, and 
mice models show a functional significance; nonetheless, decisive clinical studies have not 
been conducted in many instances. Contradictory results in the function of type17 cells 
demonstrate that the treatment strategy targeting the type17 axis must be modified according 
to tissue-specific and disease context-dependent manners. A comprehensive single-cell atlas 
that characterizes the pathogenicity of type17 immune cells at different inflamed organs will 
pave the way for a novel immunotherapy that allows us to specifically manipulate the function 
of pathogenic type17 cells in autoimmune disease, while preserving the immune homeostasis, 
for example, in the intestine, which is mediated by physiological type17 immunity.
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