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Abstract

Background

Dynamic contrast-enhanced MRI (DCE-MRI) biomarkers have proven utility in tumors in

evaluating microvascular perfusion and permeability, but it is unclear whether measure-

ments made in different centers are comparable due to methodological differences.

Purpose

To evaluate how commonly utilized analytical methods for DCE-MRI biomarkers affect both

the absolute parameter values and repeatability.

Materials and Methods

DCE-MRI was performed on three consecutive days in twelve rats bearing C6 xenografts.

Endothelial transfer constant (Ktrans), extracellular extravascular space volume fraction (ve),
and contrast agent reflux rate constant (kep) measures were computed using: 2-parameter

(“Tofts” or “standard Kety”) vs. 3-parameter (“General Kinetic” or “extended Kety”) compart-

mental models (including blood plasma volume fraction (vp) with 3-parameter models); indi-

vidual- vs. population-based vascular input functions (VIFs); and pixel-by-pixel vs. whole
tumor-ROI. Variability was evaluated by within-subject coefficient of variation (wCV) and

variance components analyses.

Results

DCE-MRI absolute parameter values and wCVs varied widely by analytical method. Absolute

parameter values ranged, as follows, median Ktrans, 0.09–0.18 min-1; kep, 0.51–0.92 min-1;

ve, 0.17–0.23; and vp, 0.02–0.04. wCVs also varied widely by analytical method, as follows:
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mean Ktrans, 32.9–61.9%; kep, 11.6–41.9%; ve, 16.1–54.9%; and vp, 53.9–77.2%. Ktrans and

kep values were lower with 3- than 2-parameter modeling (p<0.0001); kep and vp were lower

with pixel- than whole-ROI analyses (p<0.0006). wCVs were significantly smaller for ve, and
larger for kep, with individual- than population-based VIFs.

Conclusions

DCE-MRI parameter values and repeatability can vary widely by analytical methodology.

Absolute values of DCE-MRI biomarkers are unlikely to be comparable between different

studies unless analyses are carefully standardized.

Introduction
Imaging biomarkers can assess tumor perfusion and permeability, and are useful in assessing
response to therapy [1]. In particular, dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) provides biomarkers of tissue perfusion with proven utility in oncologic imaging,
including the assessment of treatment responses and development of anti-cancer therapies [2–
4]. However, these biomarkers are little-used outside the single-center setting, probably
because different implementations of the imaging acquisition and analysis have not been
shown to provide comparable biomarker values.

The DCE-MRI technique has been, and can be, used in clinical and pre-clinical settings, the
latter in particular where novel therapeutic agents are under investigation [5–9]. In both set-
tings, quantitative evaluations of the changes in derived tissue perfusion biomarkers have often
been the main objectives. While any one study will use the same algorithm and analytical
implementation for all subjects pre- and post-therapy, there is little consistency between stud-
ies. Although biomarker values are quoted in absolute units (e.g. ktrans /min-1), it is unclear to
what extent absolute values reported from different studies are comparable. In this study we
evaluated three important analysis options: the choice of model, the method of derivation of
the input function, and the algorithm for aggregating pixel-wise data to derive whole-tumor
biomarkers.

The technique of DCE-MRI depends on acquiring dynamic MRI data and applying an
appropriate physiological model to that data. A variety of tracer kinetic models have been
developed for these purposes; two commonly utilized models are variably termed the Tofts and
Kermode, “standard” Kety, or 2-parameter model [10–12], and the generalized kinetic,
“extended” Kety, or 3-parameter model [13]. Application of these models allows derivation of
specific MRI perfusion parameters, such as the endothelial transfer constant (Ktrans), the con-
trast agent reflux rate constant (kep), the extracellular extravascular space volume fraction (ve),
and the blood plasma volume fraction (vp).

Model-based derivations of DCE-MRI parameters require a vascular input function (VIF).
Obtaining reliable VIF data has been, and is, challenging, particularly in pre-clinical settings
where even the central vessels, e.g., aorta and inferior vena cava, are extremely small. Imaging
artifacts and the high cardiac rate of small animals add to the challenges. The unreliable nature
of some VIFs from individual subjects can potentially confound the overall estimates of perfu-
sion parameter values. In these situations, model or population-based VIFs have been sug-
gested [10,14–20].

Tissue perfusion parameters for a region of interest (ROI) can be derived on a “whole
tumor” or “pixel-by-pixel” basis. Pixel-level data in principle offers a more detailed evaluation
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and allows for intratumoral assessment of the heterogeneity of each measured parameter [20].
It is, however, prone to the potential challenges of additional computation time and signal-to-
noise ratio limitations.

In this study, we computed DCE-MRI parameter values utilizing all combinations of the
above methods on DCE-MRI images obtained on three successive days in each of twelve rat
xenografts. Absolute parameter values and repeatability were compared. An understanding of
repeatability provides data for assessing study results and for study design (namely, determin-
ing sample sizes).

Our objectives were to compare the absolute values and test-retest repeatability of
DCE-MRI parameters analyzed by two tracer kinetic models (2-parameter vs. 3-parameter),
two different VIF input strategies (individual- vs. population-based), and two tissue ROI
approaches (whole tumor vs. pixel-by-pixel) in a rat tumor model.

Materials and Methods
The study was approved by the Institutional Animal Care and Use Committee (IACUC) of
The University of Texas M.D. Anderson Cancer Center (Protocol Number 09-06-12041). C6
rat glioma cells were obtained from the American Type Culture Collection (Manassas, VA,
USA). Five thousand C6 cells were injected subcutaneously into male Crl: NIH-Foxn1rnu T-cell
deficient, athymic nude rats (Charles River, Wilmington, MA). Rats weighted approximately
220 grams at the time of the experiment. Cells were injected in the flank region, at the approxi-
mate axial level of the inferior aspect of the kidneys and distal aorta. Tumor measurements
were undertaken using calipers, and tumors allowed to grow until they reached a nominal size
of approximately 1 cm diameter. Each rat then underwent DCE-MRI on three consecutive
days. Animals were scanned in batches of 5 to 6 animals per cohort.

Animals were placed in an MRI-compatible cradle in which a 5-cm hole had been cut into
which the subcutaneous tumor could be located. Hair from around the tumor was shaved, and
the region of the tumor was placed in a “bath” of ultrasound gel to minimize air/tumor suscep-
tibility effects in the MRI imaging studies. A temperature controlled pad was placed under-
neath the animals, and the animals were gently immobilized with tape. Animals were
anesthetized with 1–2% isoflurane in a 1 l/min O2 flow, and imaging was undertaken in free
respiration throughout. The imaging volume was targeted on the central portion of the tumor.

An estimate of tumor volume (cm3) was obtained from the formula for a spheroid, i.e.,
(π�X�Y2)/6000, where X and Y (in mm) were orthogonal tumor diameter measurements.

Data from a total of 12 sets of three consecutive days of scanning were obtained: 10 rats
underwent three consecutive DCE-MRI studies during a single week period; one animal under-
went the three consecutive DCE-MRI studies in two separate weeks. There was a technical
scanning failure on one MRI scan visit in one rat. The median size of tumors was 0.67 cm3

(range 0.09–1.53 cm3). At the end of the study, the rats were euthanized humanely by inhala-
tion of carbon dioxide.

DCE-MRI technique
MRI studies were undertaken using a 7.0 Tesla / 30 cm bore dedicated animal MRI scanner
(Bruker BioSpin, Billerica, MA). The MR scanning protocol consisted of the acquisition of sag-
ittal and axial T2-weighted images, axial T1-weighted images, axial DCE-MRI images, and
post-Gd axial T1-weighted images. For the DCE-MRI acquisition, a 3D fast spoiled gradient
echo sequence was used with TE = 1.7ms, TR = 10ms, 15° excitation pulse, 16-mm slab thick-
ness (yielding eight 2-mm slices), 128 x 80 matrix, and 60mm x 50mm field of view. To reduce
artifacts in the VIF from inflow effects, a spoiled hermite magnetization preparation pulse was
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applied to excite an 8-cm slab located 2 mm caudal to the DCE-MRI slice package [21]. The
temporal resolution was 6.4s, with total scan time of 320s (50 x 6.4s). Contrast agent was
administered after 10 baseline scans were acquired.

The MRI contrast agent was delivered through a tail vein as follows: 0.2 mmol/kg dose of
gadopentetate dimeglumine (Magnevist, Bayer Healthcare Pharmaceuticals, Wayne, NJ), via
an MR-compatible injection system (Harvard Apparatus, PHD 2000 Programmable, Plymouth
Meeting, PA). For a 200-gram rat, for example, 200 μl of contrast media at 1:5 dilution of Mag-
nevist:saline was administered over a period of 10 seconds. This was followed by a saline flush
of the same volume and injection rate.

The acquired DCE-MRI data were analyzed using the Kinmod module (version 3.0) within
the CineTool (version 8.2.1) environment (GE Healthcare, Waukesha, WI), utilizing two tracer
kinetic models (2-parameter vs. 3-parameter), two VIF input strategies (population-based vs.
individual-based), and two ROI approaches (whole tumor cross-sectional ROI vs. pixel-by-
pixel within the ROI).

Tracer kinetic models: two- vs. three- parameter
Analyses were undertaken using two standard two-compartment tracer kinetic models: a)
2-parameter (“Tofts” or “standard Kety”) and b) 3-parameter (“General Kinetic” or “extended
Kety”) model.

a) 2-parameter model:.

CtðtÞ ¼ Ktrans

Z t

0

Cpðt0Þe�
Ktransðt�t0 Þ

ve

� �
dt0

where Ct(t) is the tracer concentration in tissue, Cp(t) is the tracer concentration in arterial
blood plasma, Ktrans is the volume endothelial transfer constant between blood plasma and
extravascular extracellular space (in min-1), and ve is the extravascular extracellular tissue vol-
ume fraction (dimensionless).

This model is variably named the Tofts and Kermode, Larsson, or “standard (flow-limited)”
Kety model [10–12].

b) 3-parameter model:.

CtðtÞ ¼ vpCpðtÞ þ Ktrans

Z t

0

Cpðt0Þe�
Ktransðt�t0 Þ

ve

� �
dt0

where the additional term, vp, is the blood plasma volume fraction (dimensionless).
This model is otherwise named the General Kinetic Model (GKM), or “extended” Kety

model [12].
For both models, the contrast agent reflux rate constant, kep (in min-1) = Ktrans / ve.

Vascular input function: individual vs. population
We evaluated two commonly utilized vascular input functions (VIF): a) individually measured,
and b) population-based.

a) Individually measured VIF. For each animal and time point, the VIF was obtained
using a mask ROI defined by the study radiologist (CSN, more than 15 years’ experience) con-
taining the inferior vena cava in an imaging section near the center of the DCE-MRI scan vol-
ume. From the mask ROI, the VIF was determined using an automated VIF identification
algorithm within the Kinmod module (Figs 1A and 2A). The VIF represents vascular gadopen-
tetate concentration measured in units of signal intensity change from baseline as a function of
time, i.e., ΔSI(t) = SI(t)–SI(baseline), where SI(baseline) was obtained by averaging the signal
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Fig 1. Example of signal intensity profiles. A) Vascular input function (VIF) from a representative individual
animal (blue), and population average (red). Green symbols: tumor whole ROI data. Y-axis in units of signal
intensity change from baseline, ΔSI. B) Average signal intensity change (VIF) from all animals and scan
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intensity from frames 5–10, after achieving steady state but prior to contrast agent administra-
tion [22].

b) Population average VIF. The population-based VIF was derived from the individual
VIFs (discussed above) obtained from all 12 rats of the study cohort and all available scan visits,
i.e., 3 visits per rat. The individual VIF curves for all animals were averaged and the resulting
data fitted to a biexponential function resulting in a population VIF given by

CpðtÞ ¼ 0:64 e�0:0333t þ 0:42 e�0:0010t

where t is in seconds and Cp(t) is in units of signal intensity change, ΔSI(t) (Fig 1B). The short
and long component amplitude and clearance rates thus determined were in good agreement
with previously published data [23,24].

Tumor ROI approaches: pixel-by-pixel vs. whole
ROIs were drawn by a single observer (CSN) using an electronic cursor and mouse for the
three central slices of tumor for each rat. DCE-MRI parameters were computed using all com-
binations of the two tracer kinetic models and the two VIF methods above, using the same set
of ROIs for each tumor. DCE-MRI parameter values were obtained for each tumor ROI based
on: a) whole cross section ROI data, and b) pixel-by-pixel data within the ROI. In both cases,
the values of Ct(t) represent the tissue gadopentetate concentration measured in units of signal
intensity change from baseline as a function of time, as for the VIF curves. The same ROIs for
any given rat were used in each analysis.

a) “Pixel-by-pixel ROI” analyses. The intensity values of individual pixels within the
ROIs were used in computations. Pixels which demonstrated non-significant changes in signal
intensity following contrast agent injection, specifically less than a 50% increase, were not
included in further statistical analyses. In addition, positive-definite limits were placed on all fit
parameters and any pixels for which fit parameters were outside of such limits were flagged as
having fit parameters that were “not a number” (NaN).

b) “Whole ROI” analyses. The average intensity value of the whole tumor ROI was used
in computations.

The average of the DCE-MRI parameter values derived from each of the three imaging slices
were used in subsequent analyses. Illustrative examples of DCE-MRI parametric maps are pre-
sented in Fig 2.

Statistical analyses
Summary statistics of DCE-MRI parameters (Ktrans, kep, ve, and where applicable, vp) were pro-
vided in the form of median and range. All data were transformed to the logarithmic scale, due
to right-skewness, prior to statistical analyses.

A linear mixed model was used to assess if each DCE-MRI parameter changed significantly
over three days. The linear mixed model took into account the correlation between measure-
ments of the same rat. No statistically significant trend was detected for any DCE-MRI parame-
ter in the span of three days (results not shown).

Comparisons between DCE-MRI parameters by analytical method were also based on linear
mixed models. Interactions between analytical methods and time were not significant (results
not shown), therefore, analytical methods and time were fit as main effects only. All the

visits, including the standard error, for each data point (blue); and the fitted population-average VIF curve (red
line). Y-axis in units of signal intensity change from baseline, ΔSI.

doi:10.1371/journal.pone.0130168.g001
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Fig 2. Illustrative parametric maps using 3-parameter physiological model, individual VIF and pixel based analysis. Same animal as Fig 1. A) Source
trans-axial DCE-MRI image [blue outline is VIF input mask; red outline is tumor ROI mask]; B) Ktrans, C) kep, D) ve, and E) vp parameteric maps.

doi:10.1371/journal.pone.0130168.g002
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pairwise comparisons between analytical methods were estimated and p-values were adjusted
using the Bonferroni method to control the overall type I error rate at 5%.

A variance components analysis was used to estimate the inter- and intra-rat variances. The
intra-rat coefficient of variation (wCV) was calculated using the Bland-Altman method [25] as
follows: logarithms of the data were taken and within-rat standard deviations estimated, the
results were back-transformed to the raw scale (anti-log), and a value of one was subtracted
from them to obtain the wCVs.

All statistical analyses were two-sided and p-values of 0.05 or less were considered statisti-
cally significant. Statistical analysis was carried out using SAS version 9 (SAS Institute, Cary,
NC). Plotting was performed using Spotfire S+ 8.2 (TIBCO Software Inc., Somerville, MA).

Results
Summary statistics for the DCE-MRI parameters, by analytic method, are presented in Table 1.
Overall, DCE-MRI parameter values varied widely across the various analytical methods, i.e.
the tracer kinetic model, VIF input, and method of ROI analysis, with the range in median
DCE-MRI parameter values as follows: Ktrans, 0.09–0.18 min-1; kep, 0.51–0.92 min-1; ve, 0.17–
0.23; and vp, 0.02–0.04 (Table 1).

The wCV values also varied widely by analytical method, with mean wCVs ranging as fol-
lows: Ktrans, 32.9–61.9%; kep, 11.6–41.9%; ve, 16.1–54.9%; and vp, 53.9–77.2% (Table 1).

Effect of tracer kinetic model: 2-parameter vs. 3-parameter
Ktrans and kep were significantly and consistently lower when using the 3-parameter model
compared to the 2-parameter model (p<0.0001); ve values were not significantly different
(Tables 1 and 2; Fig 3 (green vs. red datasets)).

The effects on repeatability of the DCE-MRI parameters (Ktrans, kep and ve) were compara-
ble, with no significant differences in wCVs across the two tracer kinetic models, as demon-
strated by overlapping wCV confidence bounds for corresponding parameters (Table 1).

Effect of VIF: individual- vs. population-based
There were no significant differences in DCE-MRI parameter values (Ktrans, kep, ve, and vp)
when comparing the utilization of individual-based and population-based VIFs in analyses.

Utilization of individual-based VIFs was associated with significantly smaller wCVs for ve
than with the population-based VIF, and conversely for kep (Fig 3 (1

st and 2nd vs. 3rd and 4th

columns); Table 1, showing non-overlapping confidence bounds for corresponding wCVs).
There were no significant differences for Ktrans and vp when comparing individual- vs. popula-
tion-based VIF analyses.

Effect of ROI: pixel-by-pixel vs. whole tumor
kep and vp values were significantly lower for pixel-by-pixel compared to whole ROI analyses
(p<0.0006), and not significantly different for Ktrans and ve values (Tables 1 and 2; Fig 3 (1

st

and 3rd vs. 2nd and 4th columns)).
There were no significant differences in variability (wCV) between pixel and whole ROI

analyses across all the DCE-MRI parameters (Ktrans, kep, ve and vp).

Between- and within-animal variation
The results of our variance component analyses are presented in Table 3. This shows generally
larger intra-rat than inter-rat variances across all DCE-MRI parameters.
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Discussion
The parameters evaluated here are widely regarded by drug developers and others as “biomark-
ers” within the definition introduced by Atkinson et al. [26]. However, to qualify as biomark-
ers, they must be “objectively quantified” [26]. If different studies derive different values for the
same biomarker because of subtle differences in analysis, the “objective quantification” is defi-
cient [27]. This work was undertaken to assess the impact on parameter values and repeatabil-
ity of commonly utilized analytical methods in the DCE-MRI arena. Specifically, we explored
the effects of two commonly utilized tracer kinetic models (2-parameter vs. 3-parameter), two
VIF options (population- vs. individual-based), and two ROI analytical approaches (whole
tumor ROI vs. pixel-by-pixel tumor ROI). Each, in principle, has its theoretical advantages and
disadvantages.

Our results suggest that DCE-MRI parameter values vary widely depending on the analyti-
cal methods utilized, in some cases almost two-fold (e.g., Ktrans, kep, vp). Overall wCV values
also varied widely by analytical methods, with wCVs ranging as follows: Ktrans 32.9–61.9%; kep,
11.6–41.9%; ve, 16.1–54.9%; and vp, 53.9–77.2%.

In terms of the tracer kinetic models utilized, the 3-parameter model might in principle be
expected to provide a more complete reflection of the underlying tracer kinetics compared to
the 2-parameter model since it does not neglect the intravascular tracer contribution (i.e., the
vp term) as does the 2-parameter model. Our results suggested that the 3-parameter model
yielded significantly lower Ktrans and kep values than the corresponding 2-parameter model,
and no significant differences in ve values. Since the 2-parameter model neglects the intravascu-
lar signal, the bias (i.e. artefactual elevation of Ktrans and kep in the 2-parameter model) is not
unexpected. Absolute values of Ktrans and kep from different studies which use these different
models cannot be assumed comparable, even though the same biomarker name and units are
reported. There were no significant differences in wCVs for all parameters, which suggests that
repeatability was not substantially affected by the physiological model applied for these
animals.

With regards to the choice of VIF inputs for the model-based analyses, utilization of indi-
vidual-based VIFs might be expected to yield more reliable results than using a population-
based VIF, since vascular tracer profiles can vary quite widely due to variations in IV contrast
delivery, cardiac output, renal function, etc. It is quite possible, however, that the theoretical

Table 2. Summary of pairwise comparisons between DCE-MRI parameters by analytical method. P-values based on linear mixed model on the loga-
rithmic scale. The linear mixed model took into account correlation between measurements from the same rat. A Bonferroni adjustment was used to control
the overall type I error rate, which with 13 pairwise comparisons set the cutoff point for declaring statistical significance as 0.05/13 = 0.0038, which are
bolded.

Parameter model Comparison Estimate Standard Error p-value

Ktrans 2para vs. 3para model 0.449 0.053 <0.0001

Ktrans Individual vs. Population VIF 0.098 0.060 0.129

Ktrans Pixel vs. Whole ROI 0.002 0.047 0.966

kep 2para vs. 3para model 0.419 0.021 <0.0001

kep Individual vs. Population VIF -0.064 0.023 0.019

kep Pixel vs. Whole ROI -0.145 0.021 <0.0001

ve 2para vs. 3para model 0.031 0.031 0.337

ve Individual vs. Population VIF 0.175 0.051 0.006

ve Pixel vs. Whole ROI 0.058 0.029 0.066

vp Individual vs. Population VIF -0.100 0.108 0.371

vp Pixel vs. Whole ROI -0.434 0.091 0.0006

doi:10.1371/journal.pone.0130168.t002
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advantage of utilizing individual-based VIFs might be out-weighed by the substantial technical
challenges in obtaining reliable VIFs from DCE-MRI studies. Our results indicated that there
were no significant differences in DCE-MRI parameter values obtained between individual-
and population-based VIF analyses. However, wCVs when using individual VIFs were signifi-
cantly smaller for ve than when using the population VIF, and conversely for kep. In circum-
stances in which individually measured VIFs might be unreliable, the utilization of population
VIFs may be necessary [19,28]. Our results do not suggest that the use of a population VIF will
bias the absolute DCE-MRI biomarker values.

Since each of our DCE-MRI biomarkers is an intensive scalar variable, and since the voxel
volumes are identical, the whole-tumor value for each biomarker should in principle be identi-
cal to the mean of the individual voxel biomarker values. However, for real-world (noisy) data,
that identity may be lost in the propagation of errors, leading to variability and/or bias. Regard-
ing pixel-by-pixel vs. whole tumor based ROI evaluations, the former, in principle, is able to
display and better reflect the heterogeneous nature of tumors. However, it is computationally

Fig 3. Scatter plots of 3 day time points, of horizontal row a) Ktrans, b) kep, c) ve, d) vp, by 2- (red lines) vs. 3-parameter (green lines) models; with
separate plots for pixel-by-pixel vs. whole tumor analyses, and by individual- vs. population-based VIFs. Y-axes for Ktrans and kep in min-1: ve and vp,
unitless. Note: vp can only be derived with the 3-parameter model. (Note: one missing data point for one rat)

doi:10.1371/journal.pone.0130168.g003
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more demanding and more vulnerable to signal-to-noise ratio constraints. Furthermore, deriv-
ing a simple statistic that adequately summarizes the resultant individual pixel-based parame-
ter distributions is challenging. Adopting the simple approach of using median values to
summarize the distributions, our results indicated that pixel-by-pixel based evaluation of ROIs
yielded significantly lower kep and vp values than whole-tumor based ROI evaluations. As such,
it may be important in some circumstances to be able to capture detailed spatial information
about tumor heterogeneity.

The tumor time-intensity profile is clearly affected by the tracer input profile. The latter in
turn is affected by tracer input delivery (i.e., the intravenous injection) and physiological
parameters (e.g., cardiac output and renal/excretion function), all of which can vary between
studies. Acquisition of a reliable VIF presents substantial challenges. Difficulties include
motion- and flow-related artifacts. The difficulties of acquiring reliable VIFs are compounded
in small animal studies by the very small cross-sectional area of the major vessels. Indeed,
intensity variations (from noise and artifacts) were evident in our VIF time-intensity plots (Fig
1A). We were able to mitigate the flow related artifacts in our acquisition protocol by applica-
tion of a saturation band between the site of injection and the imaging volume, but inevitably
with some loss of temporal resolution. We took precautions to control for the delivery of intra-
venous contrast medium. We used a pump injector, with fixed gadolinium and saline flush vol-
umes and flow rates, a fixed site of injection (the tail vein), and a constant length of tubing
between the injector and tail vein.

There have been some conflicting reports as to the effect of using individual- compared to
population-based VIFs: Rijpkema and co-authors [29] has reported that individual arterial
input functions (AIFs), compared to population-based AIFs, improved repeatability of kep.

Table 3. Summary of variance components analysis, by analytical method (n = 12). Model dependent (Ktrans, kep, ve and vp).

Whole ROI Pixel ROI

VIF Parameter model Parameter inter-VC intra-VC inter-VC intra-VC

POP 2 para Ktrans 0.084 0.208 0.076 0.165

kep 0.003 0.018 0.001 0.022

ve 0.061 0.191 0.062 0.159

POP 3 para Ktrans 0.091 0.232 0.083 0.185

kep 0.008 0.012 0.004 0.017

ve 0.058 0.185 0.058 0.176

vp 0.083 0.186 0.081 0.202

INDIV 2 para Ktrans 0.048 0.112 0.041 0.081

kep 0.015 0.082 0.005 0.087

ve 0.012 0.022 0.011 0.024

INDIV 3 para Ktrans 0.000 0.110 0.004 0.088

kep 0.000 0.097 0.000 0.122

ve 0.010 0.023 0.011 0.029

vp 0.142 0.214 0.140 0.327

POP: population averaged VIF

INDIV: individual measured VIF

Inter-VC: between-rat variance component

Intra-VC: within-rat variance component

Intra-VC > inter-VC: indicates that within-rat variation > between-rat variation

n/a: not applicable

doi:10.1371/journal.pone.0130168.t003
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Parker and co-authors [28] reported that variation in Ktrans, ve, and vp values were smaller
when using a population-based AIF compared to an individual-based AIF in a study of tumors
in human patients. Their differing conclusions may be partly due to the relative differences in
the consistency of the individual VIFs obtained in their studies. Also a variety of models have
been proposed to derive population VIFs, and these two studies employed different
approaches. The extent to which such models might influence the conclusions is beyond the
scope of this work.

The differing views related to VIF estimations in the studies above in humans are paralleled
in the pre-clinical arena. The small blood volume and rapid vascular dynamics inherent to
small animals necessitate very rapid sampling schemes in order to accurately capture the peak
of intravascular enhancement, corresponding to the maximum concentration of contrast agent
after injection, and acquisition strategies that are tuned for rapid AIF sampling generally com-
promise the spatial resolution and coverage of tumor. Studies utilizing acquisitions that are
optimized for AIF measurement with very rapid sampling may provide reduced variability
using individual measurements [23,30,31]. In the absence of AIF estimates with high temporal
resolution, or in the presence of high noise, repeatability may be improved by use of a parame-
terized population average [19]. It has also been shown that measurements derived from indi-
vidual and averaged AIFs correlate strongly when a strictly controlled contrast administration
protocol is used [20]. In this work, we employed a 3D acquisition protocol that is biased
towards anatomic coverage with relatively slow temporal sampling of the AIF. Our study iden-
tified no statistically significant differences in parameter values when using the individual or
averaged VIFs, but did find some differences in repeatability (wCV) with some specific
parameters.

Previous studies with small animals have reported intra-animal wCVs for Ktrans and ve of
18% and 7%, respectively, in a mouse model using PC3 prostate tumors, a 2-parameter model
and a pooled (population) VIF [32]. A previous study of ours which compared DCE-MRI and
DCE-CT in the same tumor model as in the current study reported wCVs for Ktrans, kep and ve
of 23%, 16% and 20% respectively [33]. This study employed a different intravenous injection
technique, VIF model and acquisition protocol compared to the current study. The first study
above examined repeatability over just two, unlike our three, scan visits in our previous and
current studies.

Our variance components analysis allowed us to assess the relative contributions of varia-
tions between animals (inter-rat) and between individual scan days (intra-rat), to the overall
variation. We found that for all DCE-MRI parameters, the intra-rat contributions were compa-
rable to or larger than the inter-rat contributions to the overall variation in this C6 model.
Tumor vasculature is intrinsically chaotic and unstable, and it is not surprising that its day-to-
day variations may exceed relatively small between-rat variations, given the uniform and con-
trolled tumor implantation techniques and animals utilized.

We acknowledge and recognize limitations in our study. Our study was undertaken with
only one tumor model. The physiological compartment models used in our study are widely
used. However, we utilized a single software implementation of these models in this study. It is
likely that algorithmic differences within software implementations may give rise to differences
in the parameter values.

In our repeatability study, it would have been desirable to obtain scan-rescan measurements
in close succession. Unfortunately, any persistent gadolinium would potentially alter signal
intensities and saturation, thereby confounding the measurements. It was considered that this
difficulty would be mitigated by imposing a one day interval between scans. Unlike other stud-
ies which have restricted their evaluations to just two sequential evaluations, we undertook
serial imaging evaluations on three consecutive days. Tumors inevitably changed in size and
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potentially in their perfusion properties over the 48 hours of our serial imaging. Although we
observed increases in tumor size with time, we did not observe any systematic changes in per-
fusion parameters on formal statistical testing (data not presented). Even if possible, undertak-
ing repeat scans in short succession in one scanner visit would have removed important
variables in DCE-MRI experiments, which include handling of animals, anesthesia and physi-
cal re-positioning/localization. The variabilities obtained, therefore, more closely mimic longi-
tudinal experiments in which there are typically intervening therapeutic interventions.

We limited our tumor ROI evaluations to a single observer; an examination of inter- and
intra-observer variability was beyond the scope of this work. It was also beyond the scope of
the current study to explore the impact of our various analytical options with different animal
models and DCE-MRI acquisition protocols.

Our results indicate that DCE-MRI parameter values and repeatability can vary widely
depending on the specific analytical methods utilized. Comparisons across studies especially of
absolute parameter values should be interpreted with caution. Given the wide ranges in vari-
ability of parameters, it would be prudent to incorporate scan-rescan repeatability in studies.
Efforts should be made to acquire reliable VIF data for analyses. An understanding of repeat-
ability of DCE-MRI measurements provides insight into what observed changes can be consid-
ered significant, and can also assist in design of future studies and sample-size calculations.
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