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Abstract 

MicroRNAs (miRNAs) are a class of single-stranded RNAs, 18-23 nucleotides in length that regulate 
gene expression at the post-transcriptional level. Dysregulation of miRNAs has been closely 
associated with the development of cancer. In the process of tumorigenesis, mammalian target of 
rapamycin (mTOR) plays important roles, and the mTOR signaling pathway is aberrant in various 
types of human cancers, including non-small cell lung cancer (NSCLC), breast cancer, prostate 
cancer, as well as others. However, the relationship between miRNAs and the mTOR signaling 
pathway is indistinct. Herein, we not only summarize the progress of miRNAs and the mTOR 
signaling pathway in cancers, but also highlight their role in the diagnosis and treatment in the clinic. 
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Introduction 
Cancer is one of the most prevalent causes of 

morbidity and mortality worldwide[1-3]. In China, the 
cancer mortality rate is slightly higher and has been 
continuously increasing in recent years[4]. The 
development of cancers involves several signaling 
pathways, such as mammalian target of rapamycin 
(mTOR), nuclear factor kappa B (NF-κB), mitogen 
activated kinase-like protein (MAPK) to name a few. 
Specifically, the mTOR signaling pathway plays an 
important role in cancer cell proliferation, cell cycle 
and apoptosis[5]. 

Through binding to mRNAs’ 3'-untranslated 
region (3'-UTR), miRNAs cause degradation of 
mRNAs or inhibition of protein translation. As a kind 
of proto-oncogenes or anti-oncogenes, they can affect 
the development of cancer directly or indirectly. The 
progress of the miRNA and mTOR signal pathways 
have been continuously reported in recent years[6-8]. 
Herein, we focus on the impact of miRNAs on the 
mTOR signaling pathway in cancer. 

mTOR signaling 
Dysregulation of the serine/threonine protein 

kinase mTOR is linked to tumorgenesis. The mTOR 
complex includes two parts, mTOR complex 1 
(mTORC1) and mTOR complex 2 (mTORC2). 
Multiproteins comprise mTORC1, including mTOR, 
regulatory protein associated with mTOR (raptor), 
and mammalian lethal with Sec13 protein 8 (mLST8). 
Three core components compose mTORC2, namely 
mTOR, rapamycin insensitive companion of mTOR 
(Rictor), and mLST8.  

mTOR belongs to the PI3K-related kinase (PIKK) 
family. Activated by stress, energy, amino acids, DNA 
damage, or growth factors, AKT serine/threonine 
kinase (AKT) or RAS proto-oncogene (Ras) stimulate 
mTORC1 indirectly[9]. This process eventually enables 
mTORC1 to further affect proliferation, cell growth, 
and autophagy[10]. On the contrary, the anti-oncogene 
phosphatase and tensin homology deleted on 
chromosome 10 (PTEN), TSC complex subunit 1 
(TSC1), and TSC complex subunit 2 (TSC2) can inhibit 
the progress of the mTOR pathway. Moreover, 
Phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K) activates Phosphatidylinositol-3,4,5-trisphos-
phate (PIP3) and promotes its translation into 
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Phosphatidylinositol-4,5-bisphosphate (PIP2), which 
in turn, promotes mTORC2, finally promoting 
proliferation (Figure 1). 

mTOR and miRNAs in cancers 
miRNAs regulating mTORC1 

Through targeting genes directly or indirectly, 
miRNAs are involved in mTORC1 and further 
influence cell phenotype, including proliferation, 
metastasis, cell cycle and apoptosis[11-15] (Figure 2). 

By downregulating the expression of mTOR, 
miR-199a can inhibit the proliferation of liver cancer, 
endometrial cancer, and glioma[16, 17]. Likewise, 
miR-205 can promote the proliferation of NSCLC by 
downregulating the expression of PTEN, which is 
related to the mTOR signaling pathway[18]. 

The apoptosis of oral squamous cell carcinoma is 
promoted by miR-218 through the inhibition of the 
phosphorylation of AKT, a key member of the mTOR 
signaling pathway[19]. Additionally, miR-101 can 
inhibit development of carcinoma through indirectly 
upregulating PTEN[20]. 

 Additionally, miR-22 can inhibit the metastasis 
of renal cell carcinoma via galectin-1 (Gal-1), playing a 
novel role in mTOR signaling pathway[21]. miR-204 

can act as an anti-oncogene by targeting mTOR in 
breast cancer and ovarian cancer[22]. As an important 
oncogene in the mTOR signaling pathway, mTOR can 
also be upregulated by miR-451 and thus promote the 
metastasis of colon cancer[23].  

Furthermore, miR-15a and miR-16 can promote 
drug chemosensitivity in human cervical carcinoma 
through inducing autophagy, which has a close 
relationship to the mTOR signaling pathway. As a 
result, miRNAs can indirectly inhibit tumorgenesis in 
part through the enhancement of autophagy[24]. 
However, contrary to miR-376b, miR-129 can promote 
the process of glioma by autophagy through promoti-
ng the mTOR signaling pathway indirectly[25]. There is 
still debate surrounding the mechanism of autophagy 
in cancer cells. It is possible that there is a threshold 
where autophagy can inhibit cancer development, but 
otherwise promotes oncogenic progression[26, 27]. 

miRNAs regulating mTORC2 
miRNAs can affect cell survival, integrate 

metabolism, and bone loss through regulating 
mTORC2[28, 29] (Figure 3)  

miRNAs can influence different cancers via 
regulating the mTORC2 pathway. miR-153 can act as 
a potential suppressor factor, which has a vital role in 

glioma cancer cells. Overexpression of 
miR-153 can cause significant inhibition of 
cell growth and activetion of apoptosis via 
targeting mTORC2[30]. Furthermore, in 
cervical cancer cells, miR-218 enhances 
apoptosis and impedes cell cycle through 
reducing the expression of Rictor[31, 32]. In 
contrast, miR-21 can promote cell invasion 
through the induction of mTORC2 expres-
sion in renal cancer cells[33].  

It has been demonstrated that miR- 
218 could accelerate bone loss through 
downregulation of Rictor expression[34]. 
Lin-4 and let-7 contribute to inter-tissue 
transport through the promotion of the 
mTORC2 pathway[35, 36] (Table 1). 

mTOR signaling pathway and 
cancers  
miRNAs targeting mTOR pathway in 
lung cancer 

The close relationship between 
miRNAs and lung cancer has been confir-
med by several studies[4, 55-59]. miRNAs can 
act within the mTOR signaling pathway by 
regulating multiple target genes. Through 
downregulating the expression of PTEN, a 
vital anti-oncogene in the mTOR signaling 

 

 
Figure 1. The mTOR signaling pathway. The signaling pathways contain mTORC1 and 
mTORC2, which are activated by stress, energy, amino acids, DNA damage, and growth factors, 
to further influence cell growth, autophagy and proliferation. 
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pathway, miR-10a can promote the proliferation of 
cancer[60]. miR-503 can inhibit the proliferation of 
NSCLC by downregulating the expression of 
phosphoinositide-3-kinase regulatory subunit 1 (p85), 
and therefore plays an important role in mTOR 
signaling pathway[61]. Through the suppression of 
cyclin dependent kinase inhibitor 1A (p21), a 
significant factor of mTOR signaling pathway, 
miR-208a can promote the process of NSCLC[62]. 

miR-31 can suppress the process of NSCLC through 
inhibiting the expression of MET proto-oncogene, 
receptor tyrosine kinase (MET)[63], which is related to 
the mTOR signaling pathway. The relationship 
between miR-32 and mTOR has already gained much 
attention. miR-32 can promote proliferation and 
metastasis of hepatocellular carcinoma cells through 
directly targeting PTEN[64]. 

 

 
Figure 2. miRNAs and mTORC1 in cancers. Some miRNAs (in the table 1) can inhibit tumorigenesis in cancers by regulating mTORC1 while, others promote 
the development of cancers. 

 

Table 1. miRNAs targeting the mTOR pathway and cancers 

miRNA Target gene Cancer  Function  Reference  
miR-7 AKT liver cancer proliferation, invasion [37] 
miR-22 mTOR suprarenal epithelioma metastasis [21] 

miR-99 mTOR melanoma tumor formation [38] 

miR-99a mTOR cervical carcinoma, pancreatic cancer, esophageal 
squamous cell carcinoma, breast cancer 

proliferation, invasion, apoptosis [39, 40] 

miR-99b mTOR pancreatic cancer proliferation, apoptosis [41] 

miR-100 mTOR bladder cancer, oophoroma,  
liver cancer 

proliferation, cell cycle, autophagy, tumor 
formation 

[42] 

miR-101 EZH2 liver cancer proliferation, invasion, cell cycle, [43] 

miR-125a mTOR liver cancer metastasis [31] 
miR-125b mTOR sarcoma, 

small cell osteosarcoma 
proliferation, metastasis, cell cycle, apoptosis [44, 45] 

miR-149 mTOR liver cancer proliferation [46] 

miR-193a-3p/5p mTOR NSCLC proliferation, migration, epithelial mesenchymal 
transition (EMT) 

[47] 

miR-199a mTOR gliocytoma, endometrial cancer,  
liver cancer 

proliferation  [17] 

miR-204 mTOR NSCLC, oophoroma metastasis [48] 

miR-634 mTOR cervical carcinoma proliferation, metastasis, apoptosis [49] 
miR-21 TSC gastric cancer, lymphadenoma proliferation, cell cycle [50] 

miR-1271 
 

mTOR 
 

gastric cancer 
 

proliferation, apoptosis [51] 

miR-96 mTOR prostatic cancer proliferation, metastasis [52] 

miR-155 AKT 
 

cervical cancer autophagy [53] 

miR-205 PTEN NSCLC proliferation, angiogenesis [18] 

miR-451 mTOR colon cancer proliferation, migration [23] 

miR-532-5p mTOR gastric cancer proliferation, metastasis [54] 
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As a vital regulator of the mTOR signaling 
pathway, epidermal growth factor receptor (EGFR) 
has a significant influence on the pathway itself and 
other cancers[65-68]. EGFR could activate the mTOR 
signaling pathway through growth factors or other 
factors (Figure 1). We proved that miR-107-5p and 
miR-34a could directly target EGFR to further inhibit 
cell proliferation, restrain metastasis, impede cell 
cycle, and promote apoptosis in vitro, furthermore, 
they could inhibit proliferation by directly targeting 
EGFR in vivo[69, 70]. miR-34a also has been found to 
inhibit proliferation of cancer cells through 
downregulating AKT in glioma stem cells[71]. 

miRNAs targeting mTOR in breast and 
prostate cancers 

Breast cancer is a malignant disease affecting 
females worldwide, and has attracted more and more 
attention over the years[4, 72]. The cell cycle of breast 
cancer can be impeded by miR-100, and its apoptosis 
promoted through the downregulation of the mTOR 
signaling pathway[73, 74]. Furthermore, miR-125b can 
inhibit the expression of mTOR, thus inhibiting the 
process of breast cancer. Moreover, reducing drug 
resistance in breast cancer plays a positive role in 
treatment[75]. Other studies have also confirmed the 
inhibitory effect of miR-15, miR-16, and miR-99a in 
breast cancer[76-78].  

Moreover, miR-25a and miR-25b can inhibit the 

migration of prostate cancer through directly 
targeting la ribonucleoprotein domain family member 
1 (LARP1), which is related to mTOR[79]. In prostate 
cancer, miR-29b has been found to inhibit cancer 
development by downregulating mTOR signaling[80]. 
Males diagnosed with prostate cancer have a high rate 
of morbidity and mortality. We speculate that this 
disease could be one step closer to being overcome 
through investigating the relationship between 
miRNAs and the mTOR pathway in prostate cancer. 

miRNAs targeting the mTOR pathway in 
other cancers 

miRNAs influence tumorigenesis in a diverse 
subset of cancers via the mTOR pathway, including 
hepatocellular carcinoma (HCC). Overexpression of 
miR-1207-5p exhibited a negative regulatory function 
on HCC through suppressing the expression of the 
mTOR pathway[81]. Besides, other groups have proved 
that miR-345, miR-221, and miR-223 could inhibit the 
development of HCC by mediating the mTOR 
pathway[82-84]. A decrease in drug resistance can be 
achieved through miR-130a, miR-100 and miR-199a’s 
modulation of the expression of the mTOR pathway 
in ovarian cancer[85-87]. In gastric cancer, miR-224 can 
promote the development of cell growth and 
metastasis through activation of the mTOR 
pathway[88, 89]. Inversely, miR-370 could inhibit 
tumorgenesis by restraining the mTOR pathway of 

gastric cancer cells[90, 91]. Studies have also 
demonstrated that miRNAs could 
downregulate the expression of the mTOR 
pathway to inhibit the invasion and 
migration of colorectal cancer cells[92-94]. 

As known to all, the serine/ threonine 
kinase B-Raf (BRAF), a proto-oncogene, has 
a close relationship with the mTOR 
pathway[95-97]. BRAF plays an important role 
as a therapeutic target in the treatment of 
melanoma[98]. Studies have shown that 
miR-146b, miR-302, and miR-378-5p can 
impede the development of cancer through 
binding to the 3'-UTR of BRAF, which 
provides a new avenue for targeted 
therapy[99-102]. More studies are needed to 
expand upon and detail the therapeutic 
target genes of the mTOR signaling pathway 
that are stimulated by miRNAs. 

Conclusion and Future 
perspectives  

In conclusion, miRNAs can, on the one 
hand, influence the proliferation, metastasis, 
apoptosis, and cell cycle of different cancer 
cells through targeting the mTOR signaling 

 

 
Figure 3. The miRNAs targeting mTORC2. miRNAs can influence cell survival, bone 
loss, and integrate metabolism through regulating mTORC2 
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pathway. On the other hand, miRNAs are known to 
reach phase Ⅰ clinical trials, importantly acting as a 
cancer diagnosis index[103, 104]. Moreover, some 
miRNAs can be combined with other non-coding 
RNAs to inhibit tumor progress and development[105].  

Precision medicine has drawn more and more 
attention recently as an elegant and effective approach 
to battling this serious and widespread disease. Our 
lab has demonstrated that the miRNAs, miR-34a, 
miR-107-5p, miR-18a-5p, miR-146a-5p, miR-32, miR- 
181a-5p, and miR-486-5p have important functions in 
the progress of lung cancer[69, 106-111]. In NSCLC cells, 
miR-34a, miR-107-5p, and miR-146-5p function as 
suppressors by targeting the oncogenic genes, 
transforming growth factor beta receptor 2 (TGFβR2), 
EGFR, and cyclin D1 (CCND1)/cyclin D2 (CCND2) 
respectively, resulting in the inhibition of prolifer-
ation, metastasis, and cell cycle and promoting 
apoptosis[69, 106, 111]. While we found that miR-18a-5p 
and miR-150 act as oncogenic factors, increasing 
proliferation and cell cycle, we also found that 
miR-18a-5p promotes autophagy[108, 112]. In addition, 
we demonstrated that miR-32a can inhibit 
proliferation, cell cycle, and promote apoptosis, that 
miR-181a-5p restrains cell proliferation and migration 
in NSCLC, and that miR-486-5p is a negative 
regulator of NSCLC through inhibiting cell growth 
and impeding cell cycle[107, 109, 110]. These miRNAs are 
related to the tumorigenesis of NSCLC and can 
become molecular diagnostic tools in the treatment of 
lung cancer. 

 In patients, the mTOR signaling pathway is 
linked to a poor prognosis. As a result, it exposes a 
new possible target for the diagnosis and treatment of 
cancer[113, 114]. Some miRNAs, such as miR-16, have 
been in drug development and have been tested for 
safety and activity in patients who suffer from 
recurrent malignant pleural mesothelioma[115]. 
Furthermore, miR-34a could become the first miRNA 
to reach phase Ⅰ clinical trials[70]. Moreover, some 
microRNAs can be regarded as diagnosis markers for 
cancer[116-118]. In recent years, new types of non-coding 
RNA, such as tRNA-derived small RNA (tRF) and 
circular RNA (circRNA), have been identified in 
diverse cancers and confirmed to play an import role 
in tumorigenesis. Therefore, we believe there is a 
network of non-coding RNA regulating cell progress. 
What’s more, non-coding RNA could have an 
important role in cancer stem cells. Last but not least, 
personalized medicine catered to each patient will be 
advocated for the treatment of cancer in the future. 
There is no doubt that the study of miRNAs or the 
mTOR signaling pathway will arouse increasing 
attention. 
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