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Objectives: Early melanoma detection decreases morbidity
andmortality.Early detection classically involves dermoscopy
to identify suspicious lesions for which biopsy is indicated.
Biopsy and histological examination then diagnose benign
nevi, atypical nevi, or cancerous growths. With current
methods, a considerable number of unnecessary biopsies are
performed as only 11% of all biopsied, suspicious lesions are
actually melanomas. Thus, there is a need for more advanced
noninvasivediagnostics toguide thedecisionofwhether ornot
to biopsy. Artificial intelligence can generate screening
algorithms that transform a set of imaging biomarkers into
a risk score that can be used to classify a lesion as amelanoma
or anevus by comparing the score to a classification threshold.
Melanoma imaging biomarkers have been shown to be
spectrally dependent in Red, Green, Blue (RGB) color
channels, and hyperspectral imaging may further enhance
diagnostic power. The purpose of this study was to use the
same melanoma imaging biomarkers previously described,
but over a wider range of wavelengths to determine if, in
combination with machine learning algorithms, this could
result in enhanced melanoma detection.
Methods: We used the melanoma advanced imaging
dermatoscope (mAID) to image pigmented lesions assessed
by dermatologists as requiring a biopsy. The mAID is a 21-
wavelength imaging device in the 350–950nm range. We
then generated imaging biomarkers from these hyper-
spectral dermoscopy images, and, with the help of artificial
intelligence algorithms, generated amelanomaQ-score for
each lesion (0¼nevus, 1¼melanoma). The Q-score was
then compared to the histopathologic diagnosis.
Results: The overall sensitivity and specificity of hyper-
spectral dermoscopy in detecting melanoma when evalu-
ated in a set of lesions selected by dermatologists as
requiring biopsy was 100% and 36%, respectively.
Conclusion: With widespread application, and if vali-
dated in larger clinical trials, this non-invasive methodol-
ogy could decrease unnecessary biopsies and potentially
increase life-saving early detection events. Lasers Surg.
Med. 51:214–222, 2019. © 2019 The Authors. Lasers in
Surgery andMedicine Published byWiley Periodicals, Inc.
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INTRODUCTION

The detection of melanoma clinically can be visually
challenging and often relies on the identification of
hallmark features including asymmetry, irregular bor-
ders, and color variegation to identify potentially cancer-
ous lesions. In clinical practice, a substantial number of
unnecessary biopsies are performed, as only 11% of all
biopsied, suspicious lesions are actually melanomas [1].
The dermatoscope aids in detection of melanoma by
providing magnified and illuminated images. However,
even among expert dermoscopists, the sensitivity of
detecting small melanomas (<6mm) is as low as 39% [2].
Despite evidence that early detection decreases mortality,

considerable uncertainty surrounds the effectiveness of state-
of-the-art technology in routine melanoma screening [3].
Clinical melanoma screening is a signal-detection problem,
which guides the binary decision for or against biopsy.
Physiciansscreeningformelanomapriortothe(goldstandard)
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biopsy may be aided or, in some cases, outperformed by
artificial-intelligence analysis [2,4,5]. However, deep-learning
dermatology algorithms cannot show a physician how a
decision was arrived at, diminishing enthusiasm in the
medical community [6]. In melanoma detection, there is an
unmet need for clinically interpretable machine vision and
machine learning toprovide transparentassistance inmedical
diagnostics. Improved clinical screening may prevent some of
the roughly 10,000 annual deaths from melanoma in the
United States [3].
Thefirstcomputer-aideddiagnosis systemfor thedetection

of melanoma was described in 1987 [7]. Since then, a variety
of non-invasive in vivo imaging methodologies have been
developed, including digital dermoscopy image analysis
(DDA), total body photography, laser-based devices, smart
phone-based applications, ultrasound, and magnetic reso-
nance imaging [8]. The primary challenge with clinical
application of these technologies is obtaining a near perfect
sensitivity, as a false negative, or Type II melanoma
screening error, can have a potentially fatal outcome.
The most widely employed technology is dermoscopy, in

which a liquid interface or cross-polarizing light filters allow
visualization of subsurface features, including deeper pigment
and vascular structures. Dermoscopy has been shown to be
superior to examination with the naked eye; however, it
remains limited by significant inter-physician variability and
diagnostic accuracy is highly dependent on user experi-
ence [9–11]. Studies using test photographs and retrospective
analyses report increaseddiagnostic accuracywith theaddition
of dermoscopy criteria (Menzies, CASH, etc.) [12,13]. In one
study, dermatologists with at least 5 years of experience using
dermoscopy showed a 92% sensitivity and 99% specificity in
detecting melanoma, but this dropped to 69% and 94% with
inexperienced dermatologists (less than 5 years of experience),
respectively [14]. Evenmore concerning, the use of dermoscopy
by inexperienced dermatologists may result in poorer perfor-
mance compared to examination with the naked eye [9,10,15].
A digital melanoma imaging biomarker is a quantitative

metricextracted fromadermoscopy imagebysimplecomputer
algorithms that is high for melanoma (1) and low for a nevus
(0). These imaging biomarkers measure features that are
associated with pathological and normal features. They can
then beused bymore complexmachine learning algorithms to
create classifiers that are diagnostic. Examples of melanoma
imaging biomarkers include symmetry, border, brightness,
number of colors, organization of pigmented network pattern,
etc. In our previous report, we described two types of imaging
biomarkers: single color channel imaging biomarkers derived
from gray scale images extracted from individual color
channels, that is, Red, Green, Blue (RGB), and multi-color
imaging biomarkers that were derived from all color channels
simultaneously [4]. An example of a multi-color imaging
biomarker would be the number of dermoscopic colors
contained in the lesion, since the definition of a color includes
relative levels of intensity for the red, green, and blue
channels.Thesemelanoma imagingbiomarkersare spectrally
dependent inRGBcolorchannels,withthemajorityof imaging
biomarkers showing statistical significance for melanoma
detection in the red or blue color channels [4].

Figure 1 shows two imaging biomarkers on one sample
lesion.Weprovide these two imagingbiomarkersasa function
of wavelength as evidence that a machine learning algorithm
utilizing a range of wavelengths has the potential to achieve
higher sensitivity and specificity compared to RGBequivalent
values. Imaging biomarkers are quantitative features ex-
tracted from images that are higher for melanoma than for a
nevus. So, for example, if the image that the imaging
biomarkers in Figure 2 were derived from was a nevus, the
optimum imaging biomarker value for imaging biomarker A
(cyan) would be the lowest value (global minimum), which
wouldbe in theultraviolet.Meanwhile, theglobalminimumof
imaging biomarker B (magenta) would be in the infrared. In
the case of a melanoma, the optimum imaging biomarker
value for imaging biomarker A (cyan) would be the highest
value (global maximum), which would be in the red color
channel. Meanwhile, the global maximum of imaging
biomarker B (magenta) would be in the ultraviolet. Thus,
the optimum imaging biomarker values in these examples
would not be captured with RGB imaging alone. Further,
diagnostic utility may be derived from image heterogeneity
measures in the ultraviolet range since ultraviolet light
interactswithsuperficialcytologicalandmorphologicalatypia,
targeting superficial spreading melanoma.

The purpose of this study was to use the samemelanoma
imaging biomarkers previously described [4], but over a
wider range of wavelengths (350–950nm) to determine if,
in combination with machine learning algorithms, this
could result in enhanced melanoma detection.

Fig. 1. This figure highlights two imaging biomarkers on one
sample lesion. The two most diagnostic RGB melanoma imaging
biomarkers (from our previous study [4]) were evaluated on each
hyperspectral gray scale image of a pigmented lesion. They
illustrate two classes of hyperspectral imaging biomarkers where
the trend is either (A) themaximum iswithin the spectral range or
(B) a constant decrease with a maximum in the ultraviolet (UV)
and minimum in the infrared (IR). The data show that hyper-
spectral melanoma imaging biomarkers can be evaluated at a
wavelength where they have values outside the visible (RGB)
values (illustrated for imaging biomarker B in magenta).
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MATERIALS AND METHODS

The Study Device

The Melanoma Advanced Imaging Dermatoscope
(mAID) is a non-polarized light-emitting diode (LED)-
driven hyperspectral camera (Fig. 2A) that illuminates the
skin with 21 different wavelengths of light (Fig. 2B),

ranging from the ultraviolet (UV)A (350nm) to the near
infrared (IR) (950nm) and collects images using a high
sensitivity gray scale charge-coupled device (CCD) array
(Mightex Inc., Toronto, Ontario, CA). A detailed schematic
of the device is shown in Figure 2C. There is glass overlaid
on the device, similar to a dermatoscope. In comparison to a
standard digital camera, which captures light at three

Fig. 2. Hyperspectral imaging camera (A) and spectra of the individual imaging wavelengths
normalized so the area under the curve equals unity (B). (C) Shows the inner components of the
melanoma advanced imaging dermatoscope.
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relatively broad wavelength bands of light (RGB), the
mAID device achieves about five times better spectral
resolution as well as widened spectral range.
The LEDs were chosen such that each LED is separated

from its’ spectral neighbor by a spectral distance that is
approximately the full-width at half-maximum of the LED
spectrum. This scenario leads to LED spectra that, when
normalized to have an area of unity, overlap at the half
maximum point. Therefore, we achieve approximately
Nyquist sampling and have an appropriate number of
LEDS as to not over sample spectrally. There are between
oneandeightLEDSperwavelength: four forUVwavelength,
eight for IR wavelength, and one for most of the visible
wavelengths. The number of LEDs per wavelength was
empirically determined by evaluating image brightness. Of
note, there is no fluorescence as there is no filter to block the
reflected UVA light, which is stronger than the fluorescent
emission. It is possible that there is unwanted fluorescence,
but it is small compared to the reflectance signal, and
therefore negligible. There is no photobleaching as the
irradiance incident on the skin is several fold less than
sunlight and one second of sunlight does not cause photo-
bleaching. Other notable features of the device include a
28mm imaging window and amobile phone embedded in its
back surface to display a live, “in-line” view of the target skin
lesion. The mobile phone is not used for processing, but is
connected to thedevice via theTwoMonApp (DEVGURUCo.
Ltd, Seoul, SouthKorea) to create a secondarydisplay tohelp
align the device properly with the target lesion. In terms of
safety, the total light dose is less than one second of direct
sunlight exposure and the mAID holds an abbreviated
investigational device exemption from the FDA.
The protocol for imaging with the mAID device includes

placing the imaging head directly onto the skin after
applying a drop of immersionmedia such as hand sanitizer.
After automated focusing, the device sequentially illumi-
nates the skin with 21 different wavelengths of light. Video
S1 (https://onlinelibrary.wiley.com/page/journal/10969101/
homepage/lsm-23055-video001.htm?pbEditor=true) shows
four examples of hyperspectral images. The entire process
takes less than four minutes including set up and
positioning, with the collection of images requiring 20
seconds. In addition, there is no discomfort for the patient.
The mAID device automatically encrypts and transfers
hyperspectral images from the clinical site of imaging to the
site of analysis over a secure internet connection.

Clinical Study

This study was approved by the University of California,
Irvine Institutional Review Board. After obtaining informed
consent, 100 pigmented lesions from 91 adults 18 years and
overwho presented to theDepartment ofDermatology at the
University of California, Irvine from December 2015 to
July 2018 underwent imaging with the mAID hyperspectral
dermatoscope prior to removal and histopathological analy-
sis. All imaged lesions were assessed by dermatologists as
suspicious pigmented lesions requiring a biopsy. After
obtaining the final histopathologic diagnoses, 30 lesions

were excluded from analysis due to their non-binary
classification (i.e., not a melanoma or nevus). These catego-
ries included atypical squamous proliferation (1), basal cell
carcinoma (9), granulomatous reaction to tattoo pigment (1),
lentigo (4), lichenoid keratosis (1), melanotic macule (1),
seborrheic keratosis (9), splinter (1), squamous cell carci-
noma (2), and thrombosed hemangioma (1). Seventy mAID
hyperspectral images then underwent automated computer
analysis, adapted as described below following previously
published methods, to create a set of melanoma imaging
biomarkers. These melanoma imaging biomarkers were
derived using hand-coded feature extraction in the matlab
programmingenvironment [4]. Images from52of the total 70
pigmented lesions were successfully processed. The remain-
ing 18 images were excluded due to one or more of the
following errors in processing: bubbles in the imaging
medium, image not in focus, camera slipped during imaging,
or excessive hair was present in the image obscuring the
lesion. In our machine learning, ground truth was the
histopathological diagnosis of melanoma or nevus that was
accessed automatically during learning. The machine
learning, with the melanoma imaging biomarkers as inputs,
was trained to output a risk scorewhichwas the likelihood of
a melanoma diagnosis. In this way, the machine learning
created the best transformation algorithm to arrive at the
result of the invasive test but using only the noninvasive
images acquired prior to the biopsy. A summary of the
melanoma classification algorithms used is listed in Table 1.
The derivation of melanoma imaging biomarkers and
corresponding methods of image analysis have been previ-
ously described [4]. The extension of single color channel
imaging biomarkers to hyperspectral imaging entailed
calculating 21 values for each imaging biomarker per
hyperspectral image—one for each of the 21 color channels
in thehyperspectral image.Usingthesequantitativemetrics,
thealgorithmgeneratedanoverallQ-score for each image—a
value between zero and one in which a higher number
indicates a higher probability of a lesion being cancerous.
Images were also processed by spectral fitting to produce
blood volume fraction (BVF) and oxygen saturation (O2sat),
whicharecandidatecomponents in identifyingmetabolicand
immune irregularity in melanomas (Figure 3) [16].

The Theoretical Model

Spectral light transport in turbid biological tissues is a
complex phenomenon that gives rise to awide array of image
colors and textures inside and outside the visible spectrum.
To help us understand the degree to which different
wavelengths interact with tissue at different depths in the
skin, we used a Monte Carlo photon transport simulation,
adapted from prior work to run at all of the hyperspectral
wavelengths [17]. Our simulation modeled light transport
into and out of pigmented skin lesions. Our modeling
involved two steps: (i) 20 histologic sections of pigmented
lesions stained with Melan-A were imaged with a standard
light microscope to become the model input; (ii) light
transport at 40 wavelengths in the 350–950nm range was
simulated intoandoutofeach inputmodelmorphology.First,
a digital image of the histologywas automatically segmented
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into epidermal and dermal regions using image processing.
Each region was assigned optical properties appropriate for
each tissue compartment (i.e., the epidermis had high
absorption due to blood and the dermis had an absorption
spectrum dominated by hemoglobin but also some melanin).
The escaping photons were scored by simply checking, at
eachpropagationstep, if theyhadcrossed theboundaryof the
surface of the skin (all other boundaries were handledwith a
matched boundary condition). For escaping photons, the
numerical aperture of our camera was transformed into a
critical angle. If the photons escaped at an angle that was
inside the critical angle, their weight at time of escape was
added to the simulated pixel brightness at that image point.
The positions and directions were scored for each escaping
photon as well as the maximum depth of its penetration.
Video S2 (https://onlinelibrary.wiley.com/page/journal/109
69101/homepage/lsm-23055-video002.htm?pbEditor=true)
shows a sample Monte Carlo simulation output.

To generate BVF and O2sat, we started with a tissue
phantom composed of scattering collagen, keratin, and
melanin. The predicted spectrum is shown in Figure 3
(black) using diffusion theory modified for simulating
diffuse reflectance of skin lesions. The spectrum from each
pixel was assumed to follow the well-established diffusion
theory of photon transport. However, we know this is not
entirely true since, as a consequence of illuminating and
detecting from the entire field, illumination occurs both far
from detection and on top of the detection points. In the
dermis, the absorption coefficient is assumed to be
homogenous and contributed to by a fraction of water
times the absorption coefficient of water, a fraction of

deoxyhemoglobin times the absorption of deoxyhemoglo-
bin, a fraction of oxyhemoglobin times the absorption of
oxyhemoglobin. Melanin was modeled in the dermis the
same as was the previously mentioned chromophores but
with a proportional “extra melanin” factor acting as a
transmission filter in the superficial epidermis. This last
feature is a departure from simple diffusion theory and it
models the dermis as source of diffuse reflectance that
transmits through the epidermis, where an extra amount
of melanin that is proportional to the dermal melanin (to
maintain only one fitting parameter for melanin concen-
tration) attenuates the diffuse reflectance escaping the
tissue.

Statistical Analysis

The sensitivity and specificity for detecting melanoma
was calculated from the Receiver Operator Characteristic
(ROC) curve to assess the overall diagnostic performance
as previously described [4]. Data analysis was completed
using statistical software in the Matlab computing
environment [18–28].

RESULTS

Our Monte Carlo simulation (Video S2, https://
onlinelibrary.wiley.com/page/journal/10969101/homepage
/lsm-23055-video002.htm?pbEditor=true) showed that the
mean penetration depth of escaping light was a thousand-
fold greater than its wavelength. For example, 350nm
light penetrated 350mm into the tissue, 950nm light
penetrated 950mm into the tissue and the relationshipwas
linear at the 40 wavelengths between these two points.

Fig. 3. Hyperspectral melanoma imaging biomarkers were derived from spectral analysis (e.g.,
blood distribution and oxygenation). RGB image (A) shows a visual representative sampling of the
hyperspectral image. The correlating blood volume fraction (B), oxygen saturation (C) andmelanin
factor (D) maps are produced by fitting the spectrum at each pixel. The absorption effect of melanin
is added to attenuate the spectrum as shown (green). The final added absorber in our diffuse
reflectance spectral simulation is hemoglobin, which we added a reasonable volume fraction and
oxygen saturation. The values shown in red text are spectral oximetry biomarkers which are shown
as solved for in one pixel of the image but are available in the whole lateral field of view (i.e., at any
pixel). These maps, which demonstrate the type of image data hyperspectral melanoma imaging
biomarkers are to be derived from, are created by fitting the spectrum (E) produced by the
investigational device at each pixel. The spectrum shown (E) is a single pixel in the image (shown in
green in A), evaluated across the 21 colors of the LEDs in the hyperspectral camera.
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Of the 52 pigmented lesions that were successfully
processed with hyperspectral imaging, 13 (25%) were
histologically diagnosed as melanoma and 39 (75%) were
diagnosed as nevi. Sensitivity, specificity, and diagnostic
accuracy were calculated from the ROC curves (Figure 4).
The corresponding confusion matrix is shown in Table 2.
These ROC curves demonstrated a sensitivity of 100% and
specificity of 36% in detecting melanoma with hyper-
spectral dermoscopy [4].

DISCUSSION

DDA systems have attempted to decrease inter-physi-
cian variability and standardize dermoscopic analysis by
incorporating quantitative parameters such as colorimet-
ric and geometric evaluation. There are a variety of
proprietary DDA instruments on the market, although
none have yet demonstrated a reproducibly high sensitiv-
ity and specificity formelanomadetection [29]. SolarScan1

(Polartechnics Ltd, Sydney, Australia), for example, is an
automated digital dermoscopy instrument that extracts
lesion characteristics from digital images and then
compares them to a database of benign and malignant
lesions. In clinical studies, SolarScan1 demonstrated a
sensitivity of 91% and specificity of 68% for detecting
melanoma [14]. In the evaluation of another DDA, the
FotoFinderMole-Analyzer1, a 15-year retrospective study
evaluated diagnostic performance in 1,076 pigmented skin
lesions, reporting a low diagnostic accuracy with a
sensitivity of 56% and specificity of 74%, which was
significantly lower than previous reports with the same
system [30,31]. There remains a wide variation in
sensitivity and specificity amongst the current DDA
systems, ranging from 56% to 100% and 60% to 100%,
respectively. Further investigation into the diagnostic
accuracy of these DDA systems is needed for more
standardized, reproducible results [8].

The benefit of incorporating hyperspectral or multispec-
tral imaging into DDA is that it provides information
beyond the visible spectrum regarding variation in tissue
oxygenation and melanin distribution, which may help
differentiate melanoma from noncancerous lesions. In this
work, we continue to explore the biophotonics of pigmented
lesion imaging. Figure 1 provides preliminary evidence
that melanoma imaging biomarkers have a spectral
dependence that goes beyond the visible spectrum and
implies that melanoma imaging biomarkers may be tuned
to optimize diagnostic significance within a hyperspectral
image.

Bringing the basic science of optical biophysics to bear on
clinical diagnostic precision is warranted since our
preliminary findings indicate that melanoma imaging
biomarkers exhibit strong spectral variance. Understand-
ing the biophotonic pathologic contrastmechanisms allows
us to targetwithin the spectrumand exercise the rest of the
data, which will enable an elegant form of constrained
machine learning. In building this approach, we developed
a Monte Carlo photon transport simulation that helps us
better understand/exploit the optical properties of pig-
mented lesions for diagnosis. Our result, that the
penetration depth is linearly related to the wavelength
with a factor of 1,000 relating the two, provides a
theoretical basis upon which to understand diagnostic

Fig. 4. Receiver operator characteristic (ROC) curve for melanoma
detection in hyperspectral images. Thin lines represent the
individual machine learning approaches used while the thick line
represents the “wisdom of the crowds” diagnostic that averaged the
risk scores produced by the individualmachine learning approaches.

TABLE 1. Melanoma Classification Algorithms

Method Description

LoR Logistic regression within the framework

of Generalized Linear [18–20] Models

(3) (4) (5)

NN Feed-forward neural networks with a

single hidden layer [21]

SVM (linear and

radial)

Support vector machines [22,23]

DT C5.0 decision tree algorithm for

classification problems [24]

RF Random Forests [25]

LDA Linear discriminant analysis [26]

KNN K-nearest neighbors algorithm developed

for classification [27]

NB Naive Bayes algorithm [40]

DT, decision tree; KNN, K-nearest neighbors; LDA, linear
discriminant analysis; LoR, logistic regression; NB, na€ıve bayes;
NN, neural network; RF, random forest; SVM, support vector
machine.

TABLE 2. Results Displayed in a Confusion Matrix

Table That Correlate to the 100% Sensitivity 36%

Specificity Point Indicated in Red on Figure 4

n¼52 Negative Positive

No disease TN¼14 FP¼ 25 39

Disease FN¼ 0 TP¼ 13 13

14 38
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targeting of variously spaced morphologic pathologies. For
example, interpreting the images in Video S1 (https://
onlinelibrary.wiley.com/page/journal/10969101/homepage
/lsm-23055-video001.htm?pbEditor=true) with the rela-
tionship that the penetration is roughly 1,000-fold longer
than thewavelength of light is suggestive that the lesion in
the top left has a wide area of superficial (<0.5mm)
heterogeneous pigmentationwhile the uppermiddle lesion
is >1mm-deep. The approach of correlating the spectral
featureswithunderlyingmorphology is promising in terms
of deepening the scientific understanding andwill be a goal
of future work.

Hyperspectral imaging has been previously studied for
the detection of subclinical lentigo maligna melanoma
borders, successfully identifying 18/19 (94.7%) cases in one
study [32]. Another study evaluating the use of multispec-
tral imaging (450–950nm) to detect melanoma in 82
pigmented lesions reported a sensitivity and specificity of
94% and 89%, respectively [33]. In comparison to previous
melanoma spectral imaging systems, which developed
direct spectral signatures using select wavelengths, our
system images a 21-wavelength spectral range using
relatively inexpensive components.

Current hyperspectral/multispectral imaging methods
on the market include MelaFind and SIAScope. Mela-
Find1 (MELA Sciences, Irvington, New York) is a hand-
held device that images from 430nm (blue) to 950nm (near
infrared), and was FDA approved in 2011 for melanoma
detection. Results from a multi-center prospective trial in
2011 reported a sensitivity of 98.2% and specificity of
9.5% [34]. In a follow-up study using a test set of 47 lesions
to compare MelaFind performance to that of dermatolo-
gists in detecting melanoma, the authors report a
sensitivity of 96% and specificity of 0.08%. MelaFind
recommended biopsy in 44 lesions and no biopsy in 3. In the
three lesions that were not biopsied, one was diagnosed as
melanoma [31]. In a study of 160 board-certified dermatol-
ogists who were asked to evaluate 50 randomly ordered
pigmented lesions, the sensitivity and specificity for
diagnosing melanoma significantly increased after physi-
cians were providedMelaFind analysis of lesions from 76%
to 92% and from 52% to 79%, respectively [35]. However,
there is still significant debate as to whetherMelaFind is a
useful tool to guide dermatologists, the concern being that
the device almost always recommends biopsy [36].

Spectrophotometric Intracutaneous Analysis (SIAsco-
pyTM, Astron Clinica, UK) was first introduced in 2002 as
an imaging technology that produces spectrally filtered
images in the visible and infrared spectra (400–1000nm).
The first clinical trial with SIAscopy demonstrated a
sensitivity of 82.7% and specificity of 80.1% for melanoma
in a dataset of 348 pigmented lesions (52 melanomas) [37].
However, when implemented in a melanoma screening
clinic, the SIAscope did not improve the diagnostic abilities
of dermatologists [38]. Further studies demonstrated poor
correlation between SIAscopy analysis and histopathology
in both melanoma and nonmelanoma lesions and worse
accuracy than dermoscopy [39,40]. Of note, direct compar-
ison of devices to other systems on themarket is limited, as

diagnostic performance of a device varies with the
difficulty of lesions included in analysis, as well as the
proportion of atypical nevi in the benign set [14].
In this study, we demonstrate the improved diagnostic

utility of hyperspectral dermoscopy in comparison to
standard dermoscopy. By calculating the mean depth of
photon penetration at each wavelength, our Monte Carlo
simulation (Video S2, https://onlinelibrary.wiley.com/page/
journal/10969101/homepage/lsm-23055-video002.htm?pbE
ditor=true) provided insight regarding which anatomical
compartments (e.g., superficial epidermis vs. deeper der-
mis) the different wavelengths probed. The ability to
spectrally target analysis of pagetoid spread and Breslow
depth, as examples of diagnostics and prognostics, respec-
tively, shows how our computational theoretical framework
can elucidate standard pathological evaluation criteria. In
combination with artificial intelligence algorithms, we
demonstrated a sensitivity of 100% and specificity of 36%
in detecting melanoma. At a high sensitivity, this approach
yielded a higher specificity than that estimated in clinical
practice [1]. Hyperspectral dermoscopy was better able to
emphasize sensitivity compared to standard dermoscopy.
This was a design feature of our diagnostic algorithm, since
false negative, or Type II melanoma screening errors are
particularly dangerous. Furthermore, our set of pigmented
lesions included suspicious lesions assessed by dermatolo-
gists as necessitating a biopsy; thus, our set inherently
consisted of more challenging pigmented lesions, as
clinically benign lesions were not included.
In addition, it is not entirely clear why melanoma

imaging biomarkers are statistically significant in the red
and blue color channels and not in the green [4]. The blue
channel is known to contain information regarding
superficial atypia associated with melanoma in situ such
as pagetoid spread and junctional atypia at the dermal–
epidermal junction. The red channel is thought to contain
information about deep pigment so these channels are
expected to contain diagnostic value for these reasons.
However, we would expect that the green channel would
contain atypical features of metabolism since hemoglobin
absorbs green light the most. It may be that the green
channel in RGB integrates over too much of the spectrum
to spectrally resolve the isosbestic points in hemoglobin’s
absorption spectrum, therefore washing the oximetric
information. This washout potentially prevents the differ-
entiation between oxyhemoglobin and deoxyhemoglobin.
One major limitation of the device is the fact that the

operator needs to be properly trained. Movement during
imaging can lead to a series of laterally sliding positions on
the skin, and hence the lesion and its diagnostic
morphology will not be spatially coherent. In addition,
the presence of hair and bubbles in the imaging medium
can interfere with image analysis. This presents a
challenge as many of the lesions dermatologists evaluate
are in hair bearing regions. Limitations of this study
include a small sample size and artificially highmelanoma
incidence. Further, we analyzed hyperspectral melanoma
imaging biomarkers extracted from single gray scale color
channels. Evaluating the diagnostic performance of
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hyperspectral melanoma imaging biomarkers does not yet
include imaging biomarkers that used the entire spectrum,
such as oxyhemoglobin (HbO2) maps, which are expected
to improve the diagnostic results in future work.

CONCLUSION

Our study demonstrated ahigher sensitivity in detecting
melanoma with hyperspectral dermoscopy compared to
standard dermoscopy. Hyperspectral dermoscopy shows
promise to noninvasively screen melanoma and guide
biopsy. With this novel methodology for evaluating
pigmented lesions, dermatologists can harness computa-
tional power to aid in standardized evaluation. Over time
and with the analysis of more lesions, the computer can
gain additional expertise in this area. While our initial
results are promising, this technology would need to be
validated and results reproduced in larger clinical trials.
Continuing work aims to improve the power of the study as
well as further investigate the additional diagnostic value
of hyperspectral image analysis over RGB image analysis.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.
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