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Background: When triple-negative breast cancer (TNBC) patients have residual disease after neoadjuvant
chemotherapy (NACT), they have a high risk of metastatic relapse. With immune infiltrate in TNBC being prognostic
and predictive of response to treatment, our aim was to develop an immunologic transcriptomic signature using
post-NACT samples to predict relapse.
Materials and methods: We identified 115 samples of residual tumors from post-NACT TNBC patients. We profiled the
expression of 770 genes related to cancer microenvironment using the NanoString PanCancer IO360 panel to develop a
prognostic transcriptomic signature, and we describe the immune microenvironments of the residual tumors.
Results: Thirty-eight (33%) patients experienced metastatic relapse. Hierarchical clustering separated patients into five
clusters with distinct prognosis based on pathways linked to immune activation, epithelial-to-mesenchymal transition
and cell cycle. The immune microenvironment of the residual disease was significantly different between patients who
experienced relapse compared to those who did not, the latter having significantly more effector antitumoral immune
cells, with significant differences in lymphoid subpopulations. We selected eight genes linked to immunity (BLK, GZMM,
CXCR6, LILRA1, SPIB, CCL4, CXCR4, SLAMF7) to develop a transcriptomic signature which could predict relapse in our
cohort. This signature was validated in two external cohorts (KMplot and METABRIC).
Conclusions: Lack of immune activation after NACT is associated with a high risk of distant relapse. We propose a
prognostic signature based on immune infiltrate that could lead to targeted therapeutic strategies to improve
patient prognosis.
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INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for 10%-15%
of breast cancers and is defined by the absence of estrogen
receptor (ER) expression, progesterone receptor (PR)
expression and human epidermal growth factor receptor
2 (HER-2) amplification.1 In comparison to other breast
cancer subtypes, it affects younger women and has worse
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prognosis with a higher metastatic relapse rate, mostly in the
first years following initial treatment.1 In TNBC patients
treated with neoadjuvant chemotherapy (NACT), patholog-
ical response of the primary tumor is a very important
prognostic factor as demonstrated in several trials2-4 and in a
large meta-analysis.5 Patients whose tumors achieved a
pathological complete response (pCR) had a risk of invasive
relapse of up to 15%, while patients with residual invasive
disease had a risk of metastatic relapse of 50%.2-5 Research
approaches have been tested aiming to decrease the TNBC
risk of relapse. The first approach focuses on reinforcing
adjuvant treatments in patients whose tumors did not
achieve a pCR, with capecitabine6,7 or poly (ADP-ribose)
polymerase inhibitors for BRCA-mutated patients.8 A second
potential approach could be immune checkpoint inhibitors
https://doi.org/10.1016/j.esmoop.2022.100502 1
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(ICIs), since TNBC appears to have a higher immunogenicity
than other breast cancer subtypes.9,10 Hence, ICIs were
tested in advanced TNBC and two became Food and Drug
Administration approved in this setting, atezolizumab11 and
pembrolizumab.12 Pembrolizumab has been recently
approved in the neoadjuvant setting,13 and durvalumab14

and atezolizumab15 showed promising results in the early
setting as well.

Although ICIs in the neoadjuvant setting look prom-
ising,13-15 it should be noted that many patients with TNBC
treated with standard NACT (without ICI) will not relapse.
These patients should not receive these expensive com-
pounds and should be spared their toxicity that can be
severe and definitive. Thus, the identification of prognostic
factors in TNBC patients remains a research priority. Several
trials have successfully identified the prognostic value of
tumor-infiltrating lymphocytes (TILs) on the primary tumor
before or after medical treatment.9,10,16-20 In patients
treated with NACT, residual cancer burden (RCB), which
classifies tumors into four categories, is a strong prognostic
factor.21 However, if RCB 0-I tumors have an excellent
prognosis and RCB III tumors a very poor prognosis, RCB II
tumor prognosis is very heterogeneous and would need to
be refined. In 2019, Luen et al. demonstrated that TILs
assessment on residual disease post-NACT adds an inde-
pendent prognostic value to the RCB.20 Our group also
demonstrated independent prognostic significance of CD4
TILs and RCB.22 Two limiting issues remain to be overcome:
firstly, their quantification is pathologist-specific, and sec-
ondly, TILs count does not capture the full immunological
microenvironmental picture, which is the result of a very
complex interplay between effector and immunosuppres-
sive cells.

The aim of our study was therefore to better describe the
immunological microenvironment in residual TNBC after
NACT and develop an immunological transcriptomic prog-
nostic signature using patients’ residual disease samples.

MATERIALS AND METHODS

Study population and pathological evaluation

One hundred and forty-six consecutive patients with TNBC
(diagnosed on the pretreatment core needle biopsies) who
underwent surgical resection after NACT from December
2003 to November 2015 at our institute, aged �18 years
and who had residual disease on surgical specimen exami-
nation were screened for this study. Formalin-fixed paraffin-
embedded (FFPE) surgical specimens were retrieved from
the hospital archives. Clinical information was obtained
from patients’ files. TNBC was defined according to the
American Society of Clinical Oncology/College of American
Pathologists (ASCO/CAP) 2010 guidelines23 and HER-2 sta-
tus determined according to the Groupe d’Etude des Fac-
teurs Pronostiques/Prédictifs Immunohistochimiques dans
le Cancer du Sein 2014 guidelines.24 Patients who had a
positive hormonal receptor or HER-2 status in the surgical
specimen, had received neoadjuvant radiotherapy, had a
distant metastasis at the time of diagnosis, had a past
2 https://doi.org/10.1016/j.esmoop.2022.100502
history of invasive breast cancer or any other cancer
(excluding skin carcinomas) or did not receive at least three
cycles of NACT were excluded from the study. Similarly,
patients for whom surgical histological material was not
available or insufficient for review or RNA extraction were
also excluded. Thus, we identified 125 cases matching our
selection criteria. After RNA extraction and quality controls,
115 cases were analyzed using the NanoString nCounter®
system (NanoString Technologies, Seattle, WA) (flow chart,
Supplementary Figure S1, available at https://doi.org/10.
1016/j.esmoop.2022.100502).
Pathological examination

Residual tumor hematoxylineeosin (H&E) slides were
reviewed by two pathologists (GM and CP) to determine
tumor cellularity, stromal TILs infiltration,25 RCB according
to Breast International Group/North American Breast Can-
cer Group international working group recommendations26

as well as area of interest to be sent for RNA extraction.
RNA extraction and analysis

Total tumor RNA [tumor cells and tumor microenvironment
(TME)] was extracted from four to six 10-mm tumor sections
after identification of the residual tumor by a pathologist on
a corresponding H&E section. RNA was extracted using the
High Pure FFPET RNA Isolation Kit (Roche®, Meylan France),
following the manufacturer’s instructions. RNA quantity and
quality were assessed by NanoDrop 1000 spectrophotom-
eter (ThermoFisher, Waltham, MA) and 2100 Bioanalyzer
with Agilent RNA 6000 Nano Kit (Agilent, Santa Clara, CA).
Two hundred nanograms of total RNA was used from each
sample for gene expression profiling (acceptation criteria
260/280 ratio: 1.8-2.3, 230/280 ratio: 1.7-2.3).

RNA samples were analyzed based on the NanoString
PanCancer Immuno-Oncology panel (IO360), made of 770
genes related to the interplay between tumor, microenvi-
ronment and immune response in cancer. Sample runs were
carried out on the nCounter® FLEX Analysis System (auto-
mated nCounter® Prep station and the nCounter® Digital
Analyzer optical scanner, NanoString Technologies) accord-
ing to the manufacturer’s protocol. This panel was designed
using biological signatures, including the 18-gene Tumor
Inflammation Signature (TIS) from Ayers et al.27
Bioinformatics

Housekeeping gene selection. We refined the 20-
housekeeping gene list defined in the NanoString IO360
panel using three independent datasets grouping TNBC
patients retrieved from xenaBrowser28 [The Cancer
Genome Atlas (TCGA) BRCA primary tumors with 123 pa-
tients, Chin et al. 200629: 41 patients and Hess et al. 200630:
27 patients]. We computed gene expression variability as
the inter-quantile (5%-95%) ratio in each dataset and
selected 6 of the 20 genes showing ratios under 1.5 in all
datasets: ERCC3, POLR2A, SF3A1, TBC1D10B, TMUB2, UBB.
Volume 7 - Issue 4 - 2022
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Table 1. Characteristics of the main cohort population

Clinicopathological characteristics of patients in the study
n %

Age (years) �50 60 52.2
>50 55 47.8

Menopausal status NR 1 0.9
0 62 53.9
1 52 45.2

cT 1 1 0.9
2 59 51.3
3 38 33.0
4 17 14.8

cN 0 59 51.3
1/2/3 56 48.7

Chemotherapy regimen Anthracyclines þ taxanes 104 90.4
Anthracyclines 10 8.7
Taxanes 1 0.9

ypT 1 65 56.5
2/3 50 43.5

ypN ypN0 79 68.7
ypN1/2 36 31.3

Elston and Ellis grade NR 1 0.9
2 37 32.2
3 77 67.0

Ki67 index <20% 32 27.8
�20% 83 72.2

Lymphovascular invasion NR 1 0.9
0 87 75.7
1 27 23.5

TILs <5% 11 9.6
�5% 104 90.4

RCB class I 14 12.2
II 73 63.5
III 28 24.3

NR, not reported; RCB, residual cancer burden; TILs, tumor-infiltrating lymphocytes.
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NanoString data processing. Raw RCC files of 115 patients
were loaded into R environment and normalized using Nano-
StringNorm package.31 We normalized the expression values
with options CodeCount ¼‘geo.mean’, Background ¼‘mean.
2sd’, SampleContent ¼‘housekeeping.geo.mean’, round.values
¼ TRUE, take.log ¼ TRUE.

Unsupervised analysis. We first computed gene expression
pairwise Spearman’s correlations and selected gene pairs
with a score of �0.7. We then selected modules of corre-
lated genes having at least 10 members using the edge.-
betweenness.community function from igraph R package.32

The 573 remaining genes and 115 patients were clustered
according to gene expression using PCA and HCPC functions
from FactoMineR R package33 with options ncp ¼ 10 for
PCA and default parameters and we extracted four gene
clusters and five patient clusters.

Gene set functional enrichment

Gene clusters. We evaluated functional gene cluster
(from unsupervised clustering and the extended signature)
enrichment using enricher function from ClusterProfiler R
package34 and Reactome,WikiPathways and Hallmarks from
the MSigDB35 and gene sets provided by NanoString. The
universe was set as the genes present in the NanoString
setup. The most significant term per unsupervised gene
cluster was reported. We reported gene sets showing an
adjusted P value under 0.05 for the extended signature.

Patient comparison. We first computed single-sample
gene set enrichment analysis (ssGSEA) scores using GSVA
R package36 with norm.ssgsea option set to FALSE and gene
sets provided by NanoString (biological functions and
immune cell population signatures). We also computed
immune cell population infiltration using Microenvironment
Cell Populations (MCP) counter.37 The scores were then
compared between metastatic and non-metastatic patients
using Wilcoxon’s test.

Supervised analysis for signature gene selection. Due to
unbalanced patient groups (77 non-metastatic and 38
metastatic patients), we decided to proceed 1000 times
random subsampling of 30 patients in each group and we
evaluated the metastatic predictive power of each gene by
computing a univariate Cox proportional hazards regression
model using the survival R package. The signature was
extended by selecting genes showing a Spearman’s corre-
lation score above 0.8 with at least one signature member.
Signature score was defined as described below.

Signature score calculation. ssGSEA calculates enrichment
scores representing how much a set of genes of interest are
coordinately up-regulated or down-regulated within a sam-
ple, independent of phenotype labeling. We thus computed
signature scores by applying this method to each patient and
signature gene sets [the eight-gene and extended signature,
the Immunological Constant of Rejection (ICR) from Hen-
drickx et al.38 and TIS27]. A higher score represents a higher
activity of the analyzed genes. Cohorts were then separated
Volume 7 - Issue 4 - 2022
into two subgroups according to the optimal cut-off defined
with surv_cutpoint function from survminer R package.

Validation datasets. We selected 442 patients with the fil-
ter ‘PAM50-basal’ from KMplot breast cancer cohort39 and
used online tools to compute the relapse-free survival (RFS)
probabilities. We used the median value of our eight-gene
and extended signature and separated the cohort accord-
ing to the optimal score.

We tested our signature on the METABRIC dataset in
which we selected 251 ER, PR, HER2-negative status and
basal PAM50 patients.40 These data were accessed through
Synapse (synapse.sagebase.org).

Survival analysis. We used survival and survminer R pack-
ages to compute KaplaneMeier curves and log-rank test
P values to evaluate metastasis-free survival differences.
Statistical analysis

Statistical analysis was carried out using the 9.4 SAS soft-
ware version (SAS Institute, Inc., Cary, NC). The qualitative
data were described by their numbers and percentages, and
the quantitative data by their medians and their ranges
(min-max). The quantitative data were analyzed as contin-
uous variables.

Distant-relapse-free interval (DRFI) was defined as the time
interval between the surgery date and the date of distant
recurrence or death from breast cancer, whichever occurred
https://doi.org/10.1016/j.esmoop.2022.100502 3
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Figure 1. TME of the residual disease.
(A) Unsupervised hierarchical clustering from 115 patients (columns) and 573 genes (rows) highlights five different patient subgroups and four gene clusters for which
the most significant enriched functions are presented in the figure legend. (B) KaplaneMeier analysis of the five patient subgroups defined in A. (C) Volcano plot
representing ssGSEA differential analysis. The x-axis represents the Wilcoxon’s difference estimate and the y-axis the corresponding P value. Significantly enriched IO360
pathways (P < 0.05) in non-metastatic and metastatic patients are highlighted in blue and red, respectively. RCB, residual cancer burden; ssGSEA, single-sample gene set
enrichment analysis; TILs, tumor-infiltrating lymphocytes; TME, tumor microenvironment.
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first. Follow-up times were censored at last contact if no
distant relapse had occurred or if patients had died without
distant relapse. The follow-up was calculated using the in-
verse KaplaneMeier method, where deaths are censored.

The KaplaneMeier method was used to estimate DRFI,
and the results were compared between groups with log-
rank tests. For the univariate analysis of DRFI, hazard ra-
tios (HRs) and 95% confidence interval (95% CI) were
calculated with the Cox proportional hazards regression
model; P Wald is also reported.

Only variables with P < 0.05 in the univariate analysis
were included in multivariate analyses to investigate their
prognostic value. The proportionality of the risks was veri-
fied by the Schoenfeld test. A P value <0.05 was considered
significant.

Ethics

This study was approved by the institutional review board
of Institut Bergonié and data collection was in accordance
with the French Jardé Law. Patients were informed of the
4 https://doi.org/10.1016/j.esmoop.2022.100502
study project and those who were not opposed were
included in the study.
DATA AVAILABILITY

The data generated in this study are publicly available in
Gene Expression Omnibus (GEO) at GSE185507.
RESULTS

Clinicopathological characteristics of the population

The mean age of the patients was 50.8 years and 46% of
them were menopausal. Clinicopathological characteristics
of the study cohort are detailed in Table 1. The majority of
patients (90.4%) received an anthracycline/taxane-based
combination. Fourteen (12%), 73 (63%) and 28 (24%)
patients had RCB I, RCB II and RCB III scores, respectively.
Thirty-eight (33%) patients experienced a metastatic relapse
during follow-up, with a median follow-up of 82.8 months
(95% CI 74.2-94.7 months).
Volume 7 - Issue 4 - 2022
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Table 2. Univariate and multivariate analysis of factors associated with distant-relapse-free interval (DRFI)

n [ 115 Univariate analysis (DRFI) (Cox) Multivariate analysis (DRFI) (Cox)

n P (Wald) HR 95% CI HR P (Wald) HR 95% CI HR

TILs %
n 115 0.0036 0.972 0.954 0.991 Not retained P ¼ 0.86
Median value 20
Signature score
n 115
Median value �63.16 <0.0001 0.985 0.979 0.991 0.0019 0.988 0.980 0.995
RCB score
n 115 <0.0001 2.712 1.908 3.855 0.0020 1.910 1.266 2.881
Median value 2.1
LVE
n 114
Not seen 87 <0.0001 1 0.0591 1
Present 27 6.088 3.166 11.71 2.090 0.972 4.493

CI, confidence interval; HR, hazard ratio; LVE, lymphovascular emboli; RCB, residual cancer burden; TILs, tumor-infiltrating lymphocytes.

C. Blaye et al. ESMO Open
The tumor microenvironment of residual disease

We carried out unsupervised hierarchical clustering on both
samples and genes using the gene expression of 115 residual
tumors. We found five clinical clusters (C1-C5), based on the
expression of four groups of highly correlated gene modules
enriched, respectively, in cell proliferation and epithelial-to-
mesenchymal transition, and two immune-related gene clus-
ters (interferon-g-related response and lymphoid compart-
ment) (Figure 1A). Regarding the survival of the five clusters,
three clusters (C2, C3, C4) enriched in immunity genes had a
significantly better survival than the twoother clusters (C1, C5)
(Figure 1B).The subgroups with poorest prognosis, C1 and C5,
were markedly enriched in genes implicated in ‘cell prolifera-
tion’ pathways and were rather poor in immune-related gene
clusters (Figure 1A). Next, we evaluated biological pathway
activity in each patient by carrying out ssGSEA and assessed
significant differential activation between patients who later
relapsed and those who did not, by applying Wilcoxon’s test.
For this, we used the functional annotations determined by
NanoString on the IO360 panel. In the residual disease of
patients who did not experience metastatic relapse, we found
a significant up-regulation of pathways implicated in immune
response: ‘lymphoid compartment’, ‘cytokine and chemokine
signaling’, ‘costimulatory signaling’, ‘antigen presentation’,
‘immune cell adhesion and migration’ and ‘JAK/STAT’
signaling. For patients who later experienced a metastatic
relapse, TME of the residual disease was enriched in many
processes associated with the tumorigenic and metastatic
processes such as ‘hypoxia’, ‘angiogenesis’, ‘TGF beta signaling’,
‘Notch signaling’ and ‘cell proliferation’. Patients who later
experienced relapse also displayed other pathways such as
‘autophagy’, ‘MAPK pathway’, ‘DNA damage repair’, ‘metabolic
stress’, ‘PI3K.Akt’, and ‘epigenetic regulation’ pathways. Re-
sults are shown on a volcano plot (Figure 1C).
Immune profile of post-neoadjuvant chemotherapy triple-
negative breast cancer residual disease and metastatic
relapse

Next, we evaluated the composition of the immune infiltrate
of the residual disease, and explored whether there were
Volume 7 - Issue 4 - 2022
differences between patients with and those without meta-
static relapse. In our cohort, 30 patients (26%) had a TILs
infiltrate of at least 50%. TILs were significantly associated
with improved DRFI in univariate analysis (Table 2). The TILs
mean percentage in the residual disease of non-metastatic
patients was 32.10% versus 17.55% for metastatic patients.
Using two different methods (ssGSEA applied to NanoString
IO 360 gene sets and MCP counter) to study immune pop-
ulations, we observed highly significant differences in the
immune infiltrate profiles of the post-NACT residual tumors
between patients who experienced metastatic recurrence
and those who did not. The main population of this infiltrate
was cells of monocytic lineage/macrophages (MCP counter
method/ssGSEA, respectively) (Figure 2A and B). However,
this myeloid infiltrate did not discriminate between meta-
static and non-metastatic patients. In lymphoid populations,
we found an enrichment in B lymphocytes, in total T cells
(with a significant enrichment on the NanoString gene set in
Th1 cells, but not in Treg), in CD8 T cells (total and exhausted),
on cytotoxic cells and in natural killer (NK) cells for patients
who did not experience metastatic relapse (Figure 2A).
This enrichment was similar in the MCP counter method
(Figure 2A). Both approaches showed very consistent results;
indeed, predictions for similar immune populations are
highly correlated (Supplementary Figure S2B, available at
https://doi.org/10.1016/j.esmoop.2022.100502).

When related to the percentage of TILs on the residual
disease as shown in Figure 2B, these differences were less
pronounced. The most important difference was the total
immune infiltration (Figure 2B). The CD45þ population as
measured by the ssGSEA method had a different distribu-
tion from the TILs (determined on H&E slides), which was
expected since TILs reflect only the lymphocytic population.
On these heatmaps, the main immune population was the
macrophages/monocytic population; there was also an
enrichment in lymphocytic cells (mostly T, CD8, NK and to a
lesser extent B cells) that seemed higher in non-metastatic
patients (Figure 2B and Supplementary Figure S2C, available
at https://doi.org/10.1016/j.esmoop.2022.100502).

Finally, because a high infiltration of B lymphocytes,
cytotoxic cells and Th1 cells was detected in the immune
https://doi.org/10.1016/j.esmoop.2022.100502 5
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infiltrate of non-relapsing patients, we applied the 12-
chemokine gene expression score previously correlated to
the presence of tumor localized ectopic lymph node-like
structures41 and found that it was significantly enriched in
patients who did not experience metastatic relapse
(Supplementary Figure S2A, available at https://doi.org/10.
1016/j.esmoop.2022.100502).

Construction of an eight-gene prognostic signature

We implemented a 1000 times subsampling procedure
(detailed in Materials and methods) to determine the
robust survival predictive power of each gene and selected
eight genes (BLK, GZMM, CXCR6, LILRA1, SPIB, CCL4, CXCR4,
SLAMF7) that were significantly associated with survival
(log-rank test P value <0.05 in >90% of iterations)
(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2022.100502). The score was derived from
the eight-gene list using ssGSEA. We tested our signature
for the whole cohort and in the RCB II subgroup since it
contains patients with very heterogeneous outcomes; we
used ssGSEA with the eight selected genes as the gene set.
The eight-gene signature could accurately predict DRFI with
an HR of 0.18 (95% CI 0.09-0.35), P < 0.001 (Figure 3A).
Interestingly, our signature could also separate high-risk
patients and low-risk patients in the RCB II group [HR
0.15 (95% CI 0.06-0.4), P < 0.001] (Figure 3B). The heatmap
showing the eight-gene expression according to the
6 https://doi.org/10.1016/j.esmoop.2022.100502
signature score is shown in Figure 3C, along with the met-
astatic status, the RCB class, the presence of lymphovas-
cular emboli and the levels of TILs as seen in H&E.

We next investigated the individual prognostic values of
each gene in an independent cohort. We therefore used the
KMplot website (https://kmplot.com)39 and checked the
prognostic role of each gene in the basal PAM50 subtype
(Supplementary Figure S3A, available at https://doi.org/10.
1016/j.esmoop.2022.100502). All genes but one were
associated with a significantly improved prognosis on this
cohort. The fact that BLK had a non-significant trend toward
a better survival could be explained by several reasons: lack
of sensitivity, inter-cohort variability or because one gene
can be associated with several pathways with diverse bio-
logical functions. To overcome this problem, we studied the
correlations between all genes in our cohort and identified
55 genes that presented a correlation score �0.8 with at
least one gene from our signature. This led to the devel-
opment of an ‘extended signature’ composed of 63 genes,
which could also predict survival of our patients with good
accuracy [HR 0.27 (95% CI 0.14-0.51), P < 0.001]
(Figure 3D). When applying gene ontology on this set of
genes, the main pathways represented were in favor of a
strong lymphoid response (lymphoid compartment, cos-
timulatory signaling with TIGIT and PDCD1/PD1 among
others, interactions between a lymphoid and a non-
lymphoid cell, T-cell receptor-related pathways, etc.)
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(Supplementary Figure S3B, available at https://doi.org/10.
1016/j.esmoop.2022.100502).

To validate our results, we applied our signatures to the
KMplot website selecting only the PAM50 basal subtype,39

and to the TNBC patients from the METABRIC cohort40 via
the synapse.org website. In the KMplot website, a high
eight-gene signature score predicted a significantly better
RFS of patients with basal breast cancer: HR 0.54 (95% CI
0.4-0.74), P < 0.0001, and the extended signature was even
more accurate: HR 0.35 (95% CI 0.26-0.49), P < 0.0001
(Figure 3E and F). Similar observations were made after
screening the METABRIC cohort. A high signature score
predicted a better disease-specific survival, and the
extended signature was more precise than the eight-gene
signature [HR 0.53 (95% CI 0.35-0.8), P < 0.01 and HR
0.43 (95% CI 0.2-0.64), P < 0.001, respectively, Figure 3G
and H]. Overall, our signatures robustly predicted outcome
in two independent cohorts as well as our training set, with
the extended signature being more precise.
Univariate and multivariate analyses of factors associated
with relapse on triple-negative breast cancer post-
neoadjuvant chemotherapy residual disease

In a previous study based on this cohort, TILs, RCB score and
lymphovascular emboli were predictive factors for survival
in univariate analysis.22 In the present study, they were also
associated with prognosis in univariate analysis, as was our
eight-gene signature score (Table 2). We carried out a
multivariate analysis to assess the independent prognostic
values of these clinicopathological factors and the eight-
gene signature score. In this analysis, TILs, RCB score and
eight-gene signature score were assessed as continuous
factors. The RCB score and the eight-gene signature were
two independent predictive factors of metastatic relapse;
the lymphovascular emboli were not significant (P ¼ 0.059)
but improved the predictive value of the model (Table 2).

DISCUSSION

This study is, to the best of our knowledge, the first tran-
scriptomic analysis describing the immune microenviron-
ment of the residual disease in post-NACT TNBC. Residual
disease in post-NACT TNBC has been the subject of
numerous publications in recent years, due to its particu-
larly poor prognosis. Pathways such as cell-cycle alteration,
phosphatidylinositol-3-kinase/mammalian target of rapa-
mycin, DNA repair, Ras/mitogen-activated protein kinase
(MAPK) and growth factor receptors were found to be
altered in at least 10% of cases in a transcriptomic study
from Balko et al. In our cohort, the MAPK pathway was
Figure 3. Design of an immune-related signature to predict survival from patients
(A and B) KM plot of the eight-gene signature on total cohort and RCB II subgroup. (C
signature (rows) with patient (columns) ordered by the signature score; column anno
class and TILs levels. (D) Prognostic value of the extended signature on the cohort. For
63- gene signatures on KMplot dataset with basal breast cancer patients. (G and H) 8
251). Cohorts are separated by the optimal score value obtained with ssGSEA on our a
relapse-free interval; DSS, disease-specific survival; HR, hazard ratio with 95% confiden
cancer burden; RFS, relapse-free survival; TILs, tumor-infiltrating lymphocyte; TNBC,
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enriched in the residual disease of patients who later
experienced relapse. This MEK/MAPK/RAS pathway activa-
tion has been inversely correlated with TILs infiltration of
residual disease from TNBC patients,19 and was found
overexpressed in the less immunogenic module in the ICR
classification.38 Moreover, MEK inhibition in association
with immune agonists was shown to enhance antitumor
immune response in preclinical models of TNBC.19 These
findings stress the importance of the immunological context
of residual disease.

We identified a combination of eight immune-related
genes whose expression accurately predicted RFS in our
cohort of 115 TNBC patients with residual disease. Four
genes of the signature can be strongly associated with B
lymphocytes (BLK, SPIB, LILRA1 and SLAMF7). Some genes
are associated with cytotoxic activation, such as GZMM or
SLAMF7 as recently reported.42 Significance of the chemo-
kine receptors (CCL4, CXCR4, CXCR6) of the signature is
more challenging to determine, since they are involved in
many different signaling pathways. In our study, these genes
seemed linked to lymphocyte activation and recruitment.
CXCR4, for instance, was correlated to TNFAIP3 and CD69
(correlation coefficients 0.69 and 0.62, respectively, data
not shown), which are linked to lymphocyte activation.
Since most genes are associated with several pathways, we
developed an ‘extended signature’ which includes 63 genes.
Pathways involved in this signature were also strongly in
favor of a lymphoid activation. This was in line with the
analysis of immune cells of the residual disease, with a
significant difference between non-metastatic and meta-
static patients for all the anti-tumorigenic lymphocytic cells
(T lymphocytes, cytotoxic cells, T CD8þ cells, B lympho-
cytes, NK cells, etc.). Bulk transcriptomic analysis cannot
directly show the presence of organized structures such as
tertiary lymphoid structures (TLS); however, gene signatures
of TLS have been proposed as a reflection of formation of
these structures.41 Since our findings, both on the immune
cell infiltrates and of the signature, point toward a coordi-
nated activation of cytotoxic cells, B lymphocytes/plasma
cells and Th1 cells, we applied a 12-chemokine gene
signature to our cohort and found a significant enrichment
in patients who did not experience relapse, suggesting a
role of these structures in our TNBC patients.

Finally, this immune activation in non-relapsing patients
after chemotherapy may reflect chemotherapy-induced
immunogenic cell death, a process that differs from
apoptosis and leads to the release of numerous damage-
associated molecular patterns by cancer cells, which in
turn induces immune response.43 This process was recently
exploited in the TONIC trial, where doxorubicin induction
with residual disease after NACT.
) Heatmap representing the median centered gene expression of the eight-gene
tations show the presence of metastases, lymphovascular emboli (LVE), the RCB
survival analysis, the cohorts are separated by the optimal cut-off. (E and F) 8- and
- and 63- gene signatures on METABRIC dataset selected for TNBC patients (n ¼
nd METABRIC cohorts and by ‘optimal cut-off’ in the KMplot cohort. DRFI, disease
ce interval; KM, KaplaneMeier; NACT, neoadjuvant chemotherapy; RCB, residual
triple-negative breast cancer.
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was the most efficient to induce a response to programmed
cell death protein 1 blockade therapy.44

Another finding of this study is the significant domination
of macrophages and/or monocytic cells on the total im-
mune infiltrate. However, we were not able to show any
prognostic difference with these cells. This can be explained
by the limited number of genes from the panel we used,
which did not allow a clear functional analysis of the
macrophages.

Our study has some limitations, one being the use of a
very limited panel. This does not allow an exhaustive
analysis of the metastatic relapse environment. However,
the NanoString technology was interesting in this cohort
since it can be applied to FFPE samples, which usually have
more degraded RNA. Moreover, this technology does not
require any amplification, which limits the risk of a bias of
poor-quality RNA. The fact that we used older samples with
decreased quality of RNA could be seen as another limita-
tion of this study, leading to bias in the results; however,
these samples are closer to what can be analyzed in clinical
settings. Finally, we validated our signatures on external
cohorts. However, RNA expression range values vary be-
tween platforms and patient cohorts, thus preventing the
definition of a common threshold. Our signatures and their
thresholds should be determined in a dedicated validation
study to allow the utilization of these signatures in clinical
practice.

Overall, we show here that metastatic relapse in TNBC
patients with post-NACT residual disease is highly mediated
by the immune infiltration, and propose an immunologic
prognostic gene signature for TNBC patients with residual
disease. This signature can accurately identify high-risk pa-
tients from the RCB II subgroup, which could allow the
implementation of targeted therapeutic strategies to
improve these patients’ prognosis.
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