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Abstract 

Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disci- 
plines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy 
tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration 

depth and sensitivity. The multidimensional ( 4D + ) structure of spectromicroscopy data poses visualization and data-reduction chal- 
lenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical 
user interface and data analysis platform named XMIDAS ( X-ray multimodal image data analysis software ) to visualize spectromi- 
croscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis 
methods with well-established machine learning classification algorithms ( e.g. nonnegative matrix factorization ) for data reduction. 
The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known 

chemical composition. Nanoprobe-based X-ray fluorescence ( nano-XRF ) and X-ray absorption near edge structure ( nano-XANES ) spec- 
tromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the 
complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this 
approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining 
nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with 

the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex 
biological and environmental samples using X-ray spectromicroscopy techniques. 

Keywords: nanoprobe, xanes, data processing, machine learning, spectromicroscopy 

Graphical abstract 

XMIDAS: A spectromicroscopy data analysis tool. 

 

 

 

 

 

 

 

 

croscopy tools perform nanoscale analysis on heterogeneous 
systems by incorporating methods such as electron energy loss 
spectroscopy 1 and energy-dispersive X-ray spectroscopy.2 For 
soft X-rays, scanning transmission X-ray microscopy ( STXM ) is 
a dominant spectromicroscopy technique utilizing absorption 
spectroscopy,3 while some instruments utilize fluorescence 
spectroscopy for a higher spectrum of the soft X-ray energy 
range.4 For hard X-rays, microprobes,5 , 6 and nanoprobes 7 , 8 

typically use X-ray fluorescence ( XRF ) detection for spectromi- 
croscopy. In recent years, full-field-based chemical imaging using 
Introduction 

Chemical speciation of heterogeneous systems at nanometer
spatial scales ( nanoscale ) is a challenging problem requiring
high spatial resolution and high detection sensitivity. X-ray and
electron-based spectromicroscopy tools are used to probe the
electronic state of atoms and thereby map out the elemental and
chemical distribution. Spectromicroscopy techniques are widely
used to examine sample morphology or spatial heterogeneity,
along with chemical speciation. Electron-based spectromi-
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Fig. 1 Analysis of spectromicroscopy data. A heterogeneous chemical 
system studied using the scanning probe spectromicroscopy technique 
produces multi-energy ( 50 + ) XRF maps. Three-dimensional nano-XANES 
data are created from the XRF maps by fitting and image processing. 
Further analysis of nano-XANES data results in chemical images and 
component maps showing the individual components in the sample. 
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 transmission X-ray microscope demonstrated high-throughput
anoscale chemical imaging capability.9 However, this technique
s unsuitable for imaging minority phases with trace-level con-
entrations. We recently reported a nanoscale chemical imaging
echnique at sub-50 nm resolution 10 utilizing X-ray absorption
ear edge structure ( XANES ) through fluorescence detection. We
mplemented nano-XANES as a multimodal spectromicroscopy 
echnique with simultaneous acquisition of fluorescence spectra
nd transmission data for phase-contrast imaging, using either
ransmission ptychography or differential phase-contrast ( DPC )
maging.11–13 The multimodal nature of X-ray nanoprobe data 
an be used as a comprehensive characterization technique to
rovide a holistic understanding of the material system. More-
ver, nano-XANES is sensitive to below ppm ( parts per million )
lemental concentrations in the hard X-ray regime. Thus, it is
esirable for determining chemical speciation at trace level con-
entrations and ideally suited for biological and environmental
tudies. However, comprehensive analysis using this technique by
onexpert researchers is challenged by the lack of methodologies
nd computational tools to visualize and analyse the multimodal,
ross-correlative datasets. For instance, nano-XANES data con-
ain both structural and spectral information about the sample
nd thus require multiple image processing steps in combination
ith XANES spectrum processing to deduce meaningful chemical
tate maps. This paper illustrates how scanning mode nano-XRF,
ano-XANES, and phase-contrast imaging can be combined and
nterpreted to identify nanoscale chemical speciation of particle
ixtures in heterogeneous systems. 
Scanning probe X-ray nano-spectromicroscopy is conducted by

ollecting XRF spectra while performing a 2D raster scanning of
he sample at each energy point. The higher dimensional nature
 e.g. 4D nano-XANES data ) of spectromicroscopy data poses mul-
iple data analysis and visualization challenges to extract mean-
ngful information. Several software tools have been developed
o address these challenges. Elemental analysis using XRF mi-
roscopy is a well-established field with a handful of analysis
ackages such as PyXRF,14 MAPS,15 SMAK,16 and PyMCA.17 Like- 
ise, a few chemical mapping tools are also available but custom-
ade for transmission-based techniques.18–20 One conventional 
ethod of nano-XANES analysis fits the unknown spectrum with
 linear least square combination of reference standard spec-
ra. In addition, spectromicroscopy data can be decomposed us-
ng algorithms such as principal component analysis, nonnega-
ive matrix factorization ( NMF ) , and k -means clustering without
rior knowledge of the sample.18 Application of these algorithms
o nano-XANES analysis requires further optimization to demon-
trate their accuracy in determining chemical speciation. Chal-
enges in utilizing existing tools for analysing the nano-XANES
ata arise from the differences in spectral quality, normalization
ethods, background noise, and the need for correlating the XRF
ata with the additional data sets acquired simultaneously ( i.e.
tychography or DPC ) . Thus, analysis of multimodal nano-XANES
ata 10 ,21 presents opportunities for integrating dimensionality re- 
uction algorithms. Therefore, the second thrust of this paper is
o establish data analysis methodologies that use available ma-
hine learning algorithms to aid conventional methods of analy-
is. The user-friendly interface developed here provides an inte-
rated platform for multimodal image data analysis using several
ndependent workflows. 
Before we describe the specific details, it is valuable to give a

igh-level overview of the data structure and analysis workflow.
 2D raster scan is performed at regular ( X , Y ) grids or pixels for
ypical XRF imaging or nano-XRF imaging. A full XRF spectrum
 or multiple spectra if a multi-element XRF detector is used ) is
ollected at each pixel. This 3D dataset is reduced to 2D elemental
mages by determining the integrated XRF peak intensity. The
ntegrated peak intensity for each element is determined through
RF peak fitting.14 The elemental images can be converted into
D concentration images if the absolute quantification of the
ntegrated intensity is achieved using XRF reference standards
r calibrated samples. As schematically described in Fig. 1 , the
ano-XANES imaging performed XRF imaging at multiple en-
rgies across specific absorption energy. Thus, the nano-XANES
maging produces a 4D dataset at the ( E incident , X , Y , E fluorescence )
easurement grids. After performing the peak fitting, the 4D
ataset is reduced to multiple 3D datasets, where the reduced
D dataset contains the integrated XRF intensity over specific
lements at ( E incident , X , Y ) grids. These 3D datasets are further
educed to a set of 2D chemical or speciation images by perform-
ng pixel-wise XANES analysis or matrix decomposition methods.
o support complex visualization of the 4D dataset and perform
 suite of computational analyses, we developed an integrated
oftware package named XMIDAS ( X-ray multimodal image data
nalysis software ) . Creating XMIDAS aims to minimize human
nputs in multimodal data analysis, interlinking conventional
nalysis methods with machine learning algorithms, and provide
 single platform to bridge the multimodal imaging and XANES
nalysis methods. The reproducibility and portability of the
ata analysis workflows are ensured by creating a graphical
ser interface and sharing the source code with the scientific
ommunity. In the remaining sections, we illustrate how these
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workflows are used for the speciation of heterogeneous chemical
systems at the nanoscale. 

Materials and methods 

Sample preparation 

Pyrite ( Pyr ) and lithium iron phosphate ( LFP ) were obtained from
Sigma Aldrich ( St. Louis, MO, USA ) . Hematite ( Hem ) nanoparticles
and stainless steel ( SS ) nanoparticles were purchased from US
Nano Research ( Houston, TX, USA ) . 

A heterogeneous nanoparticle aggregate was prepared by phys-
ically mixing the four different iron compounds ( Pyr, Hem, SS, and
LFP ) . The particles were first dispersed in acetone ( 5 mg in 1 mL )
and mixed by ultrasonication ( 5 min ) . About 5 μL of the mixed
dispersion were drop-casted onto a silicon nitride membrane win-
dow ( Norcada, Edmonton, Canada ) . The solvent was dried off in
the air, and the substrate was mounted onto a custom pin be-
fore loading into the microscope. The microscope chamber was
backfilled with He gas at about 1/3 atm pressure. Particle aggre-
gates suitable for spectromicroscopy studies were selected based
on the size and data collection time. So the exact fraction of each
starting material is unknown. 

Cell sample preparation 

Fe ( III ) adsorbed to carbon nanoparticles ( Fe/CNP ) were synthe-
sized by following the previously published method.22 The approx-
imate surface coverage of Fe on CNP was 10 μmol/m 

2 . Fe/CNP par-
ticles were suspended in ultrapure deionized H 2 O ( MilliQ H 2 O ) at
a 200 μg/mL concentration and dispersed by ultrasonication for
2 min. 

THP1 monocytes were maintained in RPMI1640 medium con-
taining 10% FBS and 1% pen/strep at 4 × 10 5 to 1 × 10 6 cells/mL
with 5% CO 2 at 37°C. SiN windows were washed with HPLC-grade
acetone and ethanol for 2 min each, then coated with 0.01% poly-
lysine for 5 min at room temperature, and then sterilized un-
der UV light for 30 min. SiN windows were placed at the bot-
tom of the 96-well culture plate, then 150 μL of cells per well
( 5 × 10 5 cells/mL with 7.5 ng/mL phorbol 12-myristate 13-acetate )
were added. Cells were cultured for 24 h and then treated with
10 μg/mL Fe/CNP nanoparticles for 6 hrs. SiN windows were care-
fully taken out, air dried, and stored at 4°C. The X-ray imaging of
the biological samples in our study was performed within 10 days
of the immobilization. 

XRF imaging 

Scanning XRF imaging measurements were conducted at the Hard
X-ray Nanoprobe ( HXN ) beamline at the National Synchrotron
Light Source II ( NSLS-II ) at Brookhaven National Laboratory. A
complete description of the HXN beamline and its end station
instruments can be found elsewhere.23 HXN’s standard nano-
focusing configuration using a Fresnel zone plate ( FZP ) was uti-
lized for XRF measurements. A monochromatic X-ray beam was
pre-focused, in both horizontal and vertical directions, onto a sec-
ondary source aperture, which defines the effective source size for
the nano-focusing. A focused X-ray beam ( ∼40 × 40 nm at 12 keV )
was produced by the FZP with a 30 nm outermost zone width. XRF
and the transmitted ( DPC ) data were simultaneously collected us-
ing a three-element silicon drift detector ( Vortex, Hitachi, Inc. ) and
a pixel-array detector ( Merlin, Quantum Detectors, Inc. ) , respec-
tively. The XRF data were fitted using PyXRF.14 DPC analysis was
carried out using in-house analysis programs 24 , 25 and the result-
ing image data were exported to XMIDAS for further analysis. 
Nano-XANES imaging 

Data acquisition 
A detailed methodology for nano-XANES data collection was re- 
ported previously.10 XRF maps are collected across the Fe–K ab- 
sorption edge at 7.112 keV ( from 7.08 to 7.20 keV with 73 energy
points ) . The total acquisition time for the model sample was about
24 h. The individual XRF maps were processed by fitting the XRF
peaks and producing 3D image stacks, where each voxel contains 
the integrated Fe XRF signal. The individual Fe maps were spa- 
tially aligned by performing an image registration correction,26 

which is necessary because the focused beam position with re- 
spect to the sample could be shifted while changing the incidence
X-ray beam energy. Chemical or oxidation-state images are pro- 
duced from the aligned XRF image stacks using component anal- 
ysis and XANES fitting analysis. 

Component analysis 
The number of significant components in the nano-XANES data 
was estimated using the singular value decomposition ( SVD ) .27 

After identifying the number of significant components ( k ) , the 
3D stack is decomposed into individual 2D component maps us- 
ing principal component analysis ( PCA ) , NMF, or other decompo- 
sition methods available in the scikit-learn library.28 In particu- 
lar, NMF 29 is suitable for nano-XANES data because of the pos- 
itivity constraint during the factorization. The component maps 
are then used to generate the component spectrum that resem- 
bles a XANES spectrum. For decomposition analysis, the 3D nano- 
XANES matrix ( e × x × y ) was restructured to a 2D matrix V (e × p)
and factorized into two new matrices ( W and H ) using Equation 1
for NMF. 

V e ×p = W e ×k H k ×p k � e 

The component spectra and images were computed from the 
W and H matrices. For example, the model sample stack with
73 energy points and 160 × 160 points was converted to a 
73 × 25 600 matrix before factorization. The factorized matrix with 
five significant components then has a shape of a 5 × 160 × 160
matrix. In other words, a 73 × 160 × 160 matrix was reduced to
a 5 × 160 × 160 matrix. The component spectra were normalized 
and compared with the reference library to generate a Pearson’s 
correlation matrix. 

Chemical imaging 
Chemical maps are generated from the nano-XANES stack by fit- 
ting with a set of reference standards. After identifying the po- 
tential number of components from NMF, a combinatorial lin- 
ear combination fitting of the nano-XANES spectrum was used 
to determine the chemical species. For an unknown sample, one 
can use a combinatorial fitting approach to identify the chemi- 
cal phases in the sample.30 NMF analysis identified four distinct 
components in the sample, and we performed a combinatorial fit- 
ting of the nano-XANES data with a library of 11 reference stan-
dards ( Supplementary Table S1, Supplementary Fig. S9 ) . For higher 
computational speed, the 2D XANES data was binned ( downsized ) 
before the combinatorial fitting. After examining the r -factor, re- 
duced χ2 statistics, and manual inspection of single-pixel fittings,
maximum probable candidates were selected for chemical imag- 
ing. Chemical images are generated from the nonnegative least- 
squares fitting coefficients of the reference standards in 2D that 
represent the abundance of that component in the sample. All 
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a  
he image and spectrum calculations are performed using the in-
ouse software package, XMIDAS. The source code is available on
he GitHub repository ( https://github.com/NSLS-II/xmidas ) , and
he installation instructions are found at https://nsls-ii.github.io/
midas/installation.html . An overview and structure of the inter-
ace are shown in Supplementary Figs. S1–S4. 

esults 

RF analysis and elemental correlations 
RF imaging analysis and elemental correlations are illustrated
sing an artificially created heterogeneous aggregate consisting
f Pyr, LFP, Hem, and SS nanoparticles. The goal of XRF mapping
as to identify the abundance of each element in the aggregate
nd create 2D correlation maps. The summed XRF spectrum
s fitted using PyXRF, accounting for XRF emission lines, elastic
cattering, Compton scattering, and instrumental artifacts such
s pile-up and escape peaks ( Fig. 2 A ) . Apart from the elemental
mission lines, an emission line at 4.66 keV was identified as an
scape peak from the silicon drift detector caused by Fe–K alpha
mission. Conveniently, PyXRF detects the escape peak artifacts,
nowing the detector element. Similarly, any pile-up peaks may
e parameterized in the fit to avoid spectral contamination
nto elemental lines, although we did not observe noticeable
ile-up peaks in this measurement. After all the elements and
rtifact peaks are assigned, PyXRF performs least-square fitting
or pixel-wise peak fitting only for the peak intensities, resulting
n a much faster fitting speed than nonlinear fitting. 
The major elements present in this sample were Fe, S, P, and Cr,

nd their XRF maps are shown in Fig. 2 B. These elemental maps

https://github.com/NSLS-II/xmidas
https://nsls-ii.github.io/xmidas/installation.html
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suggest that the aggregate has at least three starting materials be-
cause the presence of Hem ( Fe 2 O 3 ) cannot be confirmed with XRF.
We also noted a trace abundance of elements ( Cl, Ca, Zn, Cu, and
As ) in the spectra due to the impurities mainly in Pyr and other
starting materials noted by the manufacturer ( Supplementary Fig.
S5 ) . The correlation between fluorescence intensities of elements
is used to evaluate their spatial relationship against stoichiome-
try. Because all the constituents contain Fe, regions outside the
Fe map are considered as background for elemental correlation
analysis. First, a scatter plot is generated to show the relation-
ship between XRF intensities between two elements at each pixel
( Fig. 2 C ) . Next, the points with a visual relationship were interac-
tively selected ( shaded regions in Fig. 2 C ) and back-projected to
the 2D XRF map coordinates, resulting in a binary mask ( Fig. 2 D ) .
For example, a Fe/S correlation map in Fig. 2 C suggests a linear
relationship between Fe and S intensities in the shaded region ( in
yellow ) , and other points showed no apparent relationship. The
corresponding points in 2D clearly showed particles with a specific
relationship ( in yellow ) , and the regions outside the shaded area
are shown in red. A similar analysis was performed to identify
regions with Fe/P and Fe/Cr correlation. The elemental sensitivity
of XRF maps is helpful in predicting chemical phases, but element
correlations alone are not sufficient to identify chemical specia-
tion. For example, the Fe/S correlation implies numerous possibil-
ities, such as Fe sulfides, sulfates, thiolates, etc. Therefore, chem-
ical state-sensitive nano-XANES measurement was performed by
multi-energy XRF mapping. 

Nano-XANES 

This section illustrates nano-XANES data analysis workflow de-
velopment using the model sample. In practice, nano-XANES is
4D data generated by collecting 3D nano-XRF at several energy
points across the absorption edge of the element of interest. A 3D
grid array of multi-energy XRF maps ( also called an energy stack )
is created by XRF peak fitting, followed by image processing and
alignment. The following sections describe methodologies to re-
duce nano-XANES data to chemical state maps. 

Component analysis 
The goal of using machine learning algorithms to analyse nano-
XANES is to differentiate the regions with identical spectral signa-
tures. Here we tested and optimized several decomposition algo-
rithms to decompose the 3D nano-XANES data into a small set of
2D matrices. An important estimator for the component analysis
is the minimum number of 2D matrices ( components ) that maxi-
mally represent the data. The number of significant components
in the nano-XANES data was estimated by the SVD 

31 method. The
singular value of each component is plotted in Fig. 3 A ( called a
scree plot because of the shape ) . By examining the scree plot, we
determined that the first five components explained > 90% of the
data here and were used as an optimizer for decomposition anal-
ysis. In addition, component mapping using more than five com-
ponents was manually inspected and ruled out as noise. 

The composite map of components two to five is shown in
Fig. 3 B, and the first component is omitted because, in theory, it is
the mean of all the components. The component spectrum from
each mapped region showed clear differences in edge maximum
and shape, suggesting different chemical phases. The component
spectra may be compared with the reference spectrum library to
suggest potential chemical phases in the decomposition map. For
qualitative analysis, a correlation matrix of the component spec-
trum ( normalized ) against the reference library ( Supplementary
Table S1 ) was created employing Pearson’s correlation coefficient 
( Supplementary Fig. S2 ) . The matrix suggests that the first com- 
ponent has a high correlation to LFP, and the third component has
a high correlation to Pyr. The correlation of the other two compo-
nents with the reference spectra was more ambiguous. The sec- 
ond component spectrum showed similarity to a few Fe ( III ) stan- 
dards. Likewise, the fourt component spectrum showed a match 
with Fe-phosphide, Fe ( II ) , and Fe ( 0 ) standards. The deconvoluted 
component spectra also showed a high correlation to each other 
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Table 1. Combinatorial XANES fitting results ( SS: stainless steel; Hem: hematite; Pyr: pyrite ) 

Name Set of reference standards The normalized coefficient for each component r -factor reduced χ2 

( i ) ( Goethite, LiFePO 4 , SS, Pyr, Hem ) ( 0.05, 0.50, 0.18, 0.11, 0.16 ) 0.000199 0.00253 
( ii ) ( LiFePO 4 , SS, Pyr, Hem ) ( 0.50, 0.18, 0.12, 0.20 ) 0.000174 0.00256 
( iii ) [Fe 2 ( SO 4 ) 3 , LiFePO 4 , SS, Pyr, Hem] ( 0.02, 0.50, 0.17, 0.12, 0.18 ) 0.000173 0.00257 
( iv ) ( LiFePO 4 , FePO 4 , SS, Pyr, Hem ) ( 0.50, 0.01, 0.18, 0.12, 0.18 ) 0.000173 0.00258 
( v ) ( Maghemite, LiFePO 4 , SS, Pyr, Hem ) ( 0.04, 0.50, 0.18, 0.12, 0.16 ) 0.000175 0.00259 
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 Supplementary Fig. S6B ) . It is worth mentioning that an experi-
entalist may also figure out the similarities in spectral shapes.
till, our goal is to establish the workflow with minimal human
nputs for larger, complicated datasets . 

hemical mapping 

hemical mapping aims to identify chemical phases at each pixel
y fitting the spectrum against known reference spectra. The
inear combination fitting of the spectrum is the benchmark
ethod for XANES analysis. However, identifying the probable

eference standards for the fitting is very crucial in computing
realistic” chemical state maps. If one has prior knowledge about
he sample ( e.g. phase identification from X-ray or electron
iffraction ) , the number and type of reference standards may
e selected accordingly. Otherwise, combinatorial fitting with a
arge pool of reference standards can be used to find the solution
y monitoring the goodness of the fits by statistical measures,
lthough this approach does not directly assess the fit accuracy
nd may not produce a unique result.30 Therefore, we used the
nformation from the NMF and XRF results to select the group
f possible reference spectra from the library, which contained
1 individual standards ( Supplementary Table S1 ) . The goal of
he combinatorial nano-XANES fitting methodology here was to
ptimize the parameters using the model sample. We performed
n automated combinatorial fitting ( > 1000 combinations ) of the
ano-XANES data. Because the potential chemical phases are
nown to us, the reliability and accuracy of the methodology
an be assessed and optimized. The results of the combinatorial
tting are ranked based on reduced χ2 , as shown in Table 1 . The
olution to the fit ranked second on the list. The unexpected
omponent in all the other solutions was a Fe ( III ) compound
ith ≤5% abundance. Therefore, the existence of this phase was
anually inspected using 2D chemical maps and concluded as
oise. These results suggest the need for further optimization of
he combinatorial method for complete automation. 
The summed XANES spectrum and the fits are shown in Fig. 4 A,
hich displays the goodness of the fit and weights used for each
eference spectrum ( Fig. 4 A ) . Next, the chemical state maps were
enerated by fitting the XANES spectrum at each pixel. Chemical
aps are the fitting coefficients of the reference compound in
D that show its spatial distribution ( Fig. 4 B ) . The major phase
n the particle mixture is LFP ( ∼50% spectral fraction ) aggregated
ith the other phases, followed by 20% Hem, 12% Pyr, and 18% SS
anoparticles ( spectral fractions ) . These results were reproduced
n ATHEANA program by fitting the integrated XANES spectrum
 Supplementary Fig. S10 ) . The reliability of the chemical mapping
s related to the quality of the single-pixel spectrum and the fit.
hus single-pixel spectrum and fit from each region are presented
n Fig. 4 C. Note that the model sample is rich in Fe, and a quantifi-
ble single-pixel spectrum may be acquired with a low acquisition
ime ( 50 ms/point here ) . But for trace metal analysis, one may
ntegrate the pixels ( binning ) or use higher dwell times for statisti-
ally reliable quantification by improving the signal-to-noise ratio.
e tested the possibility of obtaining chemical state maps from
oor S/N data was tested by adding random Gaussian noise to the
xisting data ( Supplementary Fig. S11 ) . Chemical state analysis
as performed using two datasets with standard deviation 3 ×
nd 10 × larger than the original data. The resulting chemical
tate maps that fitted with the reference standards were identical



Paper | 7 

(A) (B)

(C) (D)

Cl
K
Fe

-0.09

 0.14

i

ii

500 nm

5 μm 5 μm

Cl
K
Fe

7100 7120 7140 7160
Energy (eV)

N
or

m
.A

bs
or

pt
io

n
(a

.u
.)

Ref: Fe (III)

Ref: Fe (II)

iiFit

Fig. 5 Interaction of simulated air pollution particles [Fe ( III ) on carbon nanoparticles, Fe/CNP] with lung macrophages. A. Composite XRF map of Cl, K, 
and arrows highlight Fe/CNP nanoparticles ( 120 × 120 nm 

2 step size ) . B. Differential phase-contrast ( DPC ) image of the cell. C. High-resolution image 
( 50 × 50 nm 

2 step size ) of a Fe/CNP particle in association with the cell. D. Linear combination fit of XANES spectra from Fe/CNP particle with Fe ( III ) 
and Fe ( II ) reference standards. Data points inside the vertical lines were used for fitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the original data with noticeable noise ( Supplementary Fig.
S11 ) . However, the NMF analysis could not resolve the compo-
nents from the noisy data. The results test suggests the need
for a high-quality single pixel spectrum for component anal-
ysis and chemical mapping feasible by fitting with reference
standards. 

To reduce acquisition time and dose, several beamlines collect
multi-energy point XRF maps ( ∼10 energy points ) for oxidation
state mapping, instead of complete nano-XANES ( > 50 energy
point ) . To prove the feasibility of using XMIDAS for multi-energy
point data analysis, we generated 12 energy point data from the
original data ( 73 points ) . The energy points are selected based
on the characteristic peaks in the Fe spectrum library. The NMF
analysis with mutli-energy point data showed comparable results
original data ( Supplementary Fig. S12 ) as all the components
were deconvoluted. Similarly, chemical map analysis and quan-
tification results were reproduced using the multi-energy point
data ( Supplementary Fig. S13 and Supplementary Table S2 ) .
Hence, the XMIDAS workflow is extendable to micro/nanoprobe
beamlines for multi-energy point mapping experiments. 
Spectromicroscopy to characterize nanoparticles 
in biological cells 
This experiment aimed to show that X-ray spectromicroscopy 
tools can be used to examine the migration and fate of nanopar-
ticles after exposure to biological cells. After optimizing the data 
analysis workflow to examine heterogeneous chemical species,
we applied this technique to locate and characterize trace 
nanoparticles associated with a biological cell. Here we studied 
the interaction of carbon nanoparticles with surface-adsorbed 
Fe ( III ) ( Fe/CNP ) , which represents a synthetic component of nano- 
sized airborne particulate matter, with alveolar macrophages.22 , 32 

Biologically abundant elements such as P, S, K, Cl, etc., were 
mapped to determine the overall morphology of the cells, and 
metal-bearing nanoparticles were mapped in the hard X-ray en- 
ergy range. In Fig. 5 A, Cl and K maps show the cell morphology and
organelles, whereas the Fe/CNP nanoparticles 32 are also visible in 
the Fe map. In addition, the transmitted X-ray intensity was used 
to create a DPC image ( Fig. 5 B ) , which is in agreement with the flu-
orescence maps. Because DPC maps are sensitive to the change in
the refractive index of the medium, other cell components may be 
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isualized, independent of fluorescence imaging. The DPC images
an be used to interpret the organelles and the 2D location of the
anoparticles. 
The Fe-bearing nanoparticles in/on the cells were further anal-

sed using nano-XANES. The integrated XANES spectra from two
articles are shown in Fig. 5 D in comparison with Fe ( III ) and
e ( II ) reference standards ( Fe/CNP and LiFePO 4 , respectively ) . The
articles in contact with the cells showed a clear difference
ompared to the particle spectra collected before cell exposure
Fe ( III ) ref.] that indicated only Fe ( III ) . The linear combination
t showed a 29% Fe ( II ) contribution, suggesting the possibility
f Fe reduction associated with cell exposure. Note that the fit
as performed with reference compounds to quantify Fe oxida-
ion states. Expansion of the reference standard library with Fe
pecies and phases expected in biological systems is required
or chemical phase analysis. This experiment demonstrated that
anoscale trace particles could be located and examined in
eterogeneous biological environments using multi-model X-ray 
anospectroscopy. 

iscussion 

ultimodal nano-XRF and nano-XANES 

e illustrated that a combined analysis of nano-XRF and nano-
ANES provides a detailed understanding of the speciation of the
eterogeneous chemical systems. Having both the XANES spec-
rum and XRF spectrum at the same point serves as a validation
ool for chemical speciation from nano-XANES. As mentioned ear-
ier, the accuracy of chemical images from nano-XANES relies on
electing adequate reference standards. But having XRF maps of
he same sample facilitates the selection process to create a rea-
onable XANES reference spectrum library. In our example, there
ere regions with strong Fe–P correlations. Thus three available
e–P compounds [LFP, Fe ( III ) -phosphate, and Fe-phosphide] were
ncluded in the library. Similarly, Fe–S and Fe–Cr compounds were
ncluded in the fit. On the other hand, some reference compounds
uch as Fe-silicates and aluminosilicates were excluded from the
t. However, Fe-oxides, carbides, nitrides, organic-Fe, etc., cannot
e excluded from the fit because low- Z elements ( Z < 14 ) maps are
ot available. For instance, there were regions where only Fe was
etected in the model sample, which may be interpreted as either
e ( 0 ) or Fe + low- Z element composition ( Supplementary Fig. S8 ) .
s a result, available Fe-oxides, Fe–C, and metallic Fe compounds
ere included in the reference library. Thus, nano-XRF maps can
dd reasonable constraints to XANES fitting and, ultimately, the
ano-XANES analysis to precisely identify the component. Finally,
he XRF spectrum may confirm the XANES speciation in the same
egion. For example, if the XANES spectrum fit results suggest a
e–S compound, the presence of S in the XRF spectrum in the
ame area can be validated. The masking tools and interactive
isualizations in our software package enable such validations,
nd in the future, this process will be automated. It should be
oted that the generation of chemical maps is dependent on the
vailability of reference standards that requires either a large pool
f reference spectra or prior knowledge of the unknown compo-
ents. In the future, the use of computational modeling and data
haring depositories could be implemented in the workflow to
mprove this process.33 A practical challenge is worth mention-
ng here is the acquisition time for nano-XANES. As the experi-
ent is equivalent to collecting 60–70 XRF maps at different en-
rgy points, the total acquisition time is > 5 h, depending on the
ample strength. 
omponent analysis and conventional 
ano-XANES analysis 
ne limitation of the conventional nano-XANES analysis using
inear combination fitting is the need for a priori sample knowl-
dge to select appropriate reference standards for chemical imag-
ng. When the sample is unknown, the availability and selection
f a potential reference spectrum library is a cumbersome task. To
ddress this challenge, we showed that unsupervised dimension-
lity reduction algorithms could aid spectromicroscopy data anal-
sis by spectrum-based decomposition ( or clustering ) . PCA analy-
is is a common method used to decompose spectromicroscopy
ata in the past.16 , 18 Mirna et al. illustrated the application of
CA to examine soft X-ray spectromicroscopy data ( STXM ) .18 NMF
nd independent component analysis ( ICA ) was also used in prior
tudies for micro-XRF and STXM data as well.16 , 18 The decom-
osed eigenvectors and eigenvalues in PCA have no direct rela-
ionship to the XANES spectrum due to the negative values. Al-
ernatively, the NMF method with positivity constraint outputs
he eigenvectors and eigenvalues that can easily be transformed
nto interpretable XANES spectra. This methodology directly com-
ares the component spectra to XANES reference spectra. In ad-
ition to PCA, NMF, and ICA, we implemented and optimized
 few other decomposition methods such as factor analysis,34 

runcated-SVD,31 and dictionary learning 35 to the toolkit. We also
onfirmed that the PCA results obtained from XMIDAS and the
antis spectromicroscopy program are identical ( Supplementary
ig. S7 ) . The nano-XANES from the model sample are high-quality
ingle-pixel spectra; therefore, the decomposition models’ results
ere identical. So further optimizations are warranted for noisy
atasets in the future. 
Although the decomposition models yield decomposition of the

pectrum and image data, the prevalent use of these methods
s not widespread in the spectromicroscopy literature. Therefore,
e illustrated how this information could support the chemical
peciation of similar heterogeneous metallic systems. A direct
omparison of chemical state maps and NMF component maps
 Fig. 3 B ) clearly agree with the speciation using conventional mod-
ling ( Fig. 4 B ) . Because the NMF analysis does not require knowl-
dge of sample composition, the NMF model is valuable for de-
ision making during the experiment and narrowing down possi-
le reference standards during the post-analysis. Thus setting this
enchmark with the model sample with known speciation is es-
ential in the tool development. The NMF modeling also addresses
ome caveats of XRF correlation analysis. Here XRF correlation
nalysis showed three elemental correlations ( Fe–S, Fe–Cr, and Fe–
 ) in the aggregate due to the lack of low- Z elemental maps. But
he NMF model based on XANES spectral signatures correctly pre-
icted at least four chemical species in the aggregate. This analy-
is can be instrumental when the sample comprises two or more
xides, pure metals, or low- Z elements. In the future, sophisti-
ated algorithms or artificial intelligence tools 36 may be developed
o recognize the decomposed spectrum using reference library in-
ut and XRF spectrum for semi-automated chemical speciation. 

ultimodal analysis of bio–nanoparticle 

nteractions 
hase-contrast imaging was illustrated as another spectromi-
roscopy modality combined with XRF to study soft material
nterfaces with metallic systems. At the hard X-ray range, XRF
apping cannot image the morphology and abundance of soft
aterials such as biomolecules and polymers. However, the

ransmitted X-ray probe information simultaneously yields
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quantitative DPC images.13 This technique reveals the morphol-
ogy of the whole sample, regardless of the constituent elements.
Combining these modalities ( nano-XRF, and DPC ) is an avenue to
study cell–nanoparticle interactions. Furthermore, speciation of
the nanoparticles with nano-XANES data from the nanoparticles
sheds light on the mechanism of any chemical interaction of
nanoparticles in the cells. Here we identified spectral differences
between pre-and post-cell exposure nanoparticles that indicated
changes in Fe oxidation state, suggesting that the nanoparticles
had some chemical interaction ( s ) with the cells. In contrast to the
electron microscopy methods that typically require sectioning,
conductive coating, and labeling, the established methodology
allows direct interface measurement. The challenge in studying
the interaction of nanoparticles with biological systems with
X-ray nanoimaging techniques is the problems associated with
penetration depth and sensitivity.37 Herein, we demonstrated that
high sensitivity nano-XRF maps that can probe up to 10–30 μm
are ideal for studying trace elements interfaced with cells. In com-
parison with soft-X-ray spectromicroscopy, where a few hundred
nanometer-thin samples are required, a few micron-thick sections
may be analysed using hard X-ray spectromicroscopy. However,
self-absorption due to thick samples can result in incorrect quan-
tifications and speciation, although it is not a significant factor
in cell imaging. We are currently working on extending the self-
absorption correction approach developed for 3D-tomography to
the 2D XRF/XANES imaging.38 Although the 2D location of the
nanoparticles associated with the cells is clear from this study,
future tomography experiments are warranted to find the 3D lo-
cation of the particles and to formulate the mechanism of intake
and potential reactions.39 Radiation damage is a challenging prob-
lem in biological imaging with X-rays, although we did not observe
any visible damage to the cells in our experiments. In comparison,
hard X-rays are less damaging to cells than soft X-rays due to
the high absorption cross-section of C, N, and O.40 Nonetheless,
a detailed investigation in this area may require for nano-XANES
in combination with 3D tomography ( > 24 h of exposure ) . 

Conclusions 

We have demonstrated the technical capability and data analysis
methodologies of multimodal spectromicroscopy in characteriz-
ing heterogeneous chemical mixtures. The technical challenges
in spectromicroscopy data deduction ( 4D + to 2D ) were addressed
by creating custom data analysis methodologies and the open-
source toolkit. Our approach was to define and optimize the work-
flows with a heterogeneous model system with known chemical
composition to benchmark the feasibility and accuracy. Visual-
izing multidimensional data is another challenge in spectromi-
croscopy, where both image and spectrum axes provide mean-
ingful information about chemical speciation. The new graphical
user interface solves this problem through interactive plotting,
multi-correlation plots, and multicolor image overlays. The sec-
ond thrust of this paper was to combine the conventional meth-
ods of spectromicroscopy analysis with well-established machine
learning models for dimensionality reduction and clustering.
We optimized several decomposition algorithms for spectromi-
croscopy data and their connection to the conventional analysis
methods. In the future, advanced machine learning and artificial
intelligence tools may be incorporated into the workflow for ( semi )
automated data analysis. Our ongoing developments include ( i )
selection of XANES reference standards using XRF elemental in-
formation, ( ii ) minimization of energy points for reliable chemical
mapping, and ( iii ) better reference standard ranking system for
combinatorial fitting. Finally, the application of the techniques to 
study bio–nano interactions was presented, where the sensitiv- 
ity to both metallic nanoparticles and soft materials was utilized.
The current study paves the way for future investigations on the 
distribution, transformation, and fate of nano/microparticles in 
biological systems using multimodal spectromicroscopy tools.41 

We foresee the applications of this methodology in the fields of 
nanotoxicity, bio–nano imaging, and biomedicine.42 , 43 

Supplementary material 
Supplementary data are available at Metallomics online. 
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