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Abstract

Aging is associated with declines in a host of cognitive functions, including attentional control, 

inhibitory control, episodic memory, processing speed, and executive functioning. Theoretical 

models attribute the age-related decline in cognitive functioning to deficits in goal maintenance 

and attentional inhibition. Despite these well-documented declines in executive control resources, 

older adults endorse fewer episodes of mind-wandering when assessed using task-embedded 

thought probes. Furthermore, previous work on the neural basis of mind-wandering has mostly 

focused on young adults with studies predominantly focusing on the activity and connectivity of 

a select few canonical networks. However, whole-brain functional networks associated with mind-

wandering in aging have not yet been characterized. In this study, using response time variability

—the trial-to-trial fluctuations in behavioral responses—as an indirect marker of mind-wandering 

or an “out-of-the-zone” attentional state representing suboptimal behavioral performance, we show 

that brain-based predictive models of response time variability can be derived from whole-brain 

task functional connectivity. In contrast, models derived from resting-state functional connectivity 

alone did not predict individual response time variability. Finally, we show that despite successful 

within-sample prediction of response time variability, our models did not generalize to predict 

response time variability in independent cohorts of older adults with resting-state connectivity. 
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Overall, our findings provide evidence for the utility of task-based functional connectivity in 

predicting individual response time variability in aging. Future research is needed to derive more 

robust and generalizable models.
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1. Introduction

Humans spend a considerable amount of time engaged in thoughts involving spontaneous 

shifts of attention away from their external environment to their inner thoughts (Kane et 

al., 2007; Killingsworth and Gilbert, 2010). This phenomenon, colloquially known as mind-

wandering, has been studied in the literature under various titles, including task-unrelated 

thoughts, off-task thoughts, self-generated thoughts, zoning-out, and tuning-out (Esterman 

et al., 2013; Seli et al., 2018). Mind-wandering has important consequences for exogenous 

processing, with previous studies implicating off-task thinking in performance on tasks 

of reading comprehension (Unsworth and McMillan, 2013), working memory (Kane et 

al., 2007), episodic memory (Maillet and Rajah, 2016; Risko et al., 2012), as well as 

activities of daily living, like driving performance (Galéra et al., 2012; He et al., 2011). 

Given the ubiquitous downstream effects of these task-unrelated thoughts on cognitive 

performance, there has been an increasing interest in examining the developmental evolution 

of mind-wandering in the context of cognitive aging. Older adults show notable declines on 

tasks of cognitive functioning, including on tasks assessing attentional control, inhibitory 

control, episodic memory, processing speed, and executive functioning (Craik and Salthouse, 

2011; Glisky, 2007; Park et al., 2002; Tucker-Drob et al., 2009). These ubiquitous declines 

in controlled processing have largely been attributed to deficits in goal maintenance and 

attentional inhibition (Hasher and Zacks, 1988; Braver and West, 2008), thus suggesting 

that mind-wandering, involving the inability to suppress internally-focused thoughts, may be 

amplified with increasing age.

However, contrary to the anticipated positive relationship between mind-wandering and 

increasing age, there is unequivocal support for mind-wandering, as assessed through quasi-

randomly presented thought probes during cognitive tasks, to decrease with increasing age 

(see Maillet and Schacter, 2016 for a review). Older adults endorse fewer episodes of 

off-task thinking when probed during experimental tasks (Fountain-Zaragoza et al., 2018; 

Jackson and Balota, 2012; McVay et al., 2013), in everyday life as assessed using experience 

sampling techniques (Maillet et al., 2018), and on trait measures of mind-wandering (Seli et 

al., 2017). Additionally, individuals with Alzheimer’s disease endorse even fewer episodes 

of mind-wandering (Gyurkovics et al., 2018), evincing support for the further decline in 

off-task thinking with advancing age and deteriorating cognitive resources. This perplexing 

developmental trajectory of mind-wandering has catapulted several explanations for these 

age-related declines in mind-wandering. Some theoretical models propose an attenuation of 

age-related reductions in mind-wandering endorsement after controlling for older adults’ 
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increased motivation and interest of these laboratory-based tasks (Jackson and Balota, 

2012; Krawietz et al., 2012; Shake et al., 2016). Other models posit declining executive 

control abilities to constrain resources directed to internally-focused thoughts, thereby 

decreasing off-task thinking during demanding cognitive tasks (Smallwood and Schooler, 

2006). Age-related declines in mind-wandering have also been attributed to older adults’ 

need to perform well on lab-based cognitive tasks (Soubelet and Salthouse, 2011) and poorer 

meta-cognition (Maillet and Schacter, 2016), thus questioning the veridicality of thought 

probes in measuring mind-wandering with increasing age.

Although there is some evidence that these endorsements of mind-wandering may indeed 

reflect older adults’ mind-wandering propensity (Frank et al., 2015), there has also been 

an increasing interest in identifying and developing more objective indicators of mind-

wandering. Response time variability, or the trial-to-trial variance in reaction time, is one 

such identified marker. Increased individual variability in reaction time has been associated 

with self-reports of mind-wandering episodes (Bastian and Sackur, 2013; Henríquez et 

al., 2016; Jubera-García et al., 2020; Kucyi et al., 2016; Maillet et al., 2020) as well 

as other lapses in attention (Cheyne et al., 2009; Schooler et al., 2014). Using the 

metronome response task, Seli et al. (2013) reported higher variability in response times 

preceding off-task thought probes compared with variability prior to on-task thought reports. 

Moreover, there is evidence from neuroimaging studies supporting the involvement of the 

frontoparietal, dorsal attention, and ventral attention networks during off-task processing 

(Christoff et al., 2016; Esterman et al., 2013; Golchert et al., 2017; Hasenkamp et al., 

2012; Kucyi, 2018; Smallwood et al., 2016; Turnbull et al., 2019; Yamashita et al., 2021), 

suggesting that mind-wandering is a controlled, regulatory process requiring goal-directed 

neural processing. Indeed, mindfulness meditation training, which involves the cultivation of 

sustained attention, has been shown to notably reduce both self-reported and behaviorally 

measured mind wandering, like response time variability (Mrazek et al., 2012; Whitmoyer et 

al., 2020). Thus, with the re-direction of executive control resources to off-task thinking, less 

consistent (more variable) responding could be an important online behavioral correlate of 

mind-wandering.

Additionally, behavioral response variability has been employed to characterize distinct 

states of attentional fluctuation (Esterman et al., 2014, 2013; Yamashita et al., 2021). 

Consistent responding denotes an optimal “in-the-zone” state, whereas high response time 

variability is reflective of an “out-of-the-zone” state (Esterman et al., 2013; Esterman and 

Rothlein, 2019). Functional magnetic resonance imaging (fMRI) studies comparing optimal 

to suboptimal states highlight the contribution of activity in the default-mode network 

(Esterman et al., 2013; Fortenbaugh et al., 2018; Kucyi et al., 2016), including nodes in 

the precuneus, the anterior cingulate cortex, and the temporoparietal junction (Christoff et 

al., 2009; Mason et al., 2007; Wang et al., 2009) in supporting consistent responding. In 

contrast, activity in the dorsal attention network, known traditionally to subserve externally 

focused attention, was present during erratic responding (Esterman et al., 2013; Kucyi et al., 

2017).

Altogether, response time variability is an important metric that has been characterized to 

reflect fluctuations in attentional states and may be an important marker of mind-wandering, 
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especially in older adults. Although, the vast majority of findings from fMRI investigations 

of response time variability and thought probes as markers of mind-wandering to date 

have largely been based on data from young adults, there have been a handful of studies 

examining neural correlates of mind-wandering in older adults. Mind-wandering episodes 

have been linked with reduced communication between temporal and prefrontal regions of 

the default mode network (Martinon et al., 2019) and a reduced engagement of the medial 

and lateral prefrontal cortex as well as the left superior temporal gyrus (Maillet et al., 2019) 

in older adults. Other work has shown that mind-wandering frequency in older adults is 

associated with changes in connectivity within the default mode network. Specifically, these 

include an increased connectivity between regions of the lateral and medial temporal lobes 

and a decreased connectivity between the temporal pole and the dorsomedial prefrontal 

cortex (O’Callaghan et al., 2015). One common limitation is that previous fMRI studies 

were guided by a priori assumptions that involved focusing on specific brain regions 

or networks. Additionally, most previous studies typically employed classical univariate 

analysis based on general linear model or group-level inferences. One prominent drawback 

of these methods is the lack of proper characterization of brain function at the individual 

level (Dubois and Adolphs, 2016).

More recently, network neuroscience methods have been complimented by advances in 

machine learning, allowing us to gain unprecedented insight into the neural mechanisms 

underlying cognitive functioning. One such approach is connectome-based predictive 

modeling (CPM; Shen et al., 2017). CPM is a novel whole-brain, data-driven technique that 

allows for the derivation of brain-based predictive models from individualized functional 

connectivity patterns. Moreover, CPM allows for the identification of whole-brain functional 

connections that are associated with target cognitive function. Using whole brain, task-

based, or resting state functional connectivity, several recent studies have demonstrated 

the utility of the CPM technique in identifying individual differences in brain functional 

architecture. These have allowed for the construction of brain-based models capable of 

predicting fluid intelligence (Finn et al., 2015), processing speed (Gao et al., 2020), attention 

(Rosenberg et al., 2016), reading ability (Jangraw et al., 2018), working memory (Avery 

et al., 2020; Manglani et al., 2021), loneliness (Feng et al., 2019), mind-wandering (Kucyi 

et al., 2021), or even diseased states such as Alzheimer’s disease (Lin et al., 2018) and 

attention deficit hyperactivity disorder (ADHD; Barron et al., 2020). A recent fMRI study 

demonstrated the utility of CPM to build generalizable models of mind-wandering, as 

measured using an experience sampling method, in healthy young adults and adults with 

ADHD (Kucyi et al., 2021).

Here, leveraging the CPM framework, we examined whether response time variability 

can be predicted from whole-brain functional connectivity in a cross-sectional sample of 

cognitively normal older adults. Response time variability was quantified using the reaction 

time coefficient of variation (RT_CV) calculated as the standard deviation of reaction 

time/mean reaction time. Using data from publicly available datasets, we first investigated 

whether functional connectivity during an intrascanner Go/NoGo task and resting-state 

fMRI could predict response time variability. We also explored the utility of our model in 

predicting individual response time variability in two independent cohorts of healthy older 

adults. We hypothesized that task-based, whole-brain models of functional connectivity 
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would explain significant individual differences in response time variability in older adults 

with nodes of the default mode network, dorsal attention network, and the ventral attention 

network showing the highest contributions.

2. Materials and methods

2.1. Datasets overview

We analyzed functional MRI and behavioral data in 407 cognitively normal older adults 

between the ages of 65–85 years from three independent cohorts. These datasets were 

from the publicly available Human Connectome Project in Aging (Bookheimer et al., 

2019; Harms et al., 2018) (HCP-Aging) and Cambridge Centre for Ageing Neuroscience 

(Cam-CAN; Shafto et al., 2014; Taylor et al., 2017) databases. The third dataset, Studying 

Cognitive and Neural Aging (SCAN; Fountain-Zaragoza et al., 2021), was acquired by 

our group here at The Ohio State University, Columbus, OH. In the present study, the 

HCP-Aging was used as the primary dataset for model derivation and internal validation. 

Cam-CAN and SCAN served as the validation datasets used to assess the generalizability of 

the derived models.

2.2. Participants

2.2.1. HCP-Aging—HCP-Aging is an ongoing multisite study designed to acquire 

normative neuroimaging and behavioral data for examining changes in brain organization 

during typical aging. The dataset used in the current study was drawn from the first 

release (Lifespan HCP Release 1.0) and comprised of 689 cognitively healthy older adults 

(36–105 years). Participants were excluded from the HCP-Aging study if they had been 

diagnosed and treated for major neuropsychiatric and neurological disorders. Those with 

impaired cognitive abilities were also excluded. In the current study, we began by restricting 

our analysis to participants who are unrelated, aged 65–85 years, right-handed, and with 

fMRI and behavioral data available (n = 189). We then excluded participants with outlier 

performance (see Datasets description: Cognitive tasks) during cognitive task (n = 8). Of the 

remaining participants, those with excessive head motion during fMRI (n = 35, described 

below in Head Motion Control) and incidental finding (n = 1) were also excluded. Data 

for 145 participants (73 women, mean age = 73.8 years, SD = 5.8) met inclusion criteria 

and were analyzed further. All HCP-Aging participating sites obtained Institutional Review 

Board approval. Participants gave written informed consent at study enrollment.

2.2.2. Cam-CAN—Cam-CAN is a cross-sectional, population-based study established 

with the purpose of acquiring cognitive and multimodal neuroimaging data to investigate the 

neural mechanisms underlying successful cognitive aging. This dataset has been described 

elsewhere (Shafto et al., 2014; Taylor et al., 2017). We analyzed data from 168 right-handed 

cognitively normal adults aged 65 to 85 years. We excluded participants with missing 

cognitive data (n = 8). We also excluded an additional 58 participants due to excessive head 

motion during fMRI (see Head Motion Control). Two additional participants were excluded 

due to error in generating their connectivity matrices. These exclusions resulted in a final 

sample that consisted of 100 individuals (40 women, mean age = 73.12 years, SD = 5.8). 
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The Cam-CAN study was approved by the Cambridgeshire 2 Research Ethics Committee. 

Each participant gave written informed consent before participating in the study.

2.2.3. SCAN—SCAN was a cross-sectional study designed to characterize the 

neuromarker of sustained attention in healthy aging. We recruited 50, healthy, right-handed 

older adults between the ages of 65 and 85 years from the greater Columbus, Ohio 

area. All participants had normal or corrected-to-normal visual acuity, no contraindication 

to MR environment, and reported no history of learning disability, psychiatric disorder, 

neurological disorder or terminal illness. Participants were not using medication that could 

significantly alter brain activity. No participant scored less than 26 on the Montreal 

Cognitive Assessment (Nasreddine et al., 2005) (MoCA), indicating no evidence of mild 

cognitive impairment or dementia. Participants attended two experimental sessions separated 

by 7–14 days. Of the 50 participants recruited, we excluded participants due to incidental 

findings during MRI (n = 2) and MRI data acquisition error (n = 1). The resulting analytic 

sample comprised of 47 participants (25 women, mean age = 70.2, SD = 4.5). The study was 

approved by The Ohio State University Institutional Review Board. Each participant gave 

written informed consent at study enrollment and received monetary compensation for their 

time.

2.3. Datasets description: cognitive tasks

The target dependent variable for prediction was the reaction time coefficient of variability 

(RT_CV). Individual rate of mind-wandering can be indirectly quantified using the RT_CV, 

which is calculated as the standard deviation of reaction time (RT) divided by mean RT (RT 

standard deviation/RT mean). Higher RT_CV score in the context of reaction time data is 

considered to be reflective of higher rate of mind-wandering or a suboptimal attentional state 

(Bastian and Sackur, 2013; Hu et al., 2012).

2.3.1. HCP-Aging—Participants performed a Go/NoGo task known as the Conditioned 

Approach Response Inhibition Task (CARIT; Somerville et al., 2018) inside the MRI. 

During task performance, participants were instructed to rapidly press a button (“Go”) in 

response to seeing all shapes except for a circle and a square (“NoGo”). Go stimuli were 

six different previously unseen shapes including hexagon, octagon, parallelogram, pentagon, 

trapezoid, and plaque. Each stimulus was presented for 600 ms, followed by a jittered 

inter-trial interval of fixation, ranging from 1 s to 4.5 s. The allowable stimulus response 

time was 800 ms (including 600 ms during stimulus presentation and the first 200 ms of 

fixation). Data was acquired over a single 4-minute task run consisting of 68 Go and 24 

NoGo trials. We obtained the correct responses on the Go trials (Hits) for each participant 

and identified participants with outlier behavior as those with less than 50% Hits rate (n = 

8). Individual reaction time data on correct Go trials was used to compute a RT_CV score 

for each participant.

2.3.2. Cam-CAN—Participants performed a Choice Reaction Time outside of the 

scanner. During the task, participants viewed an onscreen image of a hand with four 

blank circles above each finger. Responses were recorded with a 4-button response box 

on which the participants were asked to place four fingers in their right hand on each of 
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the four buttons. During each trial, any of the four blank circles above each finger could 

turn black, and participants must press the corresponding button as quickly as possible. For 

example, when the index finger circle turns black on the image, participants press with 

their index finger as quickly as possible. The circle turns blank again after each response. 

The allowable stimulus response time was 3 s. Pseudo-random inter-trial intervals with the 

following details were used: minimum 1.8 s, mean 3.7 s, median 3.9 s, and maximum 

6.8 s. Participants completed a total of 67 trials. The reaction time from stimulus onset to 

button press was averaged across all four fingers for all correct trials. The CamCAN dataset 

provides already calculated RT_CV scores.

2.3.3. SCAN—Participants performed a Go/NoGo task outside of the scanner. Task and 

imaging data acquisition were conducted on separate days. In this task, participants pressed 

a key in response to frequently presented non-targets (or Go trials) and withheld their 

responses on NoGo trials that were preceded by an auditory tone. Each trial began with a 

fixation cross for 750 ms, followed by the stimulus presented for 750 ms with a maximum 

response window of 1500 ms. The task consisted of 6 blocks with each block consisting 

of 54 Go trials, 6 NoGo trials, and 3 self-report mind-wandering probes presented pseudo-

randomly after 15–20 trials (data not analyzed here). The entire task lasted approximately 35 

min. We computed RT_CV score for each participant using reaction time data on correct Go 

trials.

2.4. Datasets description: MRI data

2.4.1. HCP-Aging—Neuroimaging data was acquired with a Siemens 3 Tesla Prisma 

system with a 32-channel head coil. Anatomical T1-weighted images were acquired via a 

multiecho magnetization-prepared gradient-echo sequence (MPRAGE; repetition time (TR) 

= 2500 ms; echo time (TE) = 1.8 ms; voxel size = 0.8 × 0.8 × 0.8 mm; 208 sagittal slices; 

flip angle = 8°). Task and resting-state fMRI images were acquired using a 2D multiband 

gradient-recalled echo echo-planar imaging (EPI) sequence (TR = 800 ms, TE = 37 ms; 72 

axial slices; voxel size = 2.0 × 2.0 × 2.0 mm; flip angle = 52°; multiband factor = 8). A 

total of 300 volumes were acquired during a single run of task-fMRI that lasted 4 min 11 

s. Two sessions of eyes-open resting state fMRI (REST1 and REST2) were performed in 

a single day or across two days depending on site-specific constraints. Each resting state 

session consisted of two, separate 6 min 5 s runs, with opposite phase-encoding direction 

(i.e. REST1 Anterior-Posterior, REST1 Posterior-Anterior, REST2 Anterior-Posterior and 

REST2 Posterior-Anterior, hereafter collectively referred to as four resting-state scans). A 

total of 488 volumes were acquired for each of the four resting-state scans. Additionally, a 

pair of opposite phase-encoding spin-echo fieldmaps (anterior-to-posterior and posterior-to-

anterior; TR = 8000 ms, TE = 66 ms, flip angle = 90°) were acquired separately for task and 

resting-state and were used to correct functional images for signal distortion.

2.4.2. Cam-CAN—Structural and functional MRI data were acquired at the Medical 

Research Council Cognition and Brain Science Unit in Cambridge UK using a 3 Tesla 

Siemens TIM Trio scanner with a 32-channel head-coil. 3D T1-weighted structural images 

were acquired using a T1-weighted sequence using MPRAGE sequence with the following 

protocol parameters: TR = 2250 ms; TE = 2.98 ms; voxel size = 1.0 × 1.0 × 1.0 mm; 192 
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sagittal slices, flip angle = 9°, GRAPPA acceleration factor = 2. Eyes-closed resting-state 

fMRI data was acquired using a gradient-echo EPI sequence with the following parameters: 

TR = 1970 ms, TE = 30 ms; 32 axial slices; voxel size = 3.0 × 3.0 × 3.7 mm; flip angle = 

78°; acquisition time=8 min 40 s, total number of volumes = 261). Phase-encoded gradient 

echo fieldmaps (TR = 400 ms, TE = 5.19/7.65 ms, flip angle = 60°) were acquired and used 

for distortion correction.

2.4.3. SCAN—MRI data acquisition was performed at the Center for Cognitive and 

Behavioral Brain Imaging at The Ohio State University, using a 3 Telsa Siemens Magnetom 

Prisma MRI scanner with a 32-channel head coil. Structural T1-weighted images were 

acquired using a MPRAGE sequence (TR = 1900 ms; TE=4.44 ms; voxel size = 1.0 × 1.0 

× 1.0 mm; 176 sagittal slices, flip angle=12°). Eyes-open resting-state images were acquired 

using a whole-brain multiband EPI sequence (TR = 1000 ms, TE = 28 ms; 45 axial slices; 

voxel size = 3.0 × 3.0 × 3.0 mm; flip angle = 50°; multiband factor = 3, total number of 

volumes = 480). Fieldmaps were also acquired (TR = 512 ms, TE = 5.19/7.65 ms, flip angle 

= 60°) to correct the EPI images for signal distortion.

2.5. Preprocessing of MRI data

MRI NIfTI files were first organized according to the Brain Imaging Data Structure 

(BIDS) format (Gorgolewski et al., 2016) and validated with the BIDS validator v.1.5.6 

(https://bids-standard.github.io/bids-validator/). Preprocessing of structural and functional 

MRI data was similar in all three datasets and was performed using fMRIprep v1.5.0rc1, 

a Nipype based tool (Esteban et al., 2019). Each T1-weighted image was corrected for 

bias field with N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010). The T1w was then 

skull stripped using antsBrainExtraction.sh v2.1.0. Next, brain-extracted T1-weighted image 

was normalized to MNI space through nonlinear registration with antsRegistration tool 

(Avants et al., 2008). Brain tissue segmentation of cerebrospinal fluid (CSF), white matter, 

and gray matter was performed on the brain-extracted T1-weighted using FAST (Zhang 

et al., 2001). Functional data preprocessing involved the following steps: functional MRI 

data was corrected for susceptibility distortions using 3dQwarp (Cox and Hyde, 1997), 

co-registered to corresponding T1w configured with boundary-based registration with nine 

degrees-of-freedom (Greve and Fischl, 2009) and motion corrected using FSL MCFLIRT 

v5.0.9 (Jenkinson et al., 2012). Slice-timing correction was not performed on the HCP or 

the SCAN datasets. This step is considered to be unnecessary for datasets acquired using 

multiband pulse sequences with a short Time-to-Repetition as all slices in a volume are 

acquired much closer together (Glasser et al., 2013; Smith et al., 2013). However, due to the 

relatively long Time-to-Repetition used for the CamCAN data acquisition, we additionally 

performed slice-time correction (Sladky et al., 2011) in this dataset using 3dTshift 

from AFNI (Cox and Hyde, 1997). Motion correcting transformations, functional-to-T1w 

transformation, and T1w-to-MNI-template warp were concatenated and applied in a single 

step with antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. Physiological 

noise regressors were extracted based on CompCor procedure (Behzadi et al., 2007). Several 

confounding timeseries, including framewise displacement (FD) and global signal (Power 

et al., 2014), were calculated based on the functional data using the implementation 

of Nipype and used during nuisance regression (see Nuisance removal and filtering). 
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Many internal operations of fMRIPrep use Nilearn (Abraham et al., 2014), principally 

within the blood-oxygen-level-dependent (BOLD)-processing workflow. Additional details 

of the pipeline can be found here: https://fmriprep.readthedocs.io/en/latest/workflows.html. 

Following implementation of this pipeline, we obtained preprocessed functional data for 

each participant in their native BOLD space.

2.6. Nuisance removal and filtering

Preprocessed BOLD images were denoised using the signal.clean function within Nilearn 

(Abraham et al., 2014), which allowed for removal of several sources of spurious variance 

orthogonal to the temporal filters (Lindquist et al., 2019). For HCP-Aging, functional 

volumes acquired during the 8-s countdown period of task-fMRI were discarded. The first 

10 volumes of the resting-state data in all three datasets were also excluded to minimize 

magnetization equilibrium effects. Next, we created confound files for each scan for each 

participant with the following regressors: six rigid body motion parameters, six temporal 

derivatives and their squares (Friston et al., 1996), mean white matter, mean CSF, single 

timepoint regressor for outlier timeframes – defined in the current study as volumes with FD 

value ≥ 0.9 mm (Lemieux et al., 2007; Siegel et al., 2014), and mean global signal as prior 

work has shown that global signal regression strengthens the association between functional 

connectivity and behavior (Li et al., 2019). These confounds were regressed out of each 

preprocessed data. Temporal filtering was performed with a high-pass filter of 0.01 Hz to 

remove the effects of slow fluctuating noise such as scanner drift. Finally, spatial smoothing 

of functional data was performed using a Gaussian-smoothing kernel of 6-mm full width 

half maximum (FWHM).

2.7. Whole-brain parcellation and functional network construction

We next constructed whole brain functional connectivity matrices for each participant in the 

HCP-Aging dataset. Functional network nodes were defined based on the Shen 268-node 

functional parcellation scheme covering the cortical, subcortical, and cerebellar regions 

(Shen et al., 2013). First, we obtained subject and scan specific atlases by transforming the 

Shen atlas from its original standard space to each subject’s native functional MRI space. 

The derived subject and scan specific atlases were used to parcellate the brain into 268 

non-overlapping regions. Functional connectivity was defined as the Fisher z-transformed 

Pearson correlation coefficients between the mean timeseries of all pairs of the parcellated 

regions (i.e., nodes). As prior research has provided empirical support for task-based 

model performance to decrease following regression of task-evoked activations (Greene 

et al., 2020), our task-based functional connectivity matrices were constructed based on 

raw timeseries with no regression of task-evoked activations. Ultimately, we obtained a 

symmetric matrix representing the task fMRI functional connectivity (“task-FC”) for each 

subject. We repeated the above steps for each of the resting state scans, resulting in four 

resting state functional connectivity (“rest-FC”) matrices for each subject. Rest-FC from all 

four runs were then averaged to derive a single rest-FC per participant. The above-described 

procedures resulted in a task-FC and rest-FC for each participant in HCP-Aging dataset 

and were used in constructing predictive models independently. Finally, we used the above-

described pipeline to construct a rest-FC matrix for each participant in the Cam-CAN and 

SCAN datasets.
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2.8. Connectome-based predictive modeling

We adopted CPM with a leave-one-out cross validation approach in n = 145 participants 

to determine whether whole-brain functional connectivity could predict individual mind-

wandering. CPM analysis procedures involve three main stages including features 

extraction, model building, and prediction. During feature extraction, for each participant, 

we correlated each of the 35,778 edges (or functional connections between nodes) in the 

connectivity matrix with their observed RT_CV score using Spearman’s partial correlation 

with each participant’s mean FD value entered as a covariate. The resulting correlation 

coefficients, across participants, were thresholded at p < .01 (Beaty et al., 2018; Rosenberg 

et al., 2016; Shen et al., 2017). We then extracted sets of surviving edges that are positively 

(i.e., positive r values) or negatively (i.e., negative r values) associated with RT_CV 

scores. The weights of the positive edges and negative edges were averaged to obtain a 

positive-feature network and negative-feature network, respectively. In the current study, we 

defined the positive-feature network as the high response time variability network and the 

negative-feature network as the low response time variability network. The high response 

time variability network represents functional edges that are stronger in people with high 

trial-to-trial variability in response time, whereas the low response time variability network 

includes edges that are stronger in those with low variability in response time. A combined 

response time variability network was also computed as the difference between strengths in 

the high and low response time variability networks.

For model building, we used robust regression to fit single-subject summary network 

strength values from the high, low, and combined networks with RT_CV scores separately 

to build three predictive models namely the high response time variability, low response 

time variability and the combined models. At the prediction stage, we used the regression 

coefficients obtained in the trained models to predict RT_CV for the left-out participant. The 

entire process was repeated iteratively 145 times until each participant had served as the 

test participant. Predictive power was assessed via the Spearman’s rank correlation between 

observed and predicted RT_CV scores. This approach has been widely used in CPM and 

machine learning literature.

Statistical significance of prediction accuracy was assessed with permutation testing 

(Dosenbach et al., 2010). This involved repeating the entire CPM analysis 1000 times 

during which observed RT_CV scores were randomly shuffled across participants while 

preserving the structure of each functional connectivity matrix. For instance, functional 

connectivity matrix for subject 001 was paired with participant 002′s RT_CV score. The 

resulting nonparametric p-value from this null distribution, calculated as p = (1 + number 

of null prediction correlation values ≥ true prediction correlation value)/1001, allowed to 

determine whether model performance was significantly better than expected by chance. The 

entire CPM analysis was performed in MATLAB (The MathWorks, Inc.; version r2019b).

2.9. Anatomical distribution of predictive edges

To gain insight into the spatial distribution of relevant predictive edges (or connections) 

identified in the feature extraction stage of CPM, we defined consensus whole-brain network 

masks containing the edges that appeared in each iteration of leave-one-out cross validation 

Gbadeyan et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across all subjects (Rosenberg et al., 2016). Focusing on the models derived from task-FC, 

we constructed two separate masks to include edges that correlate positively (high response 

time variability network) or negatively (low response time variability network) with RT_CV. 

These masks were used to assess model generalizability between task and resting-state brain 

states and across datasets.

Next, to visualize the edges in each respective mask, all 268 nodes from the Shen atlas 

were grouped according to nine canonical brain networks that comprised seven networks 

from the Yeo’s 7-network cortical parcellation scheme (Yeo et al., 2011) and two networks 

from the Shen parcellation scheme (Greene et al., 2018; Noble et al., 2017; Shen et al., 

2013). Specifically, each node in the cortical region of the Shen atlas was assigned to the 

networks in the Yeo atlas based on their Dice similarity (Dice, 1945). As the Yeo atlas 

lacks full brain coverage, the original network assignment of the nodes in the subcortical 

and cerebellar networks of the Shen atlas was retained. The final nine networks included the 

visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, default mode, 

subcortical, and cerebellar networks. We next computed the number of connections between 

and within each pair of canonical networks. Crucially, we normalized the edge counts 

within each network and between each possible pair of networks to account for network 

sizes (Greene et al., 2018). This allowed us to explicitly characterize the contribution of 

each network and subsequently determine the networks that were overrepresented in our 

predictive models. Edges were visualized using BrainNet viewer toolbox (Xia et al., 2013) 

and Chord (https://pypi.org/project/chord/) in Python 3.

2.10. Cross-condition and external validation of predictive models

Trained models and consensus masks were applied to calculate network summary strength 

for each subject in the testing set. Network strength scores were then fitted with observed 

RT_CV scores to obtain predicted RT_CV scores. Performance was evaluated as the 

Spearman correlation between predicted and observed RT_CV scores with head motion 

added as a covariate. For cross-condition prediction analysis (Greene et al., 2018; Jiang et 

al., 2020), models generated from task-FC in n − 1 subjects were applied to the rest-FC 

matrix in the left out participant to predict trial-to-trial response time variability. In the 

cross-datasets’ application, models generated from task-FC were applied to resting state 

functional connectivity data in the CamCAN and SCAN datasets, separately.

2.11. Head motion control

Head motion during fMRI was quantified using mean FD. Following data preprocessing, 

participants (or runs in the case of HCP-Aging resting state scans) with mean FD values 

greater than 0.15 mm were excluded from further analyses. We also examined potential 

associations between RT_CV and head motion. Crucially, RT_CV was significantly 

associated with mean FD during task-fMRI (r = .22, p = .008), but not during resting-state 

fMRI (average FD across four runs: r = .15, p = .079). There was a significant association 

between RT_CV and head motion during resting-state in the CamCAN dataset (r = 0.23, 

p = .019). Although there was no significant association between head motion and RT_CV 

in the SCAN dataset (r = .02, p = .903), we chose to control for possible effects of head 

motion in all our analyses by including mean FD as a covariate. Specifically, for model 
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derivation analysis, we included mean FD as a covariate at the edge selection stage of CPM 

as described above. For model application analysis, we calculated the Spearman’s partial 

correlation between predicted and observed RT_CV scores while controlling for mean FD.

2.12. Control analysis

We performed validation analyses to assess the potential influence of several variables on 

our main results. (1) Covariates: We repeated CPM analysis by entering age, sex, and study 

sites independently as a covariate in addition to mean FD at the edge selection stage of 

CPM analysis. (2) Functional parcellation scheme: To validate our results with an alternative 

functional atlas and to ensure full coverage of the cortical, subcortical, and cerebellar 

regions, we used an atlas (McNabb et al., 2018) obtained by merging the cortical and 

subcortical regions of the human Brainnetome atlas (Fan et al., 2016) with a probabilistic 

atlas of the human cerebellum (Diedrichsen et al., 2009). We subsequently derived a whole-

brain atlas with 272 regions and reran the entire CPM analysis using the 272 × 272 matrices 

constructed with this atlas. (3) K-fold: Recent work suggests that the leave-one-out cross 

validation approach may lead to unstable and biased estimates (Varoquaux et al., 2017). To 

test if our main results are robust to the choice of cross-validation method used, we repeated 

the CPM analysis procedures described above using a repeated k-fold cross-validation 

approach (k = 2, 5, 10). For example, in the 2-fold (i.e., split-half) cross-validation, data 

was randomly split into 2 approximately equal subsets (i.e., 72 and 73), with one subset used 

as training set while the other was held out as the testing set. The 2-fold cross-validation was 

then repeated 1000 times to allow random assignment of participants into folds to avoid bias 

in fold assignment. In line with a previous CPM study (Goldfarb et al., 2020), we calculated 

model predictive power as the average Spearman’s correlation across all 1000 iterations. 

A null distribution predicting randomly shuffled RT_CV scores was also performed 1000 

times. The correlation values from the models predicting true RT_CV scores were compared 

to those from the null distribution to compute effect sizes.

2.13. Statistical analyses

Tests of normality were performed to determine the distribution of RT_CV scores in each 

cohort. Pearson correlation was used to determine if there was a relationship between 

RT_CV scores and other variables such as head motion, age, sex, and study sites. These 

statistical tests were performed using Pingouin v0.3.8 (https://pingouin-stats.org/; Vallat, 

2018) in Python 3. A p < .05 was considered significant and p-values are noted as reported 

by the statistical package used.

2.14. Correction for multiple comparisons

Multiple comparisons were corrected for where necessary by using the false discovery 

rate (FDR). Because the models (i.e., high, low, and combined) derived using the CPM 

approach are not independent, we opted to adjust only the permuted p values from the 

task-FC combined and rest-FC combined models by controlling the FDR at 5% using the 

Benjamin-Hochberg procedure (Benjamini and Hochberg, 1995). Note that the combined 

model consolidates information from both the high and low RT_CV models within each of 

the two respective brain states (i.e., task and rest). FDR correction was performed using the 
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p.adjust function in R. A FDR corrected p < .05 was set as the significant threshold for 

multiple comparisons.

3. Results

3.1. Predicting mind-wandering from whole-brain functional connectivity

Using the leave-one-subject-out cross-validation approach, we found that connectome-based 

models trained solely on whole-brain functional connectivity during task fMRI, but not 

resting state fMRI, can predict response time variability in healthy older adults. Specifically, 

using task-FC, the CPM based on high response time variability model (ρ = .25, pperm 

= .028, Fig. 1A), low response time variability model (ρ = .22, pperm = .043, Fig. 1A), 

and overall combined model (ρ = 0.25, pperm = .021, pFDR = .042, Fig. 1A) successfully 

predicted individual response time variability. We observed that the task-FC trained model 

utilized 268 functional connections, with 134 functional connections each in the high and 

low response time variability networks. However, we did not see significant associations 

between observed RT_CV scores and predicted RT_CV scores using resting-state CPM 

models for the high response time variability model (ρ = .11, pperm = .202, Fig. 1B), the low 

response time variability model (ρ = .08, pperm = .283, 1B), or the combined model (ρ = .09, 

pperm = .214, pFDR = .214, Fig. 1B).

3.2. Assessing cross-condition model generalizability

After establishing that response time variability can be predicted from individual functional 

connectivity during task fMRI, we next sought to investigate whether the task-FC derived 

models generalize across brain state in the same cohort. To prevent circularity, we applied 

models trained on task-FC matrices in n – 1 participants (i.e., 144 participants) to predict 

individual response time variability from rest-FC matrix in the left-out participant. We 

repeated this process until each participant has been held out as the test participant. This 

analysis revealed that task-FC trained models did not significantly predict response time 

variability from rest-FC data for high response time variability (ρ = .10, p = .392), low 

response time variability (ρ = .15, p = .078), and combined (ρ = .15, p = .072) models after 

covarying out mean FD during resting-state fMRI (Fig. 2).

3.3. Neuroanatomy of predictive edges

Having shown that task-FC models successfully predict response time variability, we next 

explored the spatial distribution of brain connections that contributed most to predictive 

power. Because slightly different edges were selected in each leave-one-out cross validation, 

we restricted our analysis to those that were repeatedly selected across all iterations. 

Consistent with previous CPM studies, these edges were widely distributed across the brain 

(Fig. 3A and B).

We began by summarizing all connections by canonical networks (Shen et al., 2013; 

Thomas Yeo et al., 2011) (Fig. 3C and D). We next calculated within-network and between-

network connections normalized by network size to allow for network-level visualization. 

In the high response time variability network, we identified the overrepresented networks 

as those with a value >1 (Fig. 4A and B, left panel). These overrepresented networks 
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include the somatomotor, ventral attention, subcortical, cerebellar, and the default mode 

networks. Furthermore, we found that in the high response time variability model, 

within-network connectivity of the subcortical network was the most utilized relative 

to connectivity within other brain networks (Fig. 3E). Additionally, we observed 

an overrepresentation of some network pairs that included the somatomotor—visual, 

somatomotor—dorsal attention, cerebellar—ventral attention, somatomotor—default mode, 

cerebellar—somatomotor, frontoparietal—ventral attention, and default mode—ventral 

attention networks (Fig. 4A).

In the same vein, we assessed the spatial distribution of connections in the low response 

time variability network i.e., those functional connections that were stronger during 

low trial-to-trial variability in response time. The frontoparietal, dorsal attention, limbic, 

and ventral attention networks were the most overrepresented networks in the low 

response time variability network. Moreover, connectivity between the dorsal attention—

frontoparietal, dorsal attention—ventral attention, ventral attention—somatomotor, visual—

frontoparietal, limbic—visual, limbic—ventral attention, and the limbic—dorsal attention 

networks contributed the most to the low response time variability network (Fig. 4B). 

Furthermore, we found an overrepresentation of intra-connectivity of the default mode, 

dorsal attention, and ventral attention networks (Fig. 3E), indicating that connections within 

these networks exhibited negative correlations with RT_CV.

3.4. Assessing model generalizability in independent datasets

Having established a robust within-sample prediction for task-FC derived models, we next 

aimed to investigate whether those models derived in HCP-Aging cohort would generalize 

to predict individual response time variability in two independent samples of n = 100 

(Cam-CAN data) and n = 47 (SCAN data) healthy older adults. Resting-state data is 

available in majority of publicly available datasets thus allowing for assessment of model 

generalizations in large samples. To this end, we obtained individual RT_CV scores and 

analyzed resting-state fMRI data in both cohorts using data analysis pipelines identical 

to those used in the HCP-Aging dataset, and subsequently constructed individual resting 

state functional connectivity matrix. We next applied our task-FC derived response time 

variability models to the rest-FC and RT_CV scores in both datasets, separately. We found 

that despite the successful in-sample application within the HCP-Aging cohort, our models 

did not generalize to predict response time variability in either the CamCAN cohort (high 

response time variability model: ρ = .07, p = .48; low response time variability model: ρ = 

−.11, p = .29; combined model: ρ = −.06, p = .59, Fig. 5A) or in the SCAN cohort (high 

response time variability model: ρ = .01, p = .96; low response time variability model: ρ = 

.16, p = .27; combined model: ρ = .11, p = .48, Fig. 5B).

3.5. Influence of known confounding variables on model performance

Lastly, we performed several control analyses to examine if the models that significantly 

predicted response time variability (i.e., task-FC derived models) in the HCP-Aging dataset 

are robust to known confounding variables such as age, sex, study sites, choice of cross-

validation method, and choice of parcellation scheme. To this end, we included head motion 

jointly with each of the variables as covariates at the edge selection stage of CPM LOOCV 
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analysis. Focusing on the combined model (i.e., model built by subtracting the network 

strength of the low RT_CV model from the network strength of the high RT_CV model), 

we found robust, but relatively low model performance when controlling for the potential 

effect of sex and age (marginally significant). Predictions remained largely unchanged 

after controlling for the potential effect of study sites (Supplementary Table 1). In line 

with a recent CPM study (Goldfarb et al., 2020), we determined the robustness of model 

performance in the repeated k-fold (k = 2, 5, and 10) cross-validation analysis using 

Cohen’s d effect size. Crucially, we found that the combined models robustly predict true 

RT_CV scores better than null values as demonstrated by large-to-moderate effect size 

(Supplementary Table 2). Finally, we found that model performance did not generalize to an 

alternative functional parcellation scheme (Supplementary Fig. 1).

4. Discussion

In this study, we developed a predictive model of response time variability in healthy 

older adults, using whole-brain functional connectivity, and tested the model’s ability to 

predict response time variability in two independent healthy elderly cohorts. First, we were 

able to demonstrate that individual response time variability, assessed using RT_CV, can 

be reliably predicted from task-based, whole-brain functional connectivity, but not from 

resting-state connectivity. The task-based predictive model was robust to the effect of 

sex, study sites, cross-validation method, and age (marginally significant); however, the 

model was not robust to an alternative functional parcellation scheme. Second, our analysis 

provided support for the differential involvement of key canonical networks, namely the 

somatomotor network, dorsal attention network, ventral attention network, visual network, 

frontoparietal network and the default mode network in high and low response time 

variability networks. Finally, despite within-sample prediction using task connectivity, our 

models did not generalize to predict individual response time variability using resting-state 

fMRI data either within the derivation sample or in the two independent healthy elderly 

cohorts. We discuss our results in detail below.

This work, to our knowledge, is the first study to utilize a machine learning approach 

and whole-brain functional connectivity to predict individual response time variability 

as an avenue to study brain correlates of mind-wandering in healthy older adults. Our 

results are consistent with the emerging literature demonstrating that machine learning 

approaches, particularly the CPM framework, can be utilized to predict individual cognitive 

outcomes from functional connectivity (Avery et al., 2020; Feng et al., 2019; Finn et al., 

2015; Gao et al., 2020; Jangraw et al., 2018; Kucyi et al., 2021; Rosenberg et al., 2016). 

The finding that rest-FC variance solely did not predict RT_CV is consistent with prior 

CPM work demonstrating that predictive utility is suboptimal when brain-based models of 

individual cognitive measures are trained on resting-state functional connectivity (Greene 

et al., 2018; Jiang et al., 2020; Tomasi and Volkow, 2020). It also suggests that task 

functional connectivity captures more connections relevant for the prediction of response 

time variability than resting-state functional connectivity.

Our supplementary analyses tested for the robustness of our predictive models against key 

confounds known to impact brain-behavior relationships. Our results suggested that the 
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task-based combined model, providing an estimate of the fit between observed scores and 

the relative strengths of the high vs. low RT_CV networks, was robust after controlling for 

variance associated with age, sex, and study sites. The effect sizes from repeated k-fold 

cross-validation analysis also revealed that, despite the relatively low mean correlations, 

the combined models robustly predict RT_CV better than null models as demonstrated 

by the moderate-to-large effect size differences. In contrast, however, we observed a 

significant drop in the fit between observed and predicted scores from the combined 

model using an alternate functional parcellation scheme. The choice of brain parcellation 

scheme in machine learning pipelines has recently been garnering attention with variations 

of parcellation schemes demonstrating a sizeable impact on the reliability and prediction 

accuracy of machine learning algorithms (Dadi et al., 2019). Regions of interest (ROIs), 

which serve as nodes to extract timeseries data, can be defined based on coordinates 

from existing literature; these functional parcellations were the basis of the Shen atlas and 

McNabb atlas employed in the current study. ROIs can additionally be defined based on 

anatomy, like the AAL (Tzourio-Mazoyer et al., 2002) or using data-driven approaches, 

such as k-means clustering or Independent Component Analysis (Beckmann and Smith, 

2004). Dadi et al. (2019), comparing these approaches, found that connectomes built 

using functional parcellations outperformed those built using anatomical atlases with 150 

brain parcellations being an optimal dimensionality for prediction accuracy. Thus, coarser 

parcellation resolutions may improve performance and yield more reliable biomarkers for 

network analyses (Abraham et al., 2017) or age prediction tasks (Liem et al., 2017). In our 

study, although the two parcellation schemes used were functionally defined, the number 

of brain regions was approximately 270. It is thus likely that the varied and specialized 

functional parcellations across the two atlases contributed to our lack of generalization 

across the two brain parcellation schemes. Future studies could benefit from adopting a more 

optimal approach that involves averaging across models trained on connectivity matrices 

from different parcellation schemes since determining the optimal atlas among the possible 

alternatives may not be feasible (Khosla et al., 2019).

Consistent with previous studies using the CPM framework, we demonstrate that the 

critical edges in our response time variability models were widespread across multiple 

brain networks. We begin by discussing the key findings in the high response time 

variability model. Emerging evidence suggests that along with the default mode network, 

mind-wandering is supported by other brain networks such as the frontoparietal and the 

dorsal attention networks (Christoff et al., 2009; Golchert et al., 2017; Hasenkamp et 

al., 2012; Smallwood et al., 2012). In line with these studies, we demonstrate that the 

high response time variability model, potentially indexing off-task thinking or fluctuations 

in attentional state, utilized large-scale networks that included the somatomotor, ventral 

attention, cerebellar, visual, and default mode networks. Specifically, our findings revealed 

that relative to the other brain networks, connectivity within the visual, ventral, and 

subcortical networks were the most represented in the high response time variability 

model. Our finding that the within-network connectivity in the visual network contributed 

substantially to the high response time variability model may be related to a previous 

finding that implicated certain networks, including the visual network in a brain state 

that associates with suboptimal task performance and increased reaction time variability 

Gbadeyan et al. Page 16

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Yamashita et al., 2021). Another recent study suggests that the visual network is sensitive 

to perturbations from mind-wandering (Zuberer et al., 2021). Likewise, previous studies 

have highlighted the importance of the nodes within the subcortical network in greater 

reaction time variability (Bellgrove et al., 2004) and mind-wandering (Christoff et al., 2016). 

Furthermore, we established that although the connectivity within the somatomotor network 

was not utilized for high reaction time variability prediction, this network had the highest 

overall representation when considering its interactions with other networks. This finding 

suggests that its role in predicting high reaction time variability may be more reflected in 

its interaction with other networks. Additionally, we observed that the inter-connectivity of 

the default mode network with the somatomotor and ventral attention networks were highly 

overrepresented. This pattern of result is consistent with previous research highlighting 

that the default mode network couples with other prominent brain networks during mind-

wandering (Godwin et al., 2017).

The low response time variability model, characterizing functional connections that 

were stronger during consistent responding, had high representation of nodes from the 

frontoparietal, dorsal attention, limbic, and the ventral attention networks. We also found 

that the strongest inter-network representation was between the frontoparietal and dorsal 

attention networks, with both networks represented in the top networks utilized by the 

low response time variability model when considering their mean overall contributions. 

Broadly, these findings are not surprising given existing evidence demonstrating that the 

frontoparietal network couples with the dorsal attention network in support of externally 

focused cognition (Spreng et al., 2010), which may reflect reduced variability in response 

time. Moreover, the high intra-network connectivity of the dorsal attention network within 

the low response time variability model may be related to evidence suggesting that the dorsal 

attention network directs attention externally to the task at hand (Corbetta et al., 2008), 

which may help explain why the connectivity within this network is only represented in 

the low response time variability model. Additionally, we found comparable contribution 

of the ventral attention network to the high and low response time variability models, 

which leads us to speculate that the functional contribution of this network to response time 

variability is not homogenous. Future research is needed to elucidate the potential functional 

heterogeneity within this brain network during response time variability.

The finding that our models did not generalize to predict response time variability from 

resting-state connectivity in two independent datasets of healthy, older adults is particularly 

striking given that previous studies have demonstrated the utility of the CPM framework 

to build generalizable models of various cognitive outcomes in novel datasets (Avery et 

al., 2020; Beaty et al., 2018; Gao et al., 2019; Jiang et al., 2018; Kucyi et al., 2021; 

Rosenberg et al., 2020). For example, a recent fMRI study in younger adults operationalized 

mind-wandering as stimulus-independent, task-unrelated thoughts (SITUT) and showed that 

the CPM methodology can be used to build generalizable models of mind-wandering in 

healthy young adults and ADHD adults (Kucyi et al., 2021). A major difference between the 

current findings and those from Kucyi et al. (2021) is that many of the intra-network and 

inter-network connectivity that contributed strongly to the SITUT models were not utilized 

to the same extent by our models. Nonetheless, we observed some similarities between 

the top network pairs utilized by the high response time variability model in the current 
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study and the high SITUT model (i.e., the model with positive correlation with SITUT) 

from Kucyi et al. (2021). These include connectivity between the frontoparietal—ventral 

attention, ventral attention—default mode, subcortical—frontoparietal, and somatomotor—

dorsal attention networks. Despite both models having some top network pairs in common, 

the network pairs with the greatest contribution to each model were different. Relatedly, 

the low response time variability and low SITUT models utilized different top network 

for prediction. On the one hand, these largely discrepant observations align with prior 

report of independent neural correlates of response time variability and self-reports of mind-

wandering (Kucyi et al., 2016). On the other hand, the similarities observed between the 

high response time variability and high SITUT models may suggest an association between 

increased response time variability and increased self-reports of mind-wandering episodes in 

older adults (Bastian and Sackur, 2013; Henríquez et al., 2016; Jubera-García et al., 2020; 

Kucyi et al., 2016; Maillet et al., 2020).

The inability of our model to generalize to independent cohorts may be related to inherent 

methodological differences, such as the variation between task and resting-state connectivity, 

between the derivation and validation datasets. Although there is evidence that functional 

connectivity at rest reflects reliable fingerprints of individual differences (Finn et al., 

2015; Miranda-Dominguez et al., 2014), it is plausible that resting-state connectivity in 

both derivation and validation datasets did not sufficiently capture variance in intrinsic 

connectivity necessary for predicting response time variability. Another possible explanation 

is the effect of varying degree of difficulty across the tasks performed by participants in 

the derivation and both validation datasets. According to the executive-resource hypothesis, 

task-related and task-unrelated thoughts compete for limited executive resources, implying 

that when the primary task is difficult, there is reduced or no resources available for mind-

wandering to occur, and consequently result in a decrease in response time variability. This 

pattern is reversed when the primary task is easy as mind-wandering tends to utilize unused 

executive resources available (Smallwood and Schooler, 2006). Empirical support for this 

hypothesis comes from prior studies that showed relationship between task difficulty and 

mind-wandering (Baird et al., 2012; Konishi et al., 2015; Smallwood et al., 2011; Thomson 

et al., 2013). Although all three datasets employed in the current study included variants 

of Go/No-Go tasks, it is plausible that the three tasks taxed executive control resources 

differentially. As such, our models derived based on the HCP data, did not fully capture 

nuances in response time variability patterns.

Although the current study provides novel contribution to the understanding of brain 

networks implicated in response time variability in healthy aging, several limitations should 

be noted. First, the task duration in the derivation dataset was relatively shorter than those 

used in the majority of previous behavioral studies that assessed mind-wandering objectively 

with RT_CV during Go/NoGo task performance (Carriere et al., 2010; Hu et al., 2012). A 

longer task time could allow the capture of more robust response time variability during 

ongoing task. Second, although we controlled for the potential effect of known confounds 

such as sex, age, head motion, and study sites on model performance, we did not control 

for potential effect of individual differences in cortical thickness. Prior work has shown 

that task-unrelated thought associates with individual differences in cortical thickness of 

the medial prefrontal and anterior cingulate cortices (Bernhardt et al., 2014). Third, our 
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models were derived based on an objective marker that has shown promise as an indirect 

measure of mind-wandering. Future studies that combine self-report, behavioral measures, 

and neurocognitive measures (Martinon et al., 2019; Smallwood and Schooler, 2015) may 

allow for the development of a more robust and generalizable models of mind-wandering in 

aging. Fourth, the finding that our model performance generalizes poorly to an alternative 

atlas suggests an influence of the choice of parcellation scheme. There is a clear and urgent 

need to better understand the impact of parcellation pipelines on prediction accuracy in older 

adults and clinical populations. Finally, considering the inability of our model to generalize 

to independent datasets of older adults, future studies leveraging a design that addresses 

these limitations could potentially result in an improved predictive model that generalizes to 

predict response time variability and mind-wandering in multiple validation datasets.

Despite these limitations, the present study demonstrates that within a population of healthy 

older adults, response time variability—an indirect marker of mind-wandering—can be 

reliably predicted from whole-brain task-based functional connectivity. However, resting-

state functional connectivity alone did not explain the significant variance. Our results also 

provide support for evidence that the default mode network, along with other networks such 

as frontoparietal, dorsal attention, visual, somatomotor and ventral attention, contributes 

to individual variability in response time. Collectively, these findings provide new insights 

into the neural mechanisms underlying an indirect marker of mind-wandering and further 

underscore the importance of individual differences and a whole-brain approach in fMRI 

studies of mind-wandering. Future research with task-based fMRI datasets of RT_CV is 

necessary to further assess the generalizability of our model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the National Institute on Aging of the National Institutes of Health (R01AG054427 
awarded to RSP). Some of the data and/or research tools used in the preparation of this manuscript were obtained 
from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics 
system created by the National Institutes of Health to provide a national resource to support and accelerate research 
in mental health. Dataset identifier(s): NIMH Data Archive Collection ID: #1155; NIMH Data Archive Digital 
Object Identifier: 10.15154/1521345. This manuscript reflects the views of the authors and may not reflect the 
opinions or views of the NIH or of the Submitters submitting original data to NDA. Additional data used in 
the preparation of this article was provided by the Cambridge Centre for Ageing and Neuroscience (CamCAN). 
CamCAN funding was provided by the United Kingdom Biotechnology and Biological Sciences Research Council 
(grant number BB/H008217/1), together with support from the United Kingdom Medical Research Council and 
University of Cambridge, United Kingdom. Finally, we would like to thank the Ohio Supercomputer Center for 
providing valuable computational resources used for data preprocessing.

References

Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B, Varoquaux G, 2017. 
Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example. 
Neuroimage 147, 736–745. [PubMed: 27865923] 

Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, 
Varoquaux G, 2014. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform 8, 14. 
doi:10.3389/fninf.2014.00014. [PubMed: 24600388] 

Gbadeyan et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Allan Cheyne J, Solman GJF, Carriere JSA, Smilek D, 2009. Anatomy of an error: a bidirectional 
state model of task engagement/disengagement and attention-related errors. Cognition 111, 98–113. 
doi:10.1016/j.cognition.2008.12.009. [PubMed: 19215913] 

Avants BB, Epstein CL, Grossman M, Gee JC, 2008. Symmetric diffeomorphic image registration 
with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. 
Image Anal 12, 26–41. doi:10.1016/j.media.2007.06.004. [PubMed: 17659998] 

Avery EW, Yoo K, Rosenberg MD, Greene AS, Gao S, Na DL, Scheinost D, Constable TR, Chun 
MM, 2020. Distributed patterns of functional connectivity predict working memory performance 
in novel healthy and memory-impaired individuals. J. Cognit. Neurosci 32, 241–255. doi:10.1162/
jocn_a_01487. [PubMed: 31659926] 

Baird B, Smallwood J, Mrazek MD, Kam JWY, Franklin MS, Schooler JW, 2012. Inspired 
by distraction: mind wandering facilitates creative incubation. Psychol. Sci 23, 1117–1122. 
doi:10.1177/0956797612446024. [PubMed: 22941876] 

Barron DS, Gao S, Dadashkarimi J, Greene AS, Spann MN, Noble S, Lake EMR, Krystal JH, 
Constable RT, Scheinost D, 2020. Transdiagnostic, connectome-based prediction of memory 
constructs across psychiatric disorders. Cereb. Cortex doi:10.1093/cercor/bhaa371.

Bastian M, Sackur J, 2013. Mind wandering at the fingertips: automatic parsing of subjective states 
based on response time variability. Front. Psychol..

Beaty RE, Kenett YN, Christensen AP, Rosenberg MD, Benedek M, Chen Q, Fink A, Qiu J, Kwapil 
TR, Kane MJ, Silvia PJ, 2018. Robust prediction of individual creative ability from brain functional 
connectivity. Proc. Natl. Acad. Sci 115, 1087–1092. doi:10.1073/pnas.1713532115. [PubMed: 
29339474] 

Beckmann CF, Smith SM, 2004. Probabilistic independent component analysis for functional magnetic 
resonance imaging. IEEE Trans. Med. Imaging 23, 137–152. doi:10.1109/TMI.2003.822821. 
[PubMed: 14964560] 

Behzadi Y, Restom K, Liau J, Liu TT, 2007. A component based noise correction method 
(CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101. doi:10.1016/
j.neuroimage.2007.04.042. [PubMed: 17560126] 

Bellgrove MA, Hester R, Garavan H, 2004. The functional neuroanatomical correlates of response 
variability: evidence from a response inhibition task. Neuropsychologia 42, 1910–1916. [PubMed: 
15381021] 

Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.

Bernhardt BC, Smallwood J, Tusche A, Ruby FJM, Engen HG, Steinbeis N, Singer T, 2014. 
Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences 
in self-generated thought and temporal discounting. Neuroimage 90, 290–297. doi:10.1016/
j.neuroimage.2013.12.040. [PubMed: 24384154] 

Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, Burgess GC, Curtiss 
SW, Diaz-Santos M, Elam JS, Fischl B, Greve DN, Hagy HA, Harms MP, Hatch OM, Hedden 
T, Hodge C, Japardi KC, Kuhn TP, Ly TK, Smith SM, Somerville LH, Uğurbil K, van der 
Kouwe A, Van Essen D, Woods RP, Yacoub E, 2019. The lifespan human connectome project in 
aging: an overview. Neuroimage 185, 335–348. doi:10.1016/j.neuroimage.2018.10.009. [PubMed: 
30332613] 

Braver TS, West R, 2008. Working memory, executive control, and aging.

Carriere JSA, Cheyne JA, Solman GJF, Smilek D, 2010. Age trends for failures of sustained attention. 
Psychol. Aging 25, 569–574. doi:10.1037/a0019363. [PubMed: 20677878] 

Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW, 2009. Experience sampling during 
fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. 
Acad. Sci. U.S.A 106, 8719–8724. doi:10.1073/pnas.0900234106. [PubMed: 19433790] 

Christoff K, Irving ZC, Fox KCR, Spreng RN, Andrews-Hanna JR, 2016. Mind-wandering as 
spontaneous thought: a dynamic framework. Nat. Rev. Neurosci 17, 718–731. doi:10.1038/
nrn.2016.113. [PubMed: 27654862] 

Gbadeyan et al. Page 20

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Corbetta M, Patel G, Shulman GL, 2008. The reorienting system of the human brain: from 
environment to theory of mind. Neuron 58, 306–324. doi:10.1016/j.neuron.2008.04.017. [PubMed: 
18466742] 

Cox RW, Hyde JS, 1997. Software tools for analysis and visualization of fMRI data. NMR Biomed. 
10, 171–178 doi:10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L. 
[PubMed: 9430344] 

Craik FIM, Salthouse TA, 2011. The Handbook of Aging and Cognition. Psychology press.

Dadi K, Rahim M, Abraham A, Chyzhyk D, Milham M, Thirion B, Varoquaux G, 
2019. Benchmarking functional connectome-based predictive models for resting-state fMRI. 
Neuroimage 192, 115–134. doi:10.1016/j.neuroimage.2019.02.062. [PubMed: 30836146] 

Dice LR, 1945. Measures of the amount of ecologic association between species. Ecology 26, 297–
302.

Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N, 2009. A probabilistic MR atlas of 
the human cerebellum. Neuroimage 46, 39–46. doi:10.1016/j.neuroimage.2009.01.045. [PubMed: 
19457380] 

Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel 
AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR, Barch DM, 
Petersen SE, Schlaggar BL, 2010. Prediction of individual brain maturity using fMRI. Science 
(80-.) 329, 1358. doi:10.1126/science.1194144, LP–1361.

Dubois J, Adolphs R, 2016. Building a science of individual differences from fMRI. Trends Cognit. 
Sci 20, 425–443. doi:10.1016/j.tics.2016.03.014. [PubMed: 27138646] 

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, 
DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ, 
2019. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116. 
doi:10.1038/s41592-018-0235-4. [PubMed: 30532080] 

Esterman M, Noonan SK, Rosenberg M, Degutis J, 2013. In the zone or zoning out? Tracking 
behavioral and neural fluctuations during sustained attention. Cereb. Cortex 23, 2712–2723. 
doi:10.1093/cercor/bhs261. [PubMed: 22941724] 

Esterman M, Rosenberg MD, Noonan SK, 2014. Intrinsic fluctuations in sustained attention and 
distractor processing. J. Neurosci 34, 1724. doi:10.1523/JNEUROSCI.2658-13.2014, LP –1730. 
[PubMed: 24478354] 

Esterman M, Rothlein D, 2019. Models of sustained attention. Curr. Opin. Psychol 29, 174–180. 
[PubMed: 30986621] 

Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff 
SB, Yu C, Jiang T, 2016. The human brainnetome atlas: a new brain atlas based on connectional 
architecture. Cereb. Cortex 26, 3508–3526. doi:10.1093/cercor/bhw157. [PubMed: 27230218] 

Feng C, Wang L, Li T, Xu P, 2019. Connectome-based individualized prediction of loneliness. Soc. 
Cognit. Affect. Neurosci 14, 353–365. doi:10.1093/scan/nsz020. [PubMed: 30874805] 

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable 
RT, 2015. Functional connectome fingerprinting: identifying individuals using patterns of brain 
connectivity. Nat. Neurosci 18, 1664–1671. doi:10.1038/nn.4135. [PubMed: 26457551] 

Fortenbaugh FC, Rothlein D, McGlinchey R, DeGutis J, Esterman M, 2018. Tracking behavioral and 
neural fluctuations during sustained attention: a robust replication and extension. Neuroimage 171, 
148–164. doi:10.1016/j.neuroimage.2018.01.002. [PubMed: 29307606] 

Fountain-Zaragoza S, Manglani HR, Rosenberg MD, Andridge R, Prakash RS, 2021. 
Defining a connectome-based predictive model of attentional control in aging. bioRxiv 
doi:10.1101/2021.02.02.429232, 2021.02.02.429232.

Fountain-Zaragoza S, Puccetti NA, Whitmoyer P, Prakash RS, 2018. Aging and attentional control: 
examining the roles of mind-wandering propensity and dispositional mindfulness. J. Int. 
Neuropsychol. Soc 24, 876–888. [PubMed: 30153873] 

Frank DJ, Nara B, Zavagnin M, Touron DR, Kane MJ, 2015. Validating older adults’ reports of less 
mind-wandering: an examination of eye movements and dispositional influences. Psychol. Aging 
30, 266–278. doi:10.1037/pag0000031. [PubMed: 25938246] 

Gbadeyan et al. Page 21

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R, 1996. Movement-related effects in 
fMRI time-series. Magn. Reson. Med 35, 346–355. doi:10.1002/mrm.1910350312. [PubMed: 
8699946] 

Galéra C, Orriols L, M’Bailara K, Laborey M, Contrand B, Ribéreau-Gayon R, Masson F, Bakiri 
S, Gabaude C, Fort A, Maury B, Lemercier C, Cours M, Bouvard MP, Lagarde E, 2012. Mind 
wandering and driving: responsibility case-control. BMJ 345, 1–7. doi:10.1136/bmj.e8105.

Gao M, Wong CHY, Huang H, Shao R, Huang R, Chan CCH, Lee TMC, 2020. Connectome-based 
models can predict processing speed in older adults. Neuroimage 223, 117290. doi:10.1016/
j.neuroimage.2020.117290. [PubMed: 32871259] 

Gao S, Greene AS, Constable RT, Scheinost D, 2019. Combining multiple connectomes 
improves predictive modeling of phenotypic measures. Neuroimage 201, 116038. doi:10.1016/
j.neuroimage.2019.116038. [PubMed: 31336188] 

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, 
Webster M, Polimeni JR, 2013. The minimal preprocessing pipelines for the human connectome 
project. Neuroimage 80, 105–124. [PubMed: 23668970] 

Glisky EL, 2007. Changes in cognitive function in human aging. Brain Aging 3–20.

Godwin CA, Hunter MA, Bezdek MA, Lieberman G, Elkin-Frankston S, Romero VL, Witkiewitz 
K, Clark VP, Schumacher EH, 2017. Functional connectivity within and between intrinsic brain 
networks correlates with trait mind wandering. Neuropsychologia 103, 140–153. doi:10.1016/
j.neuropsychologia.2017.07.006. [PubMed: 28705691] 

Golchert J, Smallwood J, Jefferies E, Seli P, Huntenburg JM, Liem F, Lauckner ME, Oligschläger 
S, Bernhardt BC, Villringer A, Margulies DS, 2017. Individual variation in intentionality in 
the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and 
limbic networks. Neuroimage 146, 226–235. doi:10.1016/j.neuroimage.2016.11.025. [PubMed: 
27864082] 

Goldfarb EV, Rosenberg MD, Seo D, Constable RT, Sinha R, 2020. Hippocampal seed 
connectome-based modeling predicts the feeling of stress. Nat. Commun 11, 1–10. doi:10.1038/
s41467-020-16492-2. [PubMed: 31911652] 

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard 
T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols 
BN, Nichols TE, Pellman J, Poline JB, Rokem A, Schaefer G, Sochat V, Triplett W, Turner JA, 
Varoquaux G, Poldrack RA, 2016. The brain imaging data structure, a format for organizing and 
describing outputs of neuroimaging experiments. Sci. Data 3, 1–9. doi:10.1038/sdata.2016.44.

Greene AS, Gao S, Nobel S, Scheinost D, Constable RT, 2020. How Tasks Change Whole-
Brain Functional Organization to Reveal Brain-Phenotype Relationships. Cell reports 8, 25–32. 
doi:10.1016/j.celrep.2020.108066.

Greene AS, Gao S, Scheinost D, Constable RT, 2018. Task-induced brain state manipulation improves 
prediction of individual traits. Nat. Commun 9. doi:10.1038/s41467-018-04920-3.

Greve DN, Fischl B, 2009. Accurate and robust brain image alignment using boundary-based 
registration. Neuroimage 48, 63–72. doi:10.1016/j.neuroimage.2009.06.060. [PubMed: 19573611] 

Gyurkovics M, Balota DA, Jackson JD, 2018. Mind-wandering in healthy aging and early 
stage Alzheimer’s disease. Neuropsychology 32, 89–101. doi:10.1037/neu0000385. [PubMed: 
28627905] 

Harms MP, Somerville LH, Ances BM, Andersson J, Barch DM, Bastiani M, Bookheimer SY, Brown 
TB, Buckner RL, Burgess GC, Coalson TS, Chappell MA, Dapretto M, Douaud G, Fischl B, 
Glasser MF, Greve DN, Hodge C, Jamison KW, Jbabdi S, Kandala S, Li X, Mair RW, Mangia S, 
Marcus D, Mascali D, Moeller S, Nichols TE, Robinson EC, Salat DH, Smith SM, Sotiropoulos 
SN, Terpstra M, Thomas KM, Tisdall MD, Ugurbil K, van der Kouwe A, Woods RP, Zöllei 
L, Van Essen DC, Yacoub E, 2018. Extending the human connectome project across ages: 
imaging protocols for the lifespan development and aging projects. Neuroimage 183, 972–984. 
doi:10.1016/j.neuroimage.2018.09.060. [PubMed: 30261308] 

Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW, 2012. Mind wandering and attention 
during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. 
Neuroimage 59, 750–760. doi:10.1016/j.neuroimage.2011.07.008. [PubMed: 21782031] 

Gbadeyan et al. Page 22

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hasher L, Zacks RT, 1988. Working memory, comprehension, and aging: A review and a new view. 
Psychology of learning and motivation 22, 193–225. doi:10.1016/S0079-7421(08)60041-9.

He J, Becic E, Lee YC, McCarley JS, 2011. Mind wandering behind the wheel: performance 
and oculomotor correlates. Hum. Factors 53, 13–21. doi:10.1177/0018720810391530. [PubMed: 
21469530] 

Henríquez RA, Chica AB, Billeke P, Bartolomeo P, 2016. Fluctuating minds: spontaneous 
psychophysical variability during mind-wandering. PLoS One 11, e0147174. [PubMed: 26863144] 

Hu N, He S, Xu B, 2012. Different efficiencies of attentional orienting in different wandering minds. 
Conscious. Cognit 21, 139–148. doi:10.1016/j.concog.2011.12.007. [PubMed: 22248446] 

Jackson JD, Balota DA, 2012. Mind-wandering in younger and older adults: converging evidence from 
the sustained attention to response task and reading for comprehension. Psychol. Aging 27, 106. 
[PubMed: 21707183] 

Jangraw DC, Gonzalez-Castillo J, Handwerker DA, Ghane M, Rosenberg MD, Panwar P, Bandettini 
PA, 2018. A functional connectivity-based neuromarker of sustained attention generalizes to 
predict recall in a reading task. Neuroimage 166, 99–109. doi:10.1016/j.neuroimage.2017.10.019. 
[PubMed: 29031531] 

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM, 2012. FSL. Neuroimage 62, 
782–790. doi:10.1016/j.neuroimage.2011.09.015. [PubMed: 21979382] 

Jiang R, Calhoun VD, Zuo N, Lin D, Li J, Fan L, Qi S, Sun H, Fu Z, Song M, Jiang T, Sui J, 
2018. Connectome-based individualized prediction of temperament trait scores. Neuroimage 183, 
366–374. doi:10.1016/j.neuroimage.2018.08.038. [PubMed: 30125712] 

Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, Xu Y, Fu Z, Bustillo J, Turner JA, Calhoun VD, 
Sui J, 2020. Task-induced brain connectivity promotes the detection of individual differences in 
brain-behavior relationships. Neuroimage 207, 116370. doi:10.1016/j.neuroimage.2019.116370. 
[PubMed: 31751666] 

Jubera-García E, Gevers W, Van Opstal F, 2020. Influence of content and intensity of thought on 
behavioral and pupil changes during active mind-wandering, off-focus, and on-task states. Atten. 
Percept. Psychophys 82, 1125–1135. doi:10.3758/s13414-019-01865-7. [PubMed: 31515772] 

Kane MJ, Brown LH, McVay JC, Silvia PJ, Myin-Germeys I, Kwapil TR, 2007. For whom the mind 
wanders, and when. Psychol. Sci 18, 614–621. doi:10.1111/j.1467-9280.2007.01948.x. [PubMed: 
17614870] 

Khosla M, Jamison K, Kuceyeski A, Sabuncu MR, 2019. Ensemble learning with 3D convolutional 
neural networks for functional connectome-based prediction. Neuroimage 199, 651–662. 
doi:10.1016/j.neuroimage.2019.06.012. [PubMed: 31220576] 

Killingsworth MA, Gilbert DT, 2010. A wandering mind is an unhappy mind. Science (80-.) 330, 932. 
10.1126/science.1192439

Konishi M, McLaren DG, Engen H, Smallwood J, 2015. Shaped by the past: the default mode network 
supports cognition that is independent of immediate perceptual input. PLoS One 10, e0132209. 
[PubMed: 26125559] 

Krawietz SA, Tamplin AK, Radvansky GA, 2012. Aging and mind wandering during text 
comprehension. Psychol. Aging 27, 951. [PubMed: 22686406] 

Kucyi A, 2018. Just a thought: how mind-wandering is represented in dynamic brain connectivity. 
Neuroimage 180, 505–514. doi:10.1016/j.neuroimage.2017.07.001. [PubMed: 28684334] 

Kucyi A, Esterman M, Capella J, Green A, Uchida M, Biederman J, Gabrieli JDE, Valera EM, 
Whitfield-Gabrieli S, 2021. Prediction of stimulus-independent and task-unrelated thought from 
functional brain networks. Nat. Commun 12, 1793. doi:10.1038/s41467-021-22027-0. [PubMed: 
33741956] 

Kucyi A, Esterman M, Riley CS, Valera EM, 2016. Spontaneous default network activity reflects 
behavioral variability independent of mind-wandering. Proc. Natl. Acad. Sci. U. S. A 113, 13899–
13904. doi:10.1073/pnas.1611743113. [PubMed: 27856733] 

Kucyi A, Hove MJ, Esterman M, Hutchison RM, Valera EM, 2017. Dynamic brain network correlates 
of spontaneous fluctuations in attention. Cereb. Cortex 27, 1831–1840. [PubMed: 26874182] 

Gbadeyan et al. Page 23

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D, 2007. Modelling large motion 
events in fMRI studies of patients with epilepsy. Magn. Reson. Imaging 25, 894–901. doi:10.1016/
j.mri.2007.03.009. [PubMed: 17490845] 

Li J, Kong R, Liégeois R, Orban C, Tan Y, Sun N, Holmes AJ, Sabuncu MR, Ge T, Yeo BTT, 2019. 
Global signal regression strengthens association between resting-state functional connectivity and 
behavior. Neuroimage 196, 126–141. [PubMed: 30974241] 

Liem F, Varoquaux G, Kynast J, Beyer F, Masouleh SK, Huntenburg JM, Lampe L, Rahim M, 
Abraham A, Craddock RC, 2017. Predicting brain-age from multimodal imaging data captures 
cognitive impairment. Neuroimage 148, 179–188. [PubMed: 27890805] 

Lin Q, Rosenberg MD, Yoo K, Hsu TW, O’Connell TP, Chun MM, 2018. Resting-state functional 
connectivity predicts cognitive impairment related to Alzheimer’s disease. Front. Aging Neurosci 
10, 1–10. doi:10.3389/fnagi.2018.00094. [PubMed: 29403371] 

Lindquist MA, Geuter S, Wager TD, Caffo BS, 2019. Modular preprocessing pipelines can reintroduce 
artifacts into fMRI data. Hum. Brain Mapp 40, 2358–2376. doi:10.1002/hbm.24528. [PubMed: 
30666750] 

Maillet D, Beaty RE, Adnan A, Fox KCR, Turner GR, Spreng RN, 2019. Aging and the wandering 
brain: age-related differences in the neural correlates of stimulus-independent thoughts. PLoS One 
14, e0223981. [PubMed: 31613920] 

Maillet D, Beaty RE, Jordano ML, Touron DR, Adnan A, Silvia PJ, Kwapil TR, Turner GR, Spreng 
RN, Kane MJ, 2018. Age-related differences in mind-wandering in daily life. Psychol. Aging 33, 
643–653. doi:10.1037/pag0000260. [PubMed: 29902056] 

Maillet D, Rajah MN, 2016. Assessing the neural correlates of task-unrelated thoughts during episodic 
encoding and their association with subsequent memory in young and older adults. J. Cognit. 
Neurosci 28, 826–841. doi:10.1162/jocn_a_00935. [PubMed: 26845110] 

Maillet D, Schacter DL, 2016. From mind wandering to involuntary retrieval: age-related differences 
in spontaneous cognitive processes. Neuropsychologia 80, 142–156. [PubMed: 26617263] 

Maillet D, Yu L, Hasher L, Grady CL, 2020. Age-related differences in the impact of mind-
wandering and visual distraction on performance in a go/no-go task. Psychol. Aging 35, 627–638. 
doi:10.1037/pag0000409. [PubMed: 32744846] 

Manglani HR, Fountain-Zaragoza S, Shankar A, Nicholas JA, Prakash RS, 2021. Employing 
Connectome-Based Models to Predict Working Memory in Multiple Sclerosis. Brain Connect. 
doi:10.1089/brain.2021.0037.

Martinon LM, Smallwood J, McGann D, Hamilton C, Riby LM, 2019. The disentanglement 
of the neural and experiential complexity of self-generated thoughts: a users guide to 
combining experience sampling with neuroimaging data. Neuroimage 192, 15–25. doi:10.1016/
j.neuroimage.2019.02.034. [PubMed: 30802513] 

Mason MF, Norton MI, Horn J.D.Van, Wegner DM, Grafton ST, Macrae CN, Mason MF, Norton MI, 
Horn JDV, Wegner DM, Grafton ST, Macrae CN, 2007. Wandering minds: stimulus-independent 
thought. Science (80-.) 315, 393–395.

McNabb CB, Tait RJ, McIlwain ME, Anderson VM, Suckling J, Kydd RR, Russell BR, 2018. 
Functional network dysconnectivity as a biomarker of treatment resistance in schizophrenia. 
Schizophr. Res 195, 160–167. doi:10.1016/j.schres.2017.10.015. [PubMed: 29042073] 

McVay JC, Meier ME, Touron DR, Kane MJ, 2013. Aging ebbs the flow of thought: adult age 
differences in mind wandering, executive control, and self-evaluation. Acta Psychol. (Amst). 142, 
136–147. [PubMed: 23261422] 

Miranda-Dominguez O, Mills BD, Carpenter SD, Grant KA, Kroenke CD, Nigg JT, Fair DA, 2014. 
Connectotyping: model based fingerprinting of the functional connectome. PLoS One 9, e111048. 
[PubMed: 25386919] 

Mrazek MD, Smallwood J, Schooler JW, 2012. Mindfulness and mind-wandering: finding convergence 
through opposing constructs. Emotion 12, 442. [PubMed: 22309719] 

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, 
Chertkow H, 2005. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild 
cognitive impairment. J. Am. Geriatr. Soc 53, 695–699. doi:10.1111/j.1532-5415.2005.53221.x. 
[PubMed: 15817019] 

Gbadeyan et al. Page 24

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Noble S, Spann MN, Tokoglu F, Shen X, Constable RT, Scheinost D, 2017. Influences on the test-
retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cereb. 
Cortex 27, 5415–5429. doi:10.1093/cercor/bhx230. [PubMed: 28968754] 

O’Callaghan C, Shine JM, Lewis SJG, Andrews-Hanna JR, Irish M, 2015. Shaped by our thoughts 
- a new task to assess spontaneous cognition and its associated neural correlates in the default 
network. Brain Cognit. 93, 1–10. doi:10.1016/j.bandc.2014.11.001. [PubMed: 25463243] 

Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK, 2002. Models of 
visuospatial and verbal memory across the adult life span. Psychol. Aging 17, 299. [PubMed: 
12061414] 

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE, 2014. Methods to 
detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341. 
doi:10.1016/j.neuroimage.2013.08.048. [PubMed: 23994314] 

Risko EF, Anderson N, Sarwal A, Engelhardt M, Kingstone A, 2012. Everyday attention: variation 
in mind wandering and memory in a lecture. Appl. Cognit. Psychol 26, 234–242. doi:10.1002/
acp.1814.

Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X, Constable RT, Chun MM, 2016. A 
neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci 19, 
165–171. doi:10.1038/nn.4179. [PubMed: 26595653] 

Rosenberg MD, Scheinost D, Greene AS, Avery EW, Kwon YH, Finn ES, Ramani R, Qiu M, Todd 
Constable R, Chun MM, 2020. Functional connectivity predicts changes in attention observed 
across minutes, days, and months. Proc. Natl. Acad. Sci. U. S. A 117, 3797–3807. doi:10.1073/
pnas.1912226117. [PubMed: 32019892] 

Schooler JW, Mrazek MD, Franklin MS, Baird B, Mooneyham BW, Zedelius C, Broadway JM, 2014. 
The middle way: finding the balance between mindfulness and mind-wandering. Psychol. Learn. 
Motiv 60, 1–33.

Seli P, Cheyne JA, Smilek D, 2013. Wandering minds and wavering rhythms: linking mind wandering 
and behavioral variability. J. Exp. Psychol. Hum. Percept. Perform 39, 1. [PubMed: 23244046] 

Seli P, Kane MJ, Smallwood J, Schacter DL, Maillet D, Schooler JW, Smilek D, 2018. Mind-
wandering as a natural kind: a family-resemblances view. Trends Cognit. Sci 22, 479–490. 
doi:10.1016/j.tics.2018.03.010. [PubMed: 29776466] 

Seli P, Maillet D, Smilek D, Oakman JM, Schacter DL, 2017. Cognitive aging and the distinction 
between intentional and unintentional mind wandering. Psychol. Aging 32, 315. [PubMed: 
28471215] 

Shafto MA, Tyler LK, Dixon M, Taylor JR, Rowe JB, Cusack R, Calder AJ, Marslen-Wilson WD, 
Duncan J, Dalgleish T, Henson RN, Brayne C, Matthews FE, Cam-CAN, 2014. The Cambridge 
Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, 
multidisciplinary examination of healthy cognitive ageing. BMC Neurol 14, 204. doi:10.1186/
s12883-014-0204-1. [PubMed: 25412575] 

Shake MC, Shulley LJ, Soto-Freita AM, 2016. Effects of individual differences and situational features 
on age differences in mindless reading. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci 71, 808–820. 
[PubMed: 25765314] 

Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, Constable RT, 
2017. Using connectome-based predictive modeling to predict individual behavior from brain 
connectivity. Nat. Protoc 12, 506–518. doi:10.1038/nprot.2016.178. [PubMed: 28182017] 

Shen X, Tokoglu F, Papademetris X, Constable RT, 2013. Groupwise whole-brain parcellation from 
resting-state fMRI data for network node identification. Neuroimage 82, 403–415. doi:10.1016/
j.neuroimage.2013.05.081. [PubMed: 23747961] 

Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, Petersen SE, 2014. Statistical 
improvements in functional magnetic resonance imaging analyses produced by censoring high-
motion data points. Human brain mapping 35, 1981–1996. doi:10.1002/hbm.22307. [PubMed: 
23861343] 

Sladky R, Friston KJ, Tröstl J, Cunnington R, Moser E, Windischberger C, 2011. Slice-timing 
effects and their correction in functional MRI. Neuroimage 58, 588–594. doi:10.1016/
j.neuroimage.2011.06.078. [PubMed: 21757015] 

Gbadeyan et al. Page 25

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smallwood J, Brown K, Baird B, Schooler JW, 2012. Cooperation between the default mode network 
and the frontal-parietal network in the production of an internal train of thought. Brain Res 1428, 
60–70. doi:10.1016/j.brainres.2011.03.072. [PubMed: 21466793] 

Smallwood J, Brown KS, Tipper C, Giesbrecht B, Franklin MS, Mrazek MD, Carlson JM, Schooler 
JW, 2011. Pupillometric evidence for the decoupling of attention from perceptual input during 
offline thought. PLoS One 6, e18298. [PubMed: 21464969] 

Smallwood J, Karapanagiotidis T, Ruby F, Medea B, de Caso I, Konishi M, Wang HT, Hallam G, 
Margulies DS, Jefferies E, 2016. Representing representation: integration between the temporal 
lobe and the posterior cingulate influences the content and form of spontaneous thought. PLoS 
One 11, e0152272. [PubMed: 27045292] 

Smallwood J, Schooler JW, 2015. The science of mind wandering: empirically navigating the stream 
of consciousness. Annu. Rev. Psychol 66, 487–518. doi:10.1146/annurev-psych-010814-015331. 
[PubMed: 25293689] 

Smallwood J, Schooler JW, 2006. The restless mind. Psychol. Bull doi:10.1037/0033-2909.132.6.946.

Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, 
Griffanti L, Harms MP, 2013. Resting-state fMRI in the human connectome project. Neuroimage 
80, 144–168. [PubMed: 23702415] 

Somerville LH, Bookheimer SY, Buckner RL, Burgess GC, Curtiss SW, Dapretto M, Elam JS, Gaffrey 
MS, Harms MP, Hodge C, Kandala S, Kastman EK, Nichols TE, Schlaggar BL, Smith SM, 
Thomas KM, Yacoub E, Van Essen DC, Barch DM, 2018. The lifespan human connectome 
project in development: a large-scale study of brain connectivity development in 5–21 year olds. 
Neuroimage 183, 456–468. doi:10.1016/j.neuroimage.2018.08.050. [PubMed: 30142446] 

Soubelet A, Salthouse TA, 2011. Influence of social desirability on age differences in self-reports of 
mood and personality. J. Pers 79, 741–762. [PubMed: 21682727] 

Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL, 2010. Default network activity, 
coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 
53, 303–317. doi:10.1016/j.neuroimage.2010.06.016. [PubMed: 20600998] 

Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, Tyler LK, Cam-CAN, 
Henson RN, 2017. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data 
repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult 
lifespan sample. Neuroimage 144, 262–269. doi:10.1016/j.neuroimage.2015.09.018. [PubMed: 
26375206] 

Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, 
Smoller JW, Zöllei L, Polimeni JR, Fisch B, Liu H, Buckner RL, 2011. The organization of 
the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol 106, 
1125–1165. doi:10.1152/jn.00338.2011. [PubMed: 21653723] 

Thomson D, Besner D, Smilek D, 2013. In pursuit of off-task thought: mind wandering-performance 
trade-offs while reading aloud and color naming. Front. Psychol 4, 360. doi:10.3389/
fpsyg.2013.00360. [PubMed: 23785351] 

Tomasi D, Volkow ND, 2020. Network connectivity predicts language processing in healthy adults. 
Hum. Brain Mapp 41, 3696–3708. doi:10.1002/hbm.25042. [PubMed: 32449559] 

Tucker-Drob EM, Johnson KE, Jones RN, 2009. The cognitive reserve hypothesis: a longitudinal 
examination of age-associated declines in reasoning and processing speed. Dev. Psychol 45, 431. 
[PubMed: 19271829] 

Turnbull A, Wang HT, Schooler JW, Jefferies E, Margulies DS, Smallwood J, 2019. The ebb 
and flow of attention: between-subject variation in intrinsic connectivity and cognition 
associated with the dynamics of ongoing experience. Neuroimage 185, 286–299. doi:10.1016/
j.neuroimage.2018.09.069. [PubMed: 30266263] 

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC, 2010. N4ITK: improved 
N3 Bias correction. IEEE Trans. Med. Imaging 29, 1310–1320. doi:10.1109/TMI.2010.2046908. 
[PubMed: 20378467] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot 
M, 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical 

Gbadeyan et al. Page 26

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289. doi:10.1006/
nimg.2001.0978. [PubMed: 11771995] 

Unsworth N, McMillan BD, 2013. Mind wandering and reading comprehension: examining the roles 
of working memory capacity, interest, motivation, and topic experience. J. Exp. Psychol. Learn. 
Mem. Cognit 39, 832–842. doi:10.1037/a0029669. [PubMed: 22905931] 

Vallat R, 2018. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026.

Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B, 2017. Assessing 
and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage 145, 166–179. 
doi:10.1016/j.neuroimage.2016.10.038. [PubMed: 27989847] 

Wang K, Yu C, Xu Lijuan, Qin W, Li K, Xu Lin, Jiang T, 2009. Offline memory reprocessing: 
involvement of the brain’s default network in spontaneous thought processes. PLoS One 4. 
doi:10.1371/journal.pone.0004867.

Whitmoyer P, Fountain-Zaragoza S, Andridge R, Bredemeier K, Londeree A, Kaye L, Prakash RS, 
2020. Mindfulness training and attentional control in older adults: a randomized controlled trial. 
Mindfulness 11, 203–218.

Xia M, Wang J, He Y, 2013. BrainNet viewer: a network visualization tool for human brain 
connectomics. PLoS One 8, e68910. [PubMed: 23861951] 

Yamashita A, Rothlein D, Kucyi A, Valera EM, Esterman M, 2021. Brain state-based detection of 
attentional fluctuations and their modulation. Neuroimage 236, 118072. [PubMed: 33882346] 

Zhang Y, Brady M, Smith S, 2001. Segmentation of brain MR images through a hidden Markov 
random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 
45–57. doi:10.1109/42.906424. [PubMed: 11293691] 

Zuberer A, Kucyi A, Yamashita A, Wu CM, Walter M, Valera EM, Esterman M, 2021. Integration 
and segregation across large-scale intrinsic brain networks as a marker of sustained attention 
and task-unrelated thought. Neuroimage 229, 117610. doi:10.1016/j.neuroimage.2020.117610. 
[PubMed: 33418073] 

Gbadeyan et al. Page 27

Neuroimage. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Predictive model performance showing cross-validated prediction of individual variability 

in response time from whole-brain A) Task functional connectivity, and B) Resting-state 

functional connectivity. Scatterplot represents Spearman correlation between the observed 

RT_CV and the predicted RT_CV scores. Histogram shows distribution of correlation values 

obtained by randomly shuffling connectivity matrices and respective RT_CV scores 1000 

times to determine model significance. RT_CV: Reaction time coefficient of variation; rs: 

Spearman correlation; p1000: p value obtained after 1000 iterations permutation.
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Fig. 2. 
Cross-condition model performance. Models trained on task fMRI functional connectivity 

were applied to resting-state functional connectivity in the same sample to predict response 

time variability. Head motion was added as a covariate. RT_CV: Reaction time coefficient of 

variation, rs: Spearman correlation.
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Fig. 3. 
Anatomical distribution of predictive edges from models trained on task functional 

connectivity. A) Predictive edges (n = 134) in the high RT_CV model. B) Predictive 

edges (n = 134) in the low RT_CV model. Each node in the brain-based figure is colored 

based on nine canonical networks. To aid visualization, predictive edges in C) high and 

D) low RT_CV models were further grouped according to their canonical network and 

visualized using chord plots. E) Normalized contribution of edges within each network in 

the low RT_CV and high RT_CV models. CBL: cerebellar network; DAN: dorsal attention 

network, DMN: default mode network, FP: frontoparietal network, LIM: limbic network; 

SOM: somatomotor network; SC: subcortical, VAN: ventral attention network; VIS: visual 

attention network; RT_CV: Reaction time coefficient of variation.
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Fig. 4. 
Relative contribution of each canonical network to model performance. The predictive edge 

counts were normalized between and within each possible pair of networks to account 

for network sizes (see Anatomical Distribution of Predictive Edges). Overrepresented 

networks were identified as those with values > 1. Representation of each network in the 

A) High RT_CV, and B) Low RT_CV. CBL: cerebellar network; DAN: dorsal attention 

network, DMN: default mode network, FP: frontoparietal network, LIM: limbic network; 

SOM: somatomotor network; SC: subcortical, VAN: ventral attention network; VIS: visual 

attention network; RT_CV: Reaction time coefficient of variation.
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Fig. 5. 
Summary of model performance in two independent datasets. Model trained on task 

functional connectivity in the HCP-Aging cohort was applied to predict individual response 

time variability in the A) CamCAN and B) SCAN cohorts. RT_CV: Reaction time 

coefficient of variation.
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