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Abstract

Lipids are important structural and functional components of the skin. Alterations in the lipid

composition of the epidermis are associated with inflammation and can affect the barrier

function of the skin. SHARPIN-deficient cpdm mice develop a chronic dermatitis with similar-

ities to atopic dermatitis in humans. Here, we used a recently-developed approach named

multiple reaction monitoring (MRM)-profiling and single ion monitoring to rapidly identify dis-

criminative lipid ions. Shorter fatty acyl residues and increased relative amounts of sphingo-

sine ceramides were observed in cpdm epidermis compared to wild type mice. These

changes were accompanied by downregulation of the Fasn gene which encodes fatty acid

synthase. A profile of diverse lipids was generated by fast screening of over 300 transitions

(ion pairs). Tentative attribution of the most significant transitions was confirmed by product

ion scan (MS/MS), and the MRM-profiling linear intensity response was validated with a

C17-ceramide lipid standard. Relative quantification of sphingosine ceramides CerAS

(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH and CerNS(d18:1/16:0) discriminated between

the two groups with 100% accuracy, while the free fatty acids cerotic acid, 16-hydroxy pal-

mitic acid, and docosahexaenoic acid (DHA) had 96.4% of accuracy. Validation by liquid

chromatography tandem mass spectrometry (LC-MS/MS) of the above-mentioned cer-

amides was in agreement with MRM-profiling results. Identification and rapid monitoring of

these lipids represent a tool to assess therapeutic outcomes in SHARPIN-deficient mice

and other mouse models of dermatitis and may have diagnostic utility in atopic dermatitis.

Introduction

Lipids play an important role in maintaining the integrity of the skin and in inflammatory skin

diseases, phototoxicity, and wound healing [1]. They form a critical structural component of

the epidermal barrier which prevents water loss and limits the penetration of pathogens,
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ultraviolet light, and chemicals. The barrier is formed by the outermost layer of the epidermis

and consists of anucleated flattened keratinocytes (corneocytes) with abundant keratin fila-

ments cross-linked by envelope proteins embedded in a lamellar lipid matrix [2]. The lipid

matrix consists of lipids secreted by terminally differentiated keratinocytes in the granular

layer through exocytosis of lamellar bodies along with enzymes that can alter the lipid struc-

ture. The main classes of lipids that make up the epidermal lipid matrix are fatty acids, choles-

terol esters, and ceramides [2]. Lipids also have antimicrobial activity and can enhance the

effect of antimicrobial peptides [3]. Furthermore, lipid mediators play an important role in

activation and signaling of innate and adaptive immune cells [1]. Although there is increasing

appreciation of the role of lipids in the biology of the skin, knowledge of the lipid composition

in healthy and diseased conditions is incomplete.

Atopic dermatitis (AD) is an inflammatory skin disease that affects up to 20% of Caucasian

children and 2–10% of adults [4], and greatly impacts the quality of life of patients and their

families [5,6]. Atopic dermatitis is a complex disease with a broad spectrum of clinical pheno-

types. It has a large heritable component and more than 30 susceptibility genetic loci have

been identified [7]. Impairment of the barrier function of the skin and deviation of the

immune system are thought to be key components of the pathogenesis of AD. Changes in the

lipid barrier may underlie susceptibility to AD, and the inflammation associated with AD can

induce changes which sustain and further aggravate the disease [8,9]. These lipid changes are

mainly attributed to a decrease of ultra-long chain ceramides and free fatty acids (>26 car-

bons) with subsequent less dense and less organized lipid lamellae [10]. This creates gaps in

the lipid arrangement of the extracellular spaces between the corneocytes [2,11]. However, the

exact nature of the changes in the lipid matrix across the spectrum of AD remains to be

determined.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques have tradi-

tionally been used to quantify the lipid composition in skin and other tissues [12], but these

approaches are highly demanding in sample preparation and instrument time, and can only

screen for a limited number of lipid features. Therefore, new lipidomic approaches [13,14] that

provide an overview of lipid profiles in a faster and more efficient manner could lead to better

understanding of these lipid changes and may result in new diagnostic biomarkers to classify

disease phenotypes that drive therapeutic development and personalized medicine for AD

[15,16]. With the goal of enhancing the knowledge of lipids in the skin and to rapidly identify

discriminant lipids, we used an MS analytical strategy named multiple reaction monitoring

(MRM)-profiling [17] associated with the monitoring of lipids observed by full mass scan MS

as well as free fatty acid profiling by flow injection MS. MRM-profiling is a small molecule dis-

covery workflow performed in two phases. Briefly, the first phase consists of discovery experi-

ments based on neutral loss (NL) and precursor ion (Prec) scan experiments to detect lipids

and metabolites in the samples by targeting class-specific chemical motifs such as polar heads

of phospholipids or sphingoid bases of ceramides. The second phase of the MRM-profiling is

the screening of a larger set of samples for the transitions detected in the discovery phase [18–

20]. Thus, the screening phase consists of a profile of the transitions found in the discovery

phase for each sample.

Data analysis considers relative amounts of the lipids since the skin barrier lipid metabolism

is determined by the relative amounts of different lipids rather than their absolute amounts.

The interaction of the lipids themselves is important and this interaction is independent of the

cellular total protein content or the tissue weight [20]. The MRM-profiling workflow has been

benchmarked in the full mass profiling/fingerprinting screening commonly used for small

molecules in ambient ionization and MALDI studies [21,22]. For some ion classes such as free

fatty acids (FFA), collision-induced fragmentation is not informative, precluding the use of NL
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and Prec scans. Therefore, we monitored these in the lipid extracts by single ion monitoring

(SIM). We also considered ions present in the full mass scan. All MS experiments were per-

formed using flow injection to a QqQ mass spectrometer with electrospray ionization (ESI) as

the ion source.

This study was based on lipid extracts from the epidermis of wild type mice and SHARPIN-

deficient cpdm mice, which have a spontaneous mutation in exon 1 of the Sharpin gene that

results in loss of the SHARPIN protein [23]. SHARPIN-deficient mice develop a chronic pro-

liferative dermatitis with morphological and molecular similarities to the intrinsic form of AD.

Clinical features include pruritus, progressive alopecia, thickening of the skin, and no increase

of total serum IgE [23,24]. Diffuse ortho- and focal parakeratosis is observed along with scat-

tered keratinocyte apoptosis. The dermatitis is characterized by accumulation of eosinophils,

mast cells, and type 2 macrophages, and increased expression of cytokines including IL5, IL13,

IL33, and TSLP [25–27]. Epidermal samples from wild-type (WT) and cpdm mice were sub-

jected to selected Prec and NL scans to profile diverse phospholipids (PL), ceramides, and cho-

lesterol esters (CE). Several hundred transitions were detected in the discovery phase using a

subset of animals, and these were used in the screening phase for fast screening of all samples.

Data generated clearly discriminated WT and cpdm phenotypes based on relative amounts of

specific epidermal lipids. A set of discriminating lipids was identified and validated by LC-MS/

MS, and comprised three sphingosine ceramides, which could discriminate between WT and

cpdm mice with 100% accuracy. These lipids will be helpful for the development and assess-

ment of novel therapies in this mouse model. They could also be used to establish and validate

a panel of biomarkers for AD in domestic animals and humans to perform patient classifica-

tion, assess disease progression, and response to treatments.

Materials and methods

Mice

36 female C57BL/KaLawRij-Sharpincpdm/Sharpincpdm RijSunJ (cpdm) mice and control litter-

mates (WT) were obtained from The Jackson Laboratory and housed at 2 to 4 animals per

box with food (Envigo) and water ad libitum. Room temperature was maintained at 20 ± 2 ˚C

and relative humidity at 50 ± 15% with a 12/12 hour light/dark cycle. For the biomarker dis-

covery experimental design, two experiments involving two groups of animals were carried

out: the first group (analyzed as a testing set) comprised 7 cpdm and 8 WT, and the second

group (validation set) had 10 cpdm and 11 WT mice. Mice were euthanized at 8 to 9 weeks of

age by CO2 asphyxiation and cervical dislocation. The animal experiments and procedures

were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health. The protocol was approved by the Purdue University Animal

Care and Use Committee (PACUC protocol 111001019).

Sample collection

The skin was shaved, a 2x1 cm skin sample collected from each mouse, and the subcutaneous

adipose tissue was removed. The epidermis was separated from the dermis by floating the skin

samples in a 5 ml petri dish containing 2.5mL of 500 μg/ml Thermolysin (from Geobacillus
stearothermophilus, Sigma-Aldrich, St. Louis, MO) supplemented with 10 mM 4-(2- hydro-

xyethyl)-1-piperazineethanesulfonic acid (HEPES), 132 mM NaCl, 2.7 mM KCl, 0.4 mM

NaOH.7H2O, 1.8 mM CaCl2.2H2O, 1.3 mM MgSO4 at pH 7.4 for 2 h at 37˚C (adapted from

[28]). After incubation, the epidermis was peeled off from the dermis with forceps and stored

at -80˚ until lipid extraction. For gene expression analysis, skin samples were collected and
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stored in RNAlater (Qiagen, Valencia, CA) at − 80 ˚C until samples from all replicates were

collected.

Lipid extraction

Samples were individually weighed and 10 mg of dry tissue was homogenized in 2mL vials

with 1.4mm ceramic (zirconium oxide) beads with 250uL of water using Precellys24 tissue

homogenizer (Bertin Technologies, Rockville, MD, USA). The homogenate was transferred

and the Precellys tube was rinsed with 200 μL of methanol (MeOH). The total volume of the

homogenate was collected and submitted to lipid extraction using Bligh and Dyer method

[29]. By this protocol, phase separation was performed using CHCl3/MeOH/H2O (1:2:0.8) and

the combined organic fractions were centrifuged; the bottom phase was transferred and evapo-

rated. Dried lipid extracts were reconstituted in 40 μL of acetonitrile (ACN)/chloroform at 3:1

volume ratio and stored at -20˚C. The reconstituted extracts were individually diluted 50X

with ACN/methanol/ammonium acetate 300mM at 3:6.65:0.35 volume ratio and used for MS

analysis.

MRM-profiling

Discovery. Samples assigned to the testing set were used for the discovery experiments.

The volume of 6μL of lipid extract from individual samples was directly delivered through a

micro-autosampler (G1377A) into a QQQ6460 triple quadrupole mass spectrometer (Agilent

Technologies, San Jose, CA) equipped with Jet Stream ESI ion source for each of the NL and

Prec scans to profile phospholipids [30,31], acylcarnitines [32], cholesterol esters [33,34], cer-

amides [12,35], diverse fatty acid acyl residues [36], and free fatty acids in positive and negative

ion modes (S1 Table). Briefly, phosphatidylcholines were profiled by precursor ion mode of

mass-to-charge ratio (m/z) 184, and phosphatidylserine (PS), phosphatidylinositol (PI), and

phosphatidylethanolamine (PE) were profiled using neutral loss of 185 mass units, 277 mass

units, and 141 mass units, respectively. Ceramides were scanned using precursor ion of m/z
264.3 for sphingosine ceramides, precursor ion of m/z 266.4 for sphinganine ceramides, and

precursor ion of m/z 282.4 for phytosphingosine ceramides. Two fatty acid acyl residues, oleate

and arachidonate, were profiled using neutral loss of 299 and 321 mass units, respectively.

Scan for precursor ion of m/z 303.1 was used as well for arachidonate acyl residues. Acylcarni-

tines were detected by precursor ion of m/z 85 and cholesterol esters by precursor ion of m/z
369.1 and MRM. Cholesterol esters were selected to be monitored instead of free cholesterol

because they have a constant ion loss that can be used by MRM profiling for analysis in the

same fashion as the other lipids monitored in this study. In contrast, free cholesterol needs

derivatization and LC-MS analysis since it does not ionize well and is not associated with

either a precursor ion or ion loss that can be monitored by MRM profiling. For FFA profiling,

the m/z of each free fatty acid was monitored in Q1 and Q3 at the negative ion mode to detect

deprotonated FFAs. Values of ion intensity of each lipid ion were normalized by the total ion

intensity of each sample. The solvent pumped between injections was ACN + 0.1% formic

acid. Initial data processing of the profiles obtained was carried out by using MassHunter

(B.06.00).

Screening. The 300 molecular features detected in all scans were organized into two meth-

ods for targeted lipidomics by flow injection using multiple reaction monitoring (MRM), were

each ion was detected by a specific parent and a fragment ion in positive or negative mode.

The use of two methods was necessary because of the time and signal requirements to examine

all MRMs in a single sample injection. For the MRM scan, the selection for the m/z of the par-

ent ion occurs at the first quadrupole (Q1) of a triple quadrupole mass spectrometer, the
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second quadrupole (Q2) is set to apply collision induced dissociation to cause fragmentation

of the parent ion and the third quadrupole (Q3) is set to monitor the fragment. A total of 217

transitions were monitored in the positive and 83 in the negative ion mode (S2 and S3 Tables).

These methods were applied to all samples (testing and validation sets, n = 36) so that each

sample was individually screened in a high-throughput manner (circa 5 min/sample) by inject-

ing 12μL of lipid extract from each sample into the ESI-MS for the positive ion mode method

and 8 μL for the negative ion mode. A blank sample was run in between the samples to avoid

carryover. The binary pump flow rate was set at 0.05mL/min, the capillary voltage and the

multiplier voltage at the source was 3500 V and 300 V, respectively. For the negative ion mode

method, the collision energy voltage was 2 V. Collision energy for the ions detected in positive

ion mode varied according to the lipid class as follow: ceramides, PE, lipids with arachidonate

acyl residue and oleate acyl residue were set at 22 V, PC and SM at 20 V, PS and PI at 16 V, CE

at 17V and acylcarnitines at 30 V. The fragmentation voltage was 100 V for both methods. The

raw mass spectrometry data have been deposited in the public proteomics repository MassIVE

(http://massive.ucsd.edu) using the identifier: MSV000080197. The data is accessible at ftp://

massive.ucsd.edu/MSV000080197. The informative values of m/z were tentatively identified

by accurate mass measurement against values in online reference databases, the Lipid Maps

database (http://www.lipidmaps.org/) and METLIN (https://metlin.scripps.edu), as well as

submitted to product ion scan (MS/MS) for attribution confirmation (S1 Fig). The dynamic

range and linear ion intensity response of the MRM-profiling were evaluated with C17-cer-

amide (860517 Avanti Polar Lipids) spiked into 50X diluted pooled epidermis lipid extract. A

linear ion intensity response was observed for four orders of magnitude, 1 to 10,000 ppm.

Although our experiments were aimed at relative amounts, a calibration curve of C17-cer-

amide demonstrated excellent linearity and dynamic range exceeding 3 orders of magnitude

(S2 Fig).

LC-MS/MS validation

The validation set of samples (n = 19) were re-extracted following a protocol for high-through-

put analysis of sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/

MS) (adapted from [12]). Briefly, samples were homogenized following the above-mentioned

procedure with the addition of internal standard of ceramide/sphingolipid mixture I (LM-

6002 Advanti Polar Lipids, USA) with 0.5 nmol of each sphingolipid. The total volume of the

homogenate was collected and MeOH/CHCl3 (2:1) was added. The mixtures were sonicated

and incubated overnight at 48 ˚C in a heating block. After cooling to room temperature, 75μL

of 1M KOH in MeOH was added, followed by sonication and incubation for 2 hours at 37 ˚C

in a heating block. The sample was cooled down to room temperature, transferred and evapo-

rated. The extract was reconstituted in 200μL of 80:20 mobile phases RA/RB, where RA is

74:25:1 (v/v/v) of MeOH:H2O:FA plus 5nM of ammonium formate and RB is 99:1 (v/v) of

MeOH:FA plus 5nM of ammonium formate. The LC column used was 2.1x100 Xbridge C18

(Waters, Milford, MA). The binary pump flow rate was set at 0.3mL/min, the capillary voltage

was positive 4000 V and negative 3500 V. The collision energy voltage was 12 V, the fragmen-

tation voltage was 100 and the cell accelerator voltage was 7 V. Seven μL of the reconstituted

sample was delivered to the column through a micro-autosampler (G1377A) into a QQQ6460

triple quadrupole mass spectrometer (Agilent Technologies, San Jose, CA) equipped with Jet

Stream ESI ion source. The LC column was pre-equilibrated with 100% RA for 1 min. The

binary pump was set in a linear gradient to 100% RB in 9 min and held for 3 min. It was then

returned to 100% RA in 2 min and re-equilibrated for 5 min. The MRMs (parent-fragment)

for the acquisition included the ones found as highly discriminatory by ROC curve analysis
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(666.3–264.1; 554.3–264.1 and 538.3–264.1). Data processing was carried out by using Mas-

sHunter (B.06.00). Concentrations in nmol/mg of tissue were obtained by normalizing by the

dried weight of the sample homogenized and by the concentration of the internal standard.

Quantitative RT-PCR

Quantitative RT-PCR was performed as previously described [37]. RNA was extracted using a

Quick-RNA MiniPrep (Zymo Research, Irvine, CA). For each RT-PCR, a 20μl reaction was

run with 4μl iScript RT supermix (Bio-Rad Laboratories Inc., Hercules, CA), 100ng RNA tem-

plate and nuclease free water. For each qPCR, a 10μl reaction was run with 5 μl iTaq Universal

Probe SuperMix (2x) (Bio-Rad Laboratories Inc., Hercules, CA), 0.5μl 20x TaqMan Gene

Expression Assays primer and probe set for Gba, Pde12, Fasn, and Elovl1 (ThermoFisher Sci-

entific, Waltham, MA), 1μl cDNA and 3.5μl nuclease-free water. The qRT-PCR was performed

at 40 cycles of 95˚C for 30 min, 95˚C for 15 min and 60 ˚C for 1 min. Ct values of each gene

were normalized by subtracting the Ct values of the housekeeping gene beta-actin (Actb)

(ΔCt). The relative fold change in mRNA expression between wild-type mice and cpdm mice

was calculated and expressed as 2−ΔΔCt [38].

Statistical analysis

The files generated by the mass spectrometer were converted to mzML format using MSCon-

vert (http://proteowizard.sourceforge.net), and an in-house script was developed to obtain the

ion intensity of each m/z values monitored. Relative amounts of ion abundances were used for

statistics. Values of ion intensities for each of the MRMs monitored were normalized by total

ion intensity of all MRMs in the method for a given sample. The differences in the mean values

for relative amounts of ceramides and free fatty acids were determined by unpaired t-tests with

Holm-Sidak correction for multiple comparisons and alpha set at 5% (Graphpad Prism 6.0).

Further statistical analysis was performed using MetaboAnalyst 3.0 software (http://www.

metaboanalyst.ca) [39]. Data was auto scaled for PCA, volcano plots and heatmaps. The per-

formance of the identified metabolites and their ratios in discriminating WT from cpdm sam-

ples was evaluated by constructing receiver operating characteristic (ROCs) curves using the

testing set and including the validation set as unknowns for classification. Fold change of

mRNA expression on the analyzed genes is presented as geometric means with standard error

bars. The statistical significance of fold change in cpdm to WT mice were calculated by Stu-

dent’s t-test for unpaired samples.

Results

MRM-profiling

Epidermal samples of 7 cpdm and 8 wild type (WT) mice were individually subjected to flow

injection experiments by ESI-MS in positive and negative ion mode for the discovery of molec-

ular features by chemically supervised scans. Therefore, full mass scans in both polarities, FFA

profiling by single ion monitoring (SIM), and Prec and NL scans (S1 Table) targeted to profile

phospholipids, cholesterol esters (CE), ceramides (Cer), and acylcarnitines (AC), were used.

Phospholipid profiles were represented by phosphatidylserine (PS), phosphatidylinositol

(PI), and phosphatidylethanolamine (PE), which were detected by NL scans of m/z 185, m/z
277 and m/z 141, respectively. Phosphatidylcholine (PC) lipids were profiled by the Prec of m/
z 184 [30]. Since each phospholipid contains two fatty acids esterified to a glycerol, lipids

are attributed by their class abbreviation (PS, PI, PE, PC) followed by the number of carbon

atoms in the esterified fatty acid, a colon, and the number of carbon-carbon double bonds in
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parentheses, such as PC(34:1). The profiles for phospholipids identified 68 molecular features.

Cholesterol esters (CE) were screened by the Prec of m/z 369.1 [34] and individually screened

by the related MRMs as previously described [33], providing a total of 32 molecular features.

Acylcarnitines, metabolites essential in fatty acid metabolism, were detected by the Prec of m/z
85 [32] yielding 21 transitions. Ceramides were analyzed by three separate Prec scan modes

based on the sphingoid base. Sphingosine ceramides (Cer[S]) were detected by the Prec of m/z
264.3, dihydroceramide (Cer[DS]) by the Prec of m/z 266.4, and phytosphingosine ceramide

(Cer[P]) by the Prec of m/z 282.4 based on typical fragments as previously reported [12]. A

total of 33 molecular features were recovered from these scans. Sixty-three transitions were

produced by the NL of m/z 299 for oleic acyl residues and the NL of m/z 321 and Prec scans of

m/z 303.1 for arachidonate acyl residues. In the negative ion mode, 83 molecular features were

discovered after analysis of FFA by SIM.

The transitions isolated from the discovery methods (S1 Table) as well as the full mass scan

ions and FFA as SIM were organized into two fast (2 min of data acquisition) MRM methods,

one for each ion mode, for individual sample screening. In total, the discovery methods

revealed 217 ions in positive ion mode and 83 ions in negative ion mode as shown in S2 and

S3 Tables.

For the screening phase, a total of 36 samples were used. The lipids were re-extracted from

the first group of samples used for the discovery analysis (N = 15; 7 cpdm and 8 wild WT) and

these samples were considered a testing set (i.e., were used to build a classification system).

The new samples (N = 21; 10 cpdm and 11 WT) were introduced in the data analysis as a vali-

dation set (blind samples). Clear discrimination of the phenotypes of WT and cpdm mouse

strains was observed by PCA and cluster analysis (Fig 1A). In the positive ion mode, PC1

explained 47.1% of the variability of the data. When PC2 was included, the explained variance

increased to 65.7% (S3 Fig). Consistent with the PCA, clustering analysis based on different

groups of lipid ions shown as a heat map revealed clear differentiation of cpdm from WT mice

(Fig 1B).

The structural attribution of the relevant transitions was performed by reference database

analysis and by product ion scan (MS/MS) (S1 Fig). Table 1 lists the attribution of significant

lipids from the targeted analysis by MRM-profiling as detected by Volcano plot with a p-value

of 0.05 and at least a two-fold change.

In general, more sphingosine ceramides (Cer[S]) than phytoceramides (Cer[P]) and

sphinganine ceramides (Cer[DS]) were detected by MRM-profiling. The overall profile of

ceramide composition by sphingoid base showed that relative amounts of phytosphingosine

and sphinganine ceramides were decreased in cpdm epidermis compared to WT, while

sphingosine ceramides were increased. Sphinganine ceramides were omitted from further

comparison because of the small amounts in the samples and it was not possible to attribute

all detected. The profiling showed a higher proportion of ceramides with hydroxylated fatty

acid residues (Cer[AS] or Cer[AP]) in cpdm compared to WT. This finding was independent

of the sphingoid base, as it was observed for both sphingosines and phytosphingosines.

Sphingosine ceramides carrying fatty acid residues of 16–18 and 22–24 carbons were

increased in cpdm samples compared to WT, while those longer than 26 were reduced

(Fig 2).

PCA of FFA profiles in negative ion mode revealed an explained variance for PC1 of 57.3%

giving a clear separation of the two groups (S4 Fig). The PCA and the heat map suggest that

poly-unsaturated fatty acids such as DHA (22:6), AA (20:4), adrenic acid (22:4) and dihomo-γ-

linoleic acid (20:3) are determinants of the score plot position of cpdm samples and had higher

relative ion abundances when compared to WT (Fig 3). In addition, univariate statistics

revealed that epidermal samples from WT mice had more saturated and monounsaturated
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Fig 1. Monitored lipid ions in cpdm and WT epidermis by MRM scans in positive ion mode. Clear discrimination

of the phenotypes of WT and cpdm mouse strains was observed by PCA and cluster analysis. (A) Score plot of principal

component analysis (PCA). PC1 explained 47.1% of the variability of the data. When PC2 was included, the explained

variance increased to 65.7%. (B) Heat map with the distribution of lipids monitored individually in 36 samples. Lipids

not identified are shown with their m/z and corresponding lipid class. Color of each cell corresponds to the relative

abundance of the lipid feature monitored in the sample.

https://doi.org/10.1371/journal.pone.0196595.g001
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fatty acids while the epidermis of cpdm mice contained more polyunsaturated fatty acids. The

relative amounts of FFAs with a length of 20–24 carbons were increased in cpdm compared to

WT, whereas FFAs with 12–18 and longer than 26 carbons were reduced in cpdm mice (Fig 4).

Expression of lipid synthesis enzymes

Based on the results from MRM profiling, we examined the expression levels of two enzymes

involved in biosynthesis and elongation of fatty acids, namely fatty acid synthase (FASN) and

elongation of very long fatty acids-like 1 (ELOVL1), and two enzymes of the sphingolipid

pathway, phosphodiesterase 12 (PDE12) and beta acid glucosidase (GBA). The expression of

Table 1. Tentative attribution of significant molecular features. List of ion pairs (parent and fragment), ion mode of detection, scan description, tentative attribution,

fold change (FC) and significance (p-values) resulting from the MRM profiling of WT and cpdm mice epidermis. For attribution based on the LipidMaps database, one

mass unit has been subtracted of the m/z observed in order to obtain the neutral mass of the lipid.

Parent ion Fragment Ion Mode Scan description Tentative Attribution Fold Change p.value

650.3 282.1 [M+H]+ Ceramide CerAP(t18:0/22:0)2OH 5.24 3.67E-21

650.4 264.1 [M+H]+ Ceramide CerNS(d18:1/24:0) 7.31 5.40E-19

622.1 264.1 [M+H]+ Ceramide CerNS(d18:1/22:0) 5.76 4.61E-18

694.15 264.1 [M+H]+ Ceramide CerAS(d18:1/26:0)2OH 4.85 1.54E-17

554.2 264.1 [M+H]+ Ceramide CerAS(d18:1/16:0)2OH 5.23 1.22E-15

554.2 282.1 [M+H]+ Ceramide CerAP(t18:0/16:0)2OH 4.48 6.96E-15

536.1 264.1 [M+H]+ Ceramide CerNS(d18:1/16:1) 4.66 8.34E-15

538.3 264.1 [M+H]+ Ceramide CerNS(d18:1/16:0) 4.89 1.02E-14

666.35 264.1 [M+H]+ Ceramide CerAS(d18:1/24:0)2OH 18.73 1.25E-14

648.4 264.1 [M+H]+ Ceramide CerNS(d18:1/24:1) 3.64 1.64E-12

271.3 271.3 [M-H]- FFA 16-hydroxy(16:0) 2.31 7.67E-12

761.9 184.1 [M+H]+ PC SM(d18:0/20:0) SM(d16:0/22:0) posible isotope PC(34:1) 2.62 4.01E-09

538.2 282.1 [M+H]+ Ceramide CerNP(t18:0/16:0) 2.03 2.21E-08

484 85.1 [M+H]+ Acylcarnitine AC(18:0) 2.73 5.31E-08

703.8 184.1 [M+H]+ PC SM(16:0) 2.41 7.37E-08

456.3 85.1 [M+H]+ Acylcarnitine AC(16:0) 4.02 1.32E-07

438.05 266.1 [M+H]+ Ceramide CerDS(18:0/10:0) 2.26 1.37E-07

746.8 184.1 [M+H]+ PC ePC(34:1) / pPC(34:0)a 2.01 7.87E-07

734.8 184.1 [M+H]+ PC PC(32:0) 2.23 9.37E-07

662.3 341.3 [M+H]+ NL AA Not attributted 3.44 1.82E-06

760.8 184.1 [M+H]+ PC PC(34:1) 2.12 2.85E-06

758.8 184.1 [M+H]+ PC PC(34:2) 2.11 5.11E-06

634.3 313.3 [M+H]+ NL AA Not attributed 2.81 6.20E-06

487.5 487.5 [M-H]- FFA Not attributed 0.42 7.40E-06

689.8 184.1 [M+H]+ PC PG(30:3) SM(d16:1/17:0) SM(d18:1/15:0) 0.50 8.68E-06

788.9 184.1 [M+H]+ PC PC(36:1) 2.02 1.32E-05

787.9 184.1 [M+H]+ PC SM(d18:1/22:0) SM(d16:1/24:0) 2.06 1.95E-05

395.4 395.4 [M-H]- FFA C26:0 0.23 3.85E-05

372.2 85.1 [M+H]+ Acylcarnitine AC(10:0) 0.49 5.94E-05

400.3 85.1 [M+H]+ Acylcarnitine AC(12:0) 0.48 6.53E-05

414.3 85.1 [M+H]+ Acylcarnitine AC(12:1)OH 0.48 2.63E-04

426.3 85.1 [M+H]+ Acylcarnitine AC(14:1) 0.48 4.44E-04

aThe ‘e-’prefix is used to indicate the presence of an alkyl ether substituent e.g. ePC(34:1), whereas the ‘p-’prefix is used for the 1Z-alkenyl ether (plasmalogen)

substituent e.g. pPC(34:0).

https://doi.org/10.1371/journal.pone.0196595.t001
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Fasn mRNA was lower in cpdm mice compared with WT mice (p< 0.05) (S5 Fig). Changes in

the expression of the other enzymes did not reach statistical significance (p> 0.05).

Receiver operating characteristic (ROC) curve analysis

The discriminative values of ceramides and FFA monitored were assessed by developing ROC

curves (S4 Table) using the initial test samples (n = 15) to model the classification and the vali-

dation set (N = 21) as unknowns. The sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS

(d18:1/16:0)2OH and CerNS(d18:1/16:0) discriminated between WT and cpdm mice with

100% accuracy (Fig 5) using partial least square—discriminant analysis (PLS-DA) as the algo-

rithm for the multivariate ROC curve. The area under the curve (AUC) score for the model

was 1, and the predicted class probability for the testing samples was precise, with no errors in

the attribution (S6 Fig). All new samples were correctly classified with high-predicted proba-

bilities for each sample (>0.99) using random forest (RF) or PLS-DA as algorithms for the

multivariate ROC curve (S5 Table). Another ROC was modeled with FFA selected from the

targeted negative ion mode method, namely, DHA (22:6), ω-hydroxyl palmitic acid (16OH-

16:0) and cerotic acid (26:0). The AUC score for the univariate ROC curve for the training

group had a value of 1 for the first two fatty acids and a value of 0.964 for the cerotic acid (Fig

6). The overall model had an AUC of 1 and the class prediction probability of the testing sam-

ples was high (S7 Fig). For the new samples there was misclassification of two of the validation

set samples using RF and one using PLS-DA, giving an AUC value of 0.964 for the multivariate

ROC curve (S6 Table).

The sphingolipids that were selected by ROC curve analysis were analyzed by LC-MS [12]

to obtain quantitative results in nmol/mg of tissue. The results were analyzed by ROC curve to

confirm the outcome of the MRM-profiling approach. The LC-MS/MS results were in agree-

ment with those obtained by MRM-profiling (S8 Fig).

Discussion

Changes in the composition and structure of epidermal lipids are found in various skin condi-

tions [1]. In recent years, the epidermal lipid barrier has received most attention in the context

of AD [40,41]. Reduced barrier function facilitates penetration by pathogens or irritant mole-

cules that cause an exacerbated inflammatory response characterized by a Th1/Th2 imbalance

[42], which in turn can affect the lipid composition and the barrier function of the skin [8,43].

We investigated the lipid composition of the epidermis of cpdm mice, a mouse model with

Fig 2. Ceramide profile in cpdm and WT epidermis by MRM-profiling. (A) There was an increase of Cer[S] and a

decrease of Cer[P] and Cer[DS] in the cpdm epidermis. (B) The relative amount of ceramides with α-hydroxy-fatty

acid residues was larger in cpdm compared to WT. This finding was independent of the sphingoid base as it was

observed for both Cer[S] and Cer[P]. (C) Cer[S] carrying fatty acid residues of 16–18 and 22–24 carbons were

increased and those with 26 carbons were reduced in cpdm samples compared to WT. The vertical axis represents the

relative amounts of ceramides detected in the epidermis of cpdm and WT mice (horizontal axis). Bars represent the

mean +SE of 7 (cpdm) or 8 (WT) mice. � p< 0.05; ��� p< 0.001, based on unpaired t-test with Holm-Sidak correction

for multiple comparisons.

https://doi.org/10.1371/journal.pone.0196595.g002
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Fig 3. Monitored lipid ions in cpdm and WT epidermis by MRM scans in negative ion mode. Clear discrimination

of the phenotypes of WT and cpdm mouse strains was observed by PCA and cluster analysis. (A) Score plot of principal

component analysis (PCA). PC1 explained 57.3% of the variability of the data. When PC2 was included, the explained

variance increased to 70.6% (B) Heat map with the distribution of lipids monitored individually in 36 samples. Lipids

no identified are shown with their m/z. Color of each cell corresponds to the relative abundance of the lipid feature

monitored in the samples.

https://doi.org/10.1371/journal.pone.0196595.g003
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histological and immunological characteristics of human inflammatory skin diseases [25,26]

applying a straightforward workflow mostly based on MRM-profiling. This exploratory

approach focused on relative rather than absolute quantification. This is a widely accepted

strategy in discovery MS such as liquid-chromatography-high resolution mass spectrometry

Fig 4. FFA profile in cpdm and WT epidermis by MRM-profiling. (A) Relative amounts of polyunsaturated FFAs

were increased and saturated and monounsaturated FFAs were decreased in the cpdm epidermis. (B) The relative

amounts of FFAs with chain length of 12–18 and longer than 26 carbons were reduced in cpdm samples compared to

WT, instead FFAs with 22–24 carbons were increased. Lipid ions were detected in negative ion mode with m/z 199–

600 range and normalized by the total ion count. Values are means of 7 (cpdm) or 8 (WT) mice. �� p< 0.01;
��� p< 0.001, based on unpaired t-test with Holm-Sidak correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0196595.g004

Fig 5. Discriminative value of a set of three ceramides. ROC curve analysis of sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)

2OH and CerNS(d18:1/16:0) in cpdm and WT epidermis. The threshold (red dotted line) set to differentiate between the two groups is not crossed by

any of the samples analyzed for any of the three ceramides.

https://doi.org/10.1371/journal.pone.0196595.g005
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[44]. The relative amounts of lipids in the epidermis determine their organization, barrier for-

mation, and biological function [45–47].

The cpdm epidermis contained more Cer[S] at the expense of Cer[P] compared with WT

mice similar to changes observed in human patients with AD [21,43]. The increase of α-

hydroxylated ceramides and reduction of ω-esterified ceramides in cpdm mice, similar to

changes observed in human AD [48–51], can contribute to reduced membrane stability of ker-

atinocytes [52] and decreased lipid organization and density of the lipid lamellae [53]. Cer-

amides of 34 carbons were increased in patients with atopic eczema and Netherton syndrome

[41,46]. Similarly, an increase of ceramides with 16 carbon fatty acid residues (and 18 carbons

from the sphingoid base) was observed in the cpdm epidermis. A possible common metabolic

pathway of ceramides and FFA was suggested as the fatty acid residues on ceramides are

related to the FFA chain lengths, and both FFA and ceramides with chain lengths of 20–24 car-

bons were present in increased amounts. On the other hand, there was a clear reduction of cer-

amides and FFA with more than 26 carbons in their acyl chains. This is in agreement with

reports of a reduction of ultra-long ceramides and long chain FFA in human AD and another

mouse model of AD [8,40,53].

Disruption of the epidermal barrier induces changes in the expression of enzymes required

for the biosynthesis of lipids [54]. Conversely, changes in the expression of enzymes may cause

changes in the lipid composition of the epidermis. Investigation of the expression of four

enzymes involved in the synthesis and of fatty acids and ceramides revealed decreased expres-

sion of Fasn mRNA, and no significant changes in the other enzymes. Little is known about

the effect of inflammation or inflammatory mediators on the expression of lipid synthesis

enzymes in the epidermis. Increased immunohistochemical labeling of the lower epidermis for

Fig 6. Discriminative value of a set of three free fatty acids. ROC curve analysis of free fatty acids (FFAs) ω-hydroxyl palmitic acid (16OH-16:0),

cerotic acid (26:0), and DHA (22:6)in cpdm and WT epidermis. The threshold (red dotted line) set to differentiate between the two groups is crossed by

one sample of the WT group analyzed for cerotic acid (26:0), and DHA (22:6). There was no overlap between the groups for ω-hydroxyl palmitic acid

(16OH-16:0).

https://doi.org/10.1371/journal.pone.0196595.g006
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fatty acid synthase was reported in various forms of dermatitis [55]. In addition, treatment of

in vitro cultures of human skin with TNF and IL-31 decreased expression of ELOVL1 [8] and

cultures with a Th2 cocktail, including IL-4, IL-13 and IL-31 showed significantly lower

mRNA expression of ELOVL1, aSmase and GBA [43]. The cpdm dermatitis is associated with

increased expression of type 2 cytokines, but there was no increase of Tnf mRNA in the skin

[25].

Sphingomyelin can give rise only to sphingosine ceramides (Cer[AS] and Cer[NS]) [10] in

the sphingolipid pathway. Changes in the structure of ceramides and SM have been observed

under pathologic conditions including inflammatory diseases [56,57]. Alterations in the

length, hydroxylation state and saturation degree of the fatty acid residues can result from

inflammation and can also affect the cellular response to inflammatory stimuli [58].

There was an increase of FFA species with 20–24 carbons chain length and a higher degree

of unsaturation as reflected in the increase of AA (20:4) and DHA (22:6) and decrease of ultra-

long chain fatty acid cerotic acid (C26:0). AA and DHA are important lipid mediators of

inflammation having both pro-inflammatory and anti-inflammatory roles [1,59,60]. The FFA

profile of the cpdm epidermis had fewer fatty acids carrying acyl chains of 12, 14, and 16 car-

bons. Combined with the significant downregulation of the Fasn gene, this indicates alter-

ations in early metabolic pathways in addition to reduced activity of the elongation pathway of

the fatty acids. The MRM-profiling in positive mode demonstrated a general increase of PL in

the epidermis of cpdm mice compared to WT, especially plasmalogens, which can affect the

fluidity of cell membranes. Plasmalogens can also incorporate and store AA and DHA which

can be released by the action of phospholipase A2 [61,62] suggesting a correlation between the

increase of plasmalogens and AA and DHA in the cpdm epidermis.

To the best of our knowledge, changes in the structure of acylcarnitines have not been

reported in AD. These molecules are involved in fatty acid oxidation disorders, metabolic dis-

ease and inflammation [63]. Long chain acylcarnitines (16 and 18 carbons) were increased in

cpdm epidermis while medium chain (10 and 14 carbons) were reduced. Long chain acylcarni-

tines can activate NFkB in macrophages resulting in secretion of inflammatory cytokines and

chemokines [64]. They may contribute to the dermatitis in cpdm mice and may also play a role

in atopic dermatitis.

Reports of biomarkers in AD have focused mainly on gene mutations or levels of inflamma-

tory mediators, which vary greatly among individuals and do not allow a clear stratification of

patients. For example, filaggrin mutations are only present in a small percentage of AD

patients [65,66], disease onset may not depend on it [67] and alteration of lipid processing

enzymes are not correlated with presence of FLG mutation [9]. Serum biomarkers such as

IL31, IL33, and CCL17 had a weak correlation with disease severity [68,69] and do not reliably

predict severity as a recent computational model based on 30 serum proteins failed to provide

acceptable error values [70]. However, transcriptome analysis in AD patients showed enrich-

ment of pathways related to lipid biosynthesis and metabolism [71] reinforcing the idea that

biochemical dysregulation [72] of multiple pathways and gene defects may underlie the patho-

genesis of a phenotypically diverse and complex disease such as atopic dermatitis. An unbiased

methodology, such as MRM-profiling, is able to capture phenotypic information important

for the development of techniques to predict high-risk patients and to discriminate between

disease progression stages and treatment response beyond clinical assessment [66,69]. In this

study, the prediction model using sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS

(d18:1/16:0)2OH, and CerNS(d18:1/16:0) showed clear discrimination of the samples with a

100% of accuracy. Such information can lead to the identification of biomarkers that will be

instrumental in the development of personalized approaches for the treatment of AD [15].
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In summary, we report CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH, CerNS(d18:1/

16:0), cerotic acid, 16-hydroxy palmitic acid, and docosahexaenoic acid (DHA) as highly

discriminative lipids in the dermatitis of SHARPIN-deficient mice. The validation set of

this panel of biomarkers confirmed its specificity and sensitivity, with an exact class predic-

tion of new samples based on ceramides and a 90.5% success based on FFA. This panel of

lipids may be useful as molecular indicators of treatment effect in this and other mouse

models of AD. We also suggest that it would be worthwhile to determine whether the

amounts of these lipids are altered in the epidermis of human patients and domestic animals

with AD.

Supporting information

S1 Fig. Representative added MS/MS spectrum for tentative attribution of transitions

selected as potential biomarkers by ROC curve analysis. (A) MS/MS of m/z 666.3 corre-

sponding to the sphingosine ceramide Cer(d18:1/24:0)2OH. Three peaks observed correspond

to the parent ion (m/z 666.3), the release of water with a loss of 18 u (m/z 648.3) and the sphin-

gosine base (m/z 264.1). The m/z difference between m/z 648.3 and m/z 264.1 correspond to

2-hydroxy-tetracosanoic acid (m/z 384.2) (LMFA01050080) (B) MS/MS of m/z 538.3 corre-

sponding to the sphingosine ceramide Cer(d18:1/16:0). Three peaks observed correspond to

the parent ion (m/z 538.3), the release of water with a loss of 18 u (m/z 520.2) and the sphingo-

sine base (m/z 264.1). The m/z difference between m/z 520.2 and m/z 264.1 correspond to hex-

adecanoic acid (m/z 256.1) (LMFA01010001) (C) MS/MS of m/z 554.2 corresponding to the

sphingosine ceramide Cer(d18:1/16:0)2OH. Three peaks observed correspond to the parent

ion (m/z 554.2), the release of water with a loss of 18 u (m/z 535.9) and the sphingosine base

(m/z 264.1). The m/z difference between m/z 535.9 and m/z 264.1 correspond to 2-hydroxy-

hexadecanoic acid (m/z 271.8) (LMFA01050047). The m/z values had a delta +/-0.5. Vertical

axis represents the ion intensity response and the horizontal axis is the mass-to-charge (m/z)

of the ion analized.

(DOCX)

S2 Fig. Calibration curve of C17-ceramide lipid standard spiked into pooled lipid extracts

from 3 WT and 3 cpdm mice. Assay linearity exceeds 3 order of magnitude and has excellent

linearity and dynamic range. Five levels were determined in the MassHunter Quantitative

Analysis software method for the calibration curve corresponding to concentrations of 1, 10,

100, 1000 and 10000 ppm. 15 points were created out of 3 replicates for each of the 5 levels, all

of them were used to plot the curve as shown in the figure. Vertical axis represents the ion

intensity response and the horizontal axis is concentration on ppm.

(DOCX)

S3 Fig. PCA pair plot of MRM-profiling in positive ion mode. Overview of all combinations

for the 5 first principal components (PC) for PCA score plots of MRM profiling data for the

method in the positive ion mode (Method 1).

(DOCX)

S4 Fig. PCA pair plot of MRM-profiling in negative ion mode. Overview of all combinations

for the 5 first principal components (PC) for PCA score plots of MRM profiling data for the

method in the negative ion mode (Method 2).

(DOCX)

S5 Fig. Expression of enzymes involves in lipid synthesis in the skin. The expression of Fasn
mRNA was increased significantly increased (� p<0.05) in cpdm mice whereas the expression

Profiling of epidermal lipids in dermatitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196595 April 26, 2018 15 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s005
https://doi.org/10.1371/journal.pone.0196595


of other enzymes was not changed. The bars represent the mean fold change of mRNA expres-

sion in cpdm mice versus WT mice (n = 8).

(DOCX)

S6 Fig. Discriminative value of a set of three ceramides. (A) ROC curves of sphingosine cer-

amides CerAS(d18:1/24:0)OH, CerAS(d18:1/16:0)OH and CerNS(d18:1/16:0). (B) Area under

the curve (AUC) representation for the testing samples by partial least square—discriminant

analysis (PLSA-DA) built with the three selected ceramides; C) Predicted class probability for

the testing set of samples of cpdm and WT epidermis.

(DOCX)

S7 Fig. Discriminative value of a set of three free fatty acids. (A) ROC curves of free fatty

acids (FFAs) ω-hydroxyl palmitic acid (16OH-16:0), cerotic acid (26:0), and DHA (22:6); (B)

Area under the curve (AUC) representation for the testing samples by partial least square—

discriminant analysis (PLSA-DA) built with the three FFAs; (C) Predicted class probability for

the testing set of samples of cpdm and WT epidermis.

(DOCX)

S8 Fig. Discriminative value of a set of three ceramides by LC-MS/MS. (A) ROC curves of

sphingosine ceramides CerAS(d18:1/24:0)OH, CerAS(d18:1/16:0)OH and CerNS(d18:1/16:0)

in nmol/mg of tissue. The threshold (red dotted line) set to differentiate between the two

groups; (B) Area under the curve (AUC) representation for the testing samples by partial least

square—discriminant analysis (PLSA-DA) built with the three selected ceramides; C) Pre-

dicted class probability for the testing set of samples of cpdm and WT epidermis.

(DOCX)

S1 Table. Discovery scans. Multidimensional scan modes used for exploratory detection of

lipids in cpdm and WT epidermis of the testing set.

(DOCX)

S2 Table. MRM-profiling method in positive ion mode. List of transitions in the MRM pro-

filing method in positive ion mode (method 1) used to detect the relative amounts of lipids in

the samples by the exploratory experiments. Each transition is represented by the m/z value of

the parent ion, followed by the m/z value of the fragment released after collision at Q2.

(DOCX)

S3 Table. MRM-profiling method in negative ion mode. List of single ions monitored in the

MRM profiling method in negative ion mode (method 2) used to detect the relative amounts

of free fatty acids in the lipid extracts from samples.

(DOCX)

S4 Table. Biomarker univariate analysis by ROC curve. Tentative attribution of lipids (con-

firmed by MS/MS experiments), area under the curve (AUC), p-values and log2 fold change

(FC) for all ion pairs with AUC scores above 0.5.

(DOCX)

S5 Table. Class prediction by ROC curve selected ceramides. Class prediction of the valida-

tion set of samples by ROC based on potential ceramide biomarkers.

(DOCX)

S6 Table. Class prediction by ROC curve selected FFA. Class prediction of the validation set

of samples by ROC based on potential FFA biomarkers.

(DOCX)

Profiling of epidermal lipids in dermatitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196595 April 26, 2018 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196595.s014
https://doi.org/10.1371/journal.pone.0196595


Acknowledgments

This research was supported in part by grants from the National Institutes of Health

(AR049288) and the Purdue Institute of Inflammation, Immunology and Infectious Disease

(PI4D). JF was supported in part by a Colciencias fellowship. The authors are grateful to Dr.

Bruce Cooper and Amber Hopf Jannasch for helpful discussions.

Author Contributions

Conceptualization: Jackeline Franco, Christina Ferreira, Harm HogenEsch.

Formal analysis: Jackeline Franco, Christina Ferreira, Tiago J. Paschoal Sobreira.

Funding acquisition: John P. Sundberg, Harm HogenEsch.

Investigation: Jackeline Franco, Harm HogenEsch.

Resources: John P. Sundberg.

Visualization: Jackeline Franco.

Writing – original draft: Jackeline Franco, Christina Ferreira, Harm HogenEsch.

Writing – review & editing: Christina Ferreira, Tiago J. Paschoal Sobreira, John P. Sundberg,

Harm HogenEsch.

References
1. Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res.

2013 Jan; 52(1):141–64. https://doi.org/10.1016/j.plipres.2012.10.003 PMID: 23124022

2. van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for

the cutaneous barrier function. Biochim Biophys Acta—Mol Cell Biol Lipids. 2014 Mar; 1841(3):295–

313.

3. Fischer CL, Blanchette DR, Brogden KA, Dawson DV, Drake DR, Hill JR, et al. The roles of cutaneous

lipids in host defense. Biochim Biophys Acta—Mol Cell Biol Lipids. 2014 Mar; 1841(3):319–22.

4. Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy. 2014 Jan;

69(1):3–16. https://doi.org/10.1111/all.12270 PMID: 24417229

5. Maksimović N, Janković S, Marinković J, Sekulović LK, Zivković Z, Spirić VT. Health-related quality of

life in patients with atopic dermatitis. J Dermatol. 2012 Jan; 39(1):42–7. https://doi.org/10.1111/j.1346-

8138.2011.01295.x PMID: 22044078

6. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016 Mar 12; 387(10023):1109–22. https://doi.org/10.

1016/S0140-6736(15)00149-X PMID: 26377142

7. Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, et al. Multi-ancestry genome-

wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis.

Nat Genet. 2015 Dec; 47(12):1449–56. https://doi.org/10.1038/ng.3424 PMID: 26482879

8. Danso MO, van Drongelen V, Mulder A, van Esch J, Scott H, van Smeden J, et al. TNF-α and Th2 cyto-

kines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum

lipids in human skin equivalents. J Invest Dermatol. 2014 Jul; 134(7):1941–50. https://doi.org/10.1038/

jid.2014.83 PMID: 24518171

9. Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin

Allergy Clin Immunol. 2009 Oct; 9(5):437–46. https://doi.org/10.1097/ACI.0b013e32832e7d36 PMID:

19550302

10. Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeability barrier formation.

Biochim Biophys Acta. 2014 Mar; 1841(3):441–52. https://doi.org/10.1016/j.bbalip.2013.08.010 PMID:

23954553

11. Mojumdar EH, Kariman Z, van Kerckhove L, Gooris GS, Bouwstra J a. The role of ceramide chain

length distribution on the barrier properties of the skin lipid membranes. Biochim Biophys Acta. 2014

Oct; 1838(10):2473–83. https://doi.org/10.1016/j.bbamem.2014.05.023 PMID: 24875266

Profiling of epidermal lipids in dermatitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196595 April 26, 2018 17 / 21

https://doi.org/10.1016/j.plipres.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23124022
https://doi.org/10.1111/all.12270
http://www.ncbi.nlm.nih.gov/pubmed/24417229
https://doi.org/10.1111/j.1346-8138.2011.01295.x
https://doi.org/10.1111/j.1346-8138.2011.01295.x
http://www.ncbi.nlm.nih.gov/pubmed/22044078
https://doi.org/10.1016/S0140-6736(15)00149-X
https://doi.org/10.1016/S0140-6736(15)00149-X
http://www.ncbi.nlm.nih.gov/pubmed/26377142
https://doi.org/10.1038/ng.3424
http://www.ncbi.nlm.nih.gov/pubmed/26482879
https://doi.org/10.1038/jid.2014.83
https://doi.org/10.1038/jid.2014.83
http://www.ncbi.nlm.nih.gov/pubmed/24518171
https://doi.org/10.1097/ACI.0b013e32832e7d36
http://www.ncbi.nlm.nih.gov/pubmed/19550302
https://doi.org/10.1016/j.bbalip.2013.08.010
http://www.ncbi.nlm.nih.gov/pubmed/23954553
https://doi.org/10.1016/j.bbamem.2014.05.023
http://www.ncbi.nlm.nih.gov/pubmed/24875266
https://doi.org/10.1371/journal.pone.0196595


12. Merrill AH, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-

specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrome-

try. Methods. 2005 Jun; 36(2):207–24. https://doi.org/10.1016/j.ymeth.2005.01.009 PMID: 15894491

13. Li S, Ganguli-Indra G, Indra AK. Lipidomic analysis of epidermal lipids: a tool to predict progression of

inflammatory skin disease in humans. Expert Rev Proteomics. 2016; 13(5):451–6. https://doi.org/10.

1080/14789450.2016.1177462 PMID: 27121756
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