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Stiff auxetics: Hierarchy as a route 
to stiff, strong lattice based auxetic 
meta-materials
D. Rayneau-Kirkhope

Using a combination of analytic and computational methods, we examine the effect of adding 
hierarchical substructure to an auxetic lattice. Our novel methodology, involving a coarse grain 
approach, allows for the analysis of hierarchically sub-structured lattices where direct computation 
would prove intractable. We show that through hierarchy one can create ultra-lightweight auxetic 
meta-materials of high strength and stiffness. Through scaling law arguments, we show that the 
benefits of hierarchical design can also be obtained in the general class of bending-dominated lattices. 
Furthermore, we show that the hierarchical structures presented show a wide range of tailorability in 
their mechanical properties, and exhibit increased strength when optimised for buckling resistance. 
Auxetic materials have a broad range of potential applications, and thus the creation of ultra-light 
auxetic meta-materials with enhanced stiffness and strength is undoubtedly of practical importance.

When a material is compressed our intuition tells us that it should expand in a direction perpendicular to the 
applied load. Poisson’s ratio is a fundamental material property that quantifies this phenomenon: It is defined as 
the negative ratio of transverse strain to the imposed longitudinal strain. The Poisson’s ratio of a material is there-
fore positive when it behaves in accordance with our intuition. When a material deviates from this behavour (that 
is to say, it has a negative Poisson’s ratio) it is termed auxetic1. Auxetic materials are of broad interest across the 
sciences2–6 due to their wide range of potential applications including novel fasteners7, biomedical use8, particle 
filters9, scaffolds for reconfigurable metasurfaces10, and energy damping/transmitting devices11.

Natural materials with negative Poisson’s ratio are rare12, however, owing to their potential applications in 
many areas of technology, numerous mechanisms have been designed to induce auxetic behaviour in mechanical 
meta-materials. These mechanisms include rotating elements13–17, lattice based geometries8,18,19, rigid link struc-
tures20,21, and origami (paper folding)22–24 and kirigami (paper cutting)25–27 based designs (for an overview of such 
mechanisms, see the reviews28,29 among others). Elastic instability has also been used to induce pattern formation 
that results in auxetic meta-material behaviour30–32. In this article, we will focus on the behaviour of lattice based, 
auxetic meta-materials.

The mechanics of lattice based materials can be broadly split into two categories: bending-dominated and 
stretching-dominated33. These terms describe the dominant deformation mode when the material is subject to an 
external stress - the members bend or stretch to accommodate an imposed displacement. Lattices with low con-
nectivity tend to be bending dominated, while those with higher connectivity tend to be stretching-dominated34. 
These two regimes are seen to have markedly different global mechanical properties33,34. For example, the two 
classes of lattice have distinct scaling laws relating the relative stiffness, E E/ , and the relative density, 
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lattice based materials; these scaling laws are given by33
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where α = 1 for stretching-dominated lattices and α = 3 for bending-dominated lattices in 2-d. In the above 
expression, E and E  are the Young’s modulus of the construction material and lattice based meta-material respec-
tively, while ρ and 


ρ  are the density of the construction material and the meta-material respectively. Knowing 

these scaling relationships, it is clear that for lightweight materials ( / 1ρ ρ �� ), stretching-dominated lattices have 
higher stiffness. In all auxetic materials constructed from a lattice of uniform beams, restricted to in-plane 
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deformations, the underlying mechanics of the system has been observed to be bending-dominated, and it has 
been conjectured that this must be so in general35 and that this would imply that there exisits a fundamental limit 
to the stiffness of lightweight auxetic materials35. However, as demonstrated in this paper, one can utilise hierar-
chy to design a lattice where at the longest length-scale the deformation mode appears to be bending-dominated, 
while retaining the beneficial scaling relationship relating stiffness to relative density typically associated with 
stretching-dominated architectures. In utilising structural hierarchy to create structures combining multiple 
advantageous mechanical properties, we follow a trend often observed in nature36,37: structural hierarchy is 
observed in many naturally occurring structures and that hierarchy is closely associated with remarkable mechan-
ical properties. The combination of elasticity and strength of spider silk38, stiffness and toughness of nacre39,40, and 
low weight and high stiffness of trabecular bone41 are all properties created through hierarchical geometries.

In order to demonstrate how substructure can be used to create ultralightweight, stiff auxetic materials, we 
take the motif of a well studied bending dominated architecture18 and utilise a specific sub-lattice architecture 
in order to ensure that the analogous freely-hinged structure exhibits no mechanism. Such a lattice has been 
termed a “bending-stretching” dominated lattice42,43. Through this combination, we obtain an auxetic lattice that 
has superior stiffness to weight ratios than those without substructure. We then iterate this procedure in order 
to create auxetic lattices with an arbitrary degree of hierarchy. We present a scaling law argument showing that 
lightweight auxetic lattices of unprecedented stiffness (α = 1 in Eq. (1)) can be created through this methodology. 
This prediction is then confirmed by full finite element simulation on the hierarchical lattice structure. It is noted 
that this use of slender frame elements results in a scaling relationship that exceeds that predicted in previous 
work on hierarchical lattices43, leading to stiffer structures in the limit of lightweight materials. Furthermore, 
through the addition of hierarchy, we show that the scaling relationship of buckling load (and therefore plateau 
stress in the stress-strain curve33), can be manipulated leading to a design that has an improved stiffness and 
strength to weight ratios compared with lattices made up of simple beam elements. It is notable that in contrast 
to other works that focus on stiffening individual lattice architectures44,45, the methodology presented here, and 
the analytically derived scaling laws for both strength and stiffness, are applicable to the broad range of bending 
dominated lattices. To highlight this, two further bending dominated lattices are considered, one auxetic and one 
non-auxetic, both showing the same scaling relationships.

Geometry
Here we investigate a meta-material based on the re-entrant hexagonal lattice, a structure well known to have 
auxetic material properties18,46,47. We add to this lattice a substructure made up of hierarchical frames, where 
the degree of hierarchy can be varied allowing for systematic comparison between different designs. For refer-
ence, a structure with a single level of hierarchy (termed generation-0) will be investigated, this is the previously 
studied re-entrant lattice structure made up of simple beams. In the generation-1 structure, the simple beams in 
the generation-0 structure will be replaced with a 2-dimensional frame made up of simple beams (Fig. 1 shows 
an example lattice made up of generation-1 frames). In the generation-1 structure, l1,1 and l1,0 are the lengths of 
the frame and the constituent beams parallel to the long axis of the frame respectively, while t is the thickness 
of the beams (see Fig. 2(b)). All higher order geometries can be constructed in an iterative manner: taking a 
generation-n frame and replacing all simple beams with scaled generation-1 frames creates the generation-(n + 1) 
structure, Fig. 2 shows this procedure for generation-1 to -3. At all lengthscales with the exception of the longest, 
the lattice (or a coarse grained view of the lattice neglecting substructures smaller than lG,i−1) can be created using 

Figure 1.  Globally auxetic lattice with minimally rigid sub-lattice: Such a structure allows the design of auxetic 
response while retaining efficiency of a stretching dominated lattice structure. The figure also introduces the 
notation used to parameterise the geometry of the lattice. The grey box (inset) shows one unit cell, the lattice 
investigated here is made up of Nx by Ny unit cells.
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a Henneberg construction48, thus we ensure there are no mechanisms within the analogous freely hinged struc-
ture at these lengthscales48.

Hierarchical lattice elements.  In order to analyse the hierarchical meta-material, we must establish 
the mechanical properties of the two dimensional linkage element, we do this through the introduction of an 
“effective modulus”, “effective Poisson’s ratio” and an “effective thickness”; through these parameters we are 
able to encapsulate both the elastic response and elastic failure load of the linkage elements. In the case of the 
generation-1 design, analysing the equilibrium equations of the analogous freely hinged frame, we see that the 
stretching energy will be split between the two outer plates; thus the energy density due to stretching is simply,

∫ν
=

−
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2

where e11 is the strain parallel to the neutral axis of the hierarchical structure. The energy density due to bending 
can be calculated as49:
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where w is the out of plane deflection of the neutral axis of the frame. Through comparing these expressions with 
the standard expressions for the stretching and bending energy of a single plate50, it can be seen that the frame 
structure will behave equivalently to a simple plate with thickness t̃ , Young’s modulus Y , and Poisson’s ratio ν, 
where these parameters satisfy

Figure 2.  The progression from simple beam to hierarchical element, from left to right. Simple beam (a) is 
referred to as generation-0, a 2-d frame (b) is referred to as generation-1, a generation-2 structure (a frame 
made of frames) is shown in (c). The figure also introduces the notation parameterisng the frame structures.
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Through analysis of a single box section and considering the minimum energy for a given longitudinal displace-
ment, it can be found that ν = .0 5. These values can be shown to agree with results presented in49.

Iterative approach.  One can generalise the above approach to any level of hierarchy. Here we utilise 
the notation of49,51,52, where the parameter X at hierarchical level i of a generation-G structure is referred to 
as XG,i (i = 0 and i = G are the smallest and longest length-scale in the structure respectively). The number of 
box-sections used in the frames, n, is treated as a constant over all length-scales in this work, thus, we have the 
relationship

= ∀ ∈ − .−l nl i G[1, 1] (6)G i G i, , 1

The expressions for the effective properties of a generation-G structure at any hierarchical level must satisfy 
the following expressions49:
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The effective Poisson’s ratio at all hierarchical levels is found to take the value G i, 
ν ν= . These parameters can 

then be used in finite element simulations, placing beams with effective material and geometric properties in 
place of hierarchical frames. This methodology allows for the simulation of higher order structures where direct 
simulation would be intractable.

Mechanical Properties of Meta-Material
Utilising the effective properties of the construction elements from the previous section, we are able to establish 
the mechanical properties of an auxetic meta-material of arbitrary hierarchical order. Furthermore, we derive 
scaling laws for the stiffness of the structure through analytic means. Finally we confirm the predictions of these 
two approaches through direct finite element simulations for the area of design space where such simulations 
are tractable. We first establish the stiffness of the lattice based meta-material before investigating the buckling 
response of the structures. COMSOL 5.353 has been used for all finite element work presented here, assuming a 
linear constitutive law. Further detail regarding the implementation of the simulations can be found in the meth-
ods section.

Stiffness.  The stiffness of the auxetic frame with a given level of hierarchy can be established through finite 
element methods: A relative displacement is applied to the upper and lower boundaries for measurements of EY 
(or left and right boundaries for Ex), where the orientation of the sample is as shown in Fig. 1; we measure the 
reaction force in the direction perpendicular to the imposed displacement. The frame geometry considered here 
is n = 10 for all frames, L2 = 20 mm, L1 = 10 mm and θ = 45°, the frames of Ld and L2 have beams of thickness t 
and t′ = tL2/Ld respectively; t is varied in order to vary the relative density of the meta-material. For hierarchical 
structures, computational expense is reduced by using a coarse grain view of the system utilising the effective 
material/geometric properties (see previous section). For generations-1 and 2 (for n = 10), these findings can 
be confirmed through direct simulation of the higher order structure. Figure 3 shows that the scaling law of Eq. 
(1) can be changed from α = 3 to α = 1 through the addition of hierarchy representing a substantial increase in 
stiffness in the lightweight regime.

The scaling law presented in Fig. 3 for both hierarchical and non-hierarchical elements can be derived follow-
ing the approach of33. The deformation, δ, in a unit cell of a bending-dominated lattice, deforming due to in-plane 
bending, must follow33,54

δ ∼
FL
D

, (9)

3

where F is an external force per unit length on a lattice with lattice elements of characteristic length L, and D is 
the flexural rigidity of the plate structure. For a 2-d plate structure, the flexural rigidity will be calculated as50,54,
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For a 2-d lattice, the stress, σ, acting on a unit cell is proportional to F/L, while the strain, ε, will scale as δ/L. 
The density of the lattice is given by,

ρ ρ∼ .


t
L (11)

Thus, in a lattice made up of simple beams, combining the above observations with Eqs (9, 10 and 11), we see 
that the appropriate scaling in Eq. (1) is given by α = 3.

When we consider a generation-1 frame, as shown in Fig. 2 (middle), noting L ≈ l1,1 and using Eqs (6, 9 and 
10), with the use of the effective beam properties from Eqs (7 and 8), we find

t
L

n Y (12)
2σ ε∼ .−

Noting that the density of the lattice still scales as Eq. (11), we see that for constant n, we obtain a new scaling 
from Eq. (1) of α = 1. This beneficial scaling relationship, α = 1, can also be derived for higher order hierarchical 
frames.

Poisson’s ratio.  The Poisson’s ratio of this geometry can be approximated through a freely hinged assump-
tion47,55. This model is dependent only on the lattice parameters at the largest length-scale (L1, L2, θ in Fig. 2) and 
the magnitude of strain applied. Deviations from the predictions of this idealised model will depend on the com-
parative energetic cost of stretching vs bending of the lattice elements; thus these deviations will depend only on 
the (effective) aspect ratio of the construction elements. Thus, for a given relative density of generation-0 struc-
ture (assuming both elements are of equal aspect ratio), the Poisson’s ratio will be fixed. The hierarchical structure 
gives an additional freedom, however; we are able to vary the relative density of the lattice, without changing the 
effective aspect ratio construction element (t l/G G G G, ,˜ ) through varying the geometry at smaller length-scales. This 
gives us an additional freedom to set the Poisson’s ratio of the material (by setting L1, L2, θ and t̃ l/G G G G, , ) and vary 
the relative density of the lattice (through altering the structural parameters at the smaller length-scales). We 
show the region of design space (ν ρ ρ, /xy 

) that is realisable for a lattice with 0, 1, 2, and 3 levels of substructure in 
Fig. 4, this plot is for a lattice with Y = 50 MPa, L1 = 10 mm, L2 = 20 mm and θ = 45°, subject to the restriction that 
all aspect ratios in the structure are between 10 and 100.

Strength.  Finally we investigate the buckling strength of the auxetic lattice. As described in33, the typical 
stress strain curve is described by a roughly linear relationship until failure when a plateau of stress with increas-
ing strain is observed, this relationship is shown in Fig. 5. For lightweight lattices, high aspect ratios are advanta-
geous, and in this limit elastic instability is likely to be the active mode of failure52. For a frame in 2-d of length L 
and flexural rigidity D, subject to compressive loading per unit length F, elastic instability will occur when

F D
L (13)2
π

= .

Figure 3.  The scaling of relative stiffness vs relative density of re-entrant hexagonal lattice compressed in the 
x and y-directions for varying levels of hierarchy. The figure shows the stiffness increase in the transition to 
hierarchical designs in the limit of small densities. The shaded regions show the approximate values of relative 
stiffness vs relative density in previous works for other reentrant hexagon lattices (grey) and two lattices based 
on the reentrant hexagonal lattice with additional linkages (green and blue). It is notable that the increase 
in stiffness in references44,45 (green and blue shaded regions respectively) are accompanied by an increase in 
Poisson’s ratio (towards non-auxetic behaviour). Not only is the methodology presented here not associated 
by such an increase in Poisson’s ratio, but it also is generally applicable to any bending-dominated lattice. The 
hierarchical approach presented here also permits the creation of lattices with lower relative density for a given 
aspect ratio of component beams, reducing fabrication difficulties at low relative densities.
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Here, we take a lattice designed such that both the horizontal and diagonal elements of Fig. 1 have the same 
buckling load. For a given relative density of frame, the structural elements that make up the lattice can be opti-
mised on all component length-scales. In order to do this, we follow the methodology of49: the parameters t and 
{lG,i} are set such that the frame is on the point of elastic failure on all length-scales simultaneously. Utilising the 
expressions (7, 8, 10 and 13), it can be shown that the buckling load of a single hierarchical frame will scale as

ρ
ρ

∼
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



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Given σ ~ F/L, it is expected that the normalised stress at which the lattice will exhibit elastic instability (σ/Ym) 
will follow the same scaling with relative density as shown in Eq. (14) 52. Direct simulation of the geometries 
investigated here is not possible as the ratios lG,i/lG,i−1 increases quickly with smaller optimisation load and thus 
the number of elements quickly becomes intractable. To circumvent these difficulties, Eqs (7 and 8) are used 
and finite element simulations are performed using the effective beam properties, as in the previous section. The 
scaling in Eq. (14) is observed from the output of finite element simulations as shown in Fig. 6. Increasingly good 
agreement between scaling law prediction (Eq. (14)) and simulation are found for increasing aspect ratio.

Summary
In this paper lightweight auxetic lattices with unprecedented stiffness have been designed through the use of 
hierarchical substructures. The structural response of these hierarchical architectures has been analysed through 
a combination of computational and analytic methodologies. Using the results of an analytic work, coarse grain 
simulations have allowed the analysis of structural systems where direct computation would prove intractable. 
Scaling arguments relating both stiffness and strength to weight ratios have been established, and are found to 
be in agreement with computational work. Using a scaling law argument, we have shown that through the use of 
hierarchy, enhanced stiffness and strength can be achieved in a wide class of bending-dominated lattices.

The mechanical performance of these lattice based structures when subject to imperfection is an open, and 
important, question. Though initial studies have shown that the hierarchical element used here subject to single 

Figure 4.  The range of possible Poisson’s ratio for a structure of a given relative density. With increasing 
hierarchical order of the structure, a broader range of Poisson’s ratio is realisable for a fixed relative density.

Figure 5.  A typical non-dimensionalised stress strain curve for the lattices under investigation here. A plateau 
follows the buckling event.
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beam imperfections is not altered by increasing hierarchy49, it is not known how manufacturing tolerances will 
affect the performance of the lattices presented here. It is notable, however, that hierarchy is often found in nat-
urally occuring structures that are renowned for their insensitivity to imperfections4,37–40, this leads to the tanta-
lising possibility of combining augmented strength and stiffness together with high tolerance to imperfections.

While all structures presented here with one or more level of hierarchy have a linear relationship between rel-
ative stiffness and relative density, the maximum stiffness is achieved for generation-1 structures. With increasing 
generation, the scaling relationship between buckling stress and relative density is manipulated in a beneficial 
manner, however. It is therefore suggested here that in situations where strength is of critical importance and 
increased stiffness desirable, higher generation structures may still be beneficial. It is also of interest to note that 
while increasing the generation leads to decrease in stiffness (from generation-1 and higher), these higher order 
structures are still stiffer than their generation-0 counterpart in the lightweight regime. Finally it is noted that 
the hierarchical designs presented here allow for structures of lower relative density to be fabricated while using 
elements of relatively low aspect ratio.

This work has potential application in the design of stiff, strong auxetic meta-materials where it has been 
observed that auxetic behaviour in conventional lattices is not compatible with stretching dominated deformation 
modes which imply high stiffness35. We have shown that through structural design on multiple length-scales, one 
can achieve auxetic meta-material properties while retaining stiffness comparable with stretching-dominated 
architectures in the limit of low relative density.

The significance of this work to a wide variety of technological application is enhanced by the recent fabrica-
tion of mechanical meta-materials on micro/nano scale through use of nanomembrane technologies9 and digital 
printing techniques55–57. The use of nanomembrane technologies restricts the fabrication such lattices to plate-like 
structures that, under compression, will experience out of plane elastic instabilities; such structures could be arti-
ficially restrained to remain planar, in which case all the results of the present work will hold, or under tension, 
without restraint, the lattice is expected to follow the results obtained in section 2.1. The practical application of 
the architectures presented here can no doubt be increased through the use of graphene58–60, poly(phenylacety-
lene)61 or other 2-d nano-layer based materials: such structures represent a possible route to creating 2-d lattice 
based auxetics on the nano/micro length-scale with multiple length-scales present within the structure.

Methods
All finite element work here has been undertaken using COMSOL 5.3. In all cases mesh refinement studies were 
performed to ensure convergence of the results.

The stiffness of the meta-materials was established (Fig. 3) using the 2-d structural mechanics module utlising 
Euler-Bernoulli beam elements. Stationary studies were undertaken on a lattice Nx = 4, Ny = 5, Ym = 50 MPa, 
θ = 45°, L1 = 0.01 m and L2 = 0.04 m, while t was varied in order to vary the relative density of the frame. Both the 
horizontal and diagonal frames in Fig. 2 were made up of n = 10 box-sections. For investigations on the stiffness, 
EY (EX), vertical (horizontal) displacements were imposed on the upper and lower (left and right hand side) 
boundaries creating a compressive strain, the boundaries were permitted to translate in the x (y) direction but not 
rotate, a single boundary was fixed in order to restrain translation of the whole structure. The reaction forces were 
measured on the lower (left hand side) boundaries in order to establish the stiffness of the meta-material. The 
boundaries parallel to the displacement on the extreme edges of the sample (right and left for EY studies, upper 
and lower for EX) were restrained such that no rotation was permitted, however translation was allowed. Studies 
with greater Nx and Ny were undertaken utilising effective beam properties, the same stiffness as is presented in 
Fig. 3 was found.

The stress-strain curve shown in Fig. 5 was obtained through a stationary study in 2-d using the solid mechan-
ics of COMSOL 5.3. Imperfections were added to the lattice in the form of the first five eigenmodes obtained 

Figure 6.  The scaling of buckling load vs relative density of bow-tie lattice compressed along the x and y-
directions for varying levels of hierarchy. Figure shows the increase in buckling resistance for increasing 
generation of structure for lightweight structures. The points shown are results of finite element simulations 
using effective beam properties where all elements in the hierarchical structures have aspect ratio between 20 
and 100.
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through linear study. These imperfections were added to the lattice through the use of MeshPerturb 1.062. The 
lattice parameters for this study were Nx = 15, Ny = 15, L1 = 0.01 m, L2 = 0.04 m, t = 1 mm, θ = 45°.

Investigations into the buckling response of the structure were undertaken using the solid mechanics mod-
ule of COMSOL 5.3. The lattice parameters (Nx, Ny, L1, L2, θ) were the same as in the stiffness studies. Only the 
effective beam properties method was used in order to make the simulations less computationally expensive as 
for optimised frames lG,i/lG,i−1 increases quickly creating structures that can’t be simulated directly. The lattice 
elements were optimised for buckling load such that both the horizontal and vertical elements (see Fig. 1) were 
optimised for the same value of f ≡ F/YmL using the method presented in49. The value of n and t were allowed to 
vary in order to create optimal frame elements for a given f, and the buckling load of the lattice was then obtained 
through a linear buckling study.

Other Geometries
To demonstrate the wide applicability of the scaling laws found in sections 2.1 and 2.3, here we use the hierarchi-
cal design methodology to enhance the stiffness and strength of two further architectures. Here, we take two 
further bending-dominated lattices: a rhombic lattice and double arrow lattice as examples of non-auxetic and 
auxetic63 geometries respectively. These structures are shown in Fig. 7 (left) where the notation is also introduced. 
The rhombic lattice has a unit cell of dimensions = =L L1, 31 2  cm, while the double arrow unit cell is param-
eterised by the values L1 = 1, L2 = 0.5 cm and θ = π/6 rad. For the stiffness results, the value of n is held fixed at 
n = 10 resulting in a linear relationship between relative density and stiffness for structures with hierarchical 
substructures, as predicted above (Fig. 7 middle); for the investigation into strength, the hierarchical elements are 
optimised for compressive strength following the procedure of ref.49. In Fig. 7 right, the buckling stress is plotted 
against relative density for different generations of structure. It is found that the scaling predictions given in Eq. 
(14) are obtained for all the geometries investigated here.

Data availability.  There is no experimental data in this paper.
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