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Abstract

Background: Female sex has been included as a risk factor in models developed to predict the development of
AKI. In addition, the commentary to the Kidney Disease Improving Global Outcomes Clinical Practice Guideline for
AKI concludes that female sex is a risk factor for hospital-acquired AKI. In contrast, a protective effect of female sex
has been demonstrated in animal models of ischemic AKI.

Methods: To further explore this issue, we performed a meta-analysis of AKI studies published between January,
1978 and April, 2018 and identified 83 studies reporting sex-stratified data on the incidence of hospital-associated
AKI among nearly 240,000,000 patients.

Results: Twenty-eight studies (6,758,124 patients) utilized multivariate analysis to assess risk factors for hospital-
associated AKI and provided sex-stratified ORs. Meta-analysis of this cohort showed that the risk of developing
hospital-associated AKI was significantly greater in men than in women (OR 1.23 (1.11,1.36). Since AKI is not a single
disease but instead represents a heterogeneous group of disorders characterized by an acute reduction in renal
function, we performed subgroup meta-analyses. The association of male sex with AKI was strongest among studies
of patients who underwent non-cardiac surgery. Male sex was also associated with AKI in studies which included
unselected hospitalized patients and in studies of critically ill patients who received care in an intensive care unit. In
contrast, cardiac surgery-associated AKI and radiocontrast-induced AKI showed no sexual dimorphism.

Conclusions: Our meta-analysis contradicts the established belief that female sex confers a greater risk of AKI and
instead suggests a protective role.
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Background
Sexual dimorphism is a well-established feature of chronic
progressive kidney disease [1]. Although less well recog-
nized, sexual dimorphism has also been established in the
development of ischemic acute kidney injury (AKI) [2].
Animal models have consistently demonstrated that
female sex is protective in the development of AKI
after ischemia-reperfusion injury [2–14]. Despite these
experimental observations, it has been suggested that
the direction of sexual dimorphism is reversed in
humans with AKI. Female sex has been included as a
risk factor in models developed to predict the risk of

AKI associated with cardiac surgery, aminoglycoside
nephrotoxicity, rhabdomyolysis and radio-contrast ad-
ministration [15–18]}. The commentary to the Kidney
Disease Improving Global Outcomes (KDIGO) Clinical
Practice Guideline for Acute Kidney Injury (arguably the
most authoritative commentary in the field) states that
female sex is among the “shared susceptibility factors” that
confer a higher risk of AKI [19]. This conclusion is based
on observations that female sex is associated with a
higher risk for AKI after cardiac surgery and after the
administration of radio-contrast or aminoglycosides.
On this basis, the commentary concludes that, “con-
trary to most chronic kidney disease disorders, it is the
female gender that carries a higher risk for AKI.” This
conclusion, however, is qualified by the observation that
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males predominate in reports of AKI complicating
infections with HIV, malaria, leptospirosis and other
community-acquired forms of AKI.
We have previously challenged the generally held consen-

sus that female sex is an independent risk factor for cardiac
surgery-associated AKI and for aminoglycoside nephrotox-
icity [18, 20]. In the present study, we sought to explore
the relationship between sex and hospital-associated
AKI (HAAKI) in greater detail by performing a system-
atic review and meta-analysis of studies published be-
tween January, 1978 and April, 2018 which report the
sex-stratified incidence of HAAKI.

Methods
Search strategy and selection criteria
We conducted a systematic review and meta-analysis of
the English literature to evaluate the reported incidence
of acute kidney injury in hospitalized women versus hos-
pitalized men. Our analysis was conducted according to
the Preferred Reporting Items for Systematic Reviews
and Meta-analyses protocol [21].
We searched PubMed for English-language articles

published between January 1, 1978 and April 1, 2018.
The following medical subject heading terms were used:
male, female, sex, gender, acute kidney injury, and acute
renal failure. EMBASE was also queried with the terms
sex difference, acute kidney injury and acute renal fail-
ure. Titles and abstracts of articles found in the database
search were reviewed to identify eligible studies. Full text
versions of selected studies were analyzed in detail. We
also examined the bibliographies of recovered articles
for additional resources. Any case control or cohort
study of 10,000 or more hospitalized patients in which

the sex-stratified incidence of AKI was reported was eli-
gible for inclusion (Fig. 1). To determine study quality,
the studies were assessed using the Newcastle Ottawa
Score for cohort and case control studies [22].

Definition of AKI
Hospital-associated AKI was defined as AKI that developed
in hospitalized patients. This definition included patients
who developed AKI within the first 48 h of admission to
the hospital (community-acquired AKI) and patients who
developed AKI later during their hospital course (hospita-
l-acquired). We accepted studies that defined AKI by
investigator-created, creatinine-based criteria, Acute Kidney
Injury Network (AKIN) criteria, Kidney Disease: Improving
Global Outcomes (KDIGO) criteria, Risk, Injury, Failure,
Loss of kidney function, End-stage kidney disease (RIFLE)
criteria, or by the requirement for renal replacement
therapy (AKI-D) [19, 23, 24].

Data extraction
All studies were examined for duplication of data. Attention
was given to the reporting clinical centers, years covered,
and overlap with larger regional or national databases. In
the case of overlap, a weighting factor was assigned to the
smaller study that was inversely proportional to the degree
of overlap. If the weighted number of patients fell below
10,000, the study was excluded. We also excluded studies
with less than 25 AKI events among either of the sexes.
We separated the selected studies in to 2 groups. The

first group included studies in which the investigators
utilized multivariate analysis and reported adjusted odds
ratios. The second group included studies in which un-
adjusted data was reported.

Fig. 1 Flow diagram describing the identification of studies included in the meta-analysis
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We analyzed separately studies restricted to patients who
underwent radio-contrast procedures (percutaneous coron-
ary interventions or computerized axial tomography) but
which failed to specify whether the procedure was per-
formed in an ambulatory care setting or was associated
with an in-patient hospital stay. In this regard, most
computerized axial tomography procedures are performed
in an out-patient rather than in an in-patient setting and
percutaneous coronary interventions have moved from an
exclusively in-patient procedure to a predominantly am-
bulatory procedure over the last decade (0% ambulatory
in 2009 to 77% ambulatory in 2015) [25].

Statistical analysis
Data were analyzed using a random effects model with
RevMan Version 5.3, The Cochrane Collaboration 2014.
Meta-regression analysis and sub-group meta-analysis
were performed with OpenMetaAnalyst 2016 [26].

Results
Adjusted analyses
Twenty-eight studies (6,758,124 patients; 2,313,202 women
and 4,444,922 men) utilized multivariate analysis to
assess risk factors for hospital-associated AKI and pro-
vided sex-stratified ORs (Fig. 2) [27–53]. Eight studies in-
cluded only hospitalized patients who underwent cardiac

surgery, 10 studies included only hospitalized patients who
underwent predominantly non-cardiac surgery, 3 studies
included only critically ill patients who received care in an
intensive care unit, 6 studies included unselected hospital-
ized patients, whereas the remaining study included only
hospitalized patients with a diagnosis of acute decompen-
sated heart failure. AKI was defined by KDIGO criteria in
10 studies, by RIFLE criteria in 1 study, by AKIN criteria in
2 studies, by the need for renal replacement therapy in 7
studies, and by investigator-created, creatinine-based cri-
teria in the remaining 8 studies. Nearly all studies that
utilized RIFLE, AKIN or KDIGO criteria to define AKI
relied solely on serum creatinine criteria rather than urine
output criteria.
Meta-analysis of this cohort showed that men were

significantly more likely to develop HAAKI than women
(OR 1.23 (1.11,1.36), n = 28 studies, 6,758,124 patients).
We observed a high degree of statistical heterogeneity

in the meta-analysis (I2 = 98.0%, p < 0.001). This is not
surprising since AKI is not a single disease but instead
represents a heterogeneous group of disorders character-
ized by an acute reduction in renal function. To evaluate
the source of statistical heterogeneity, we performed a
regression meta-analysis and subgroup analyses.
We found that statistical heterogeneity was related to

the criteria used to select the study cohort and to the

Fig. 2 Meta-analysis of 28 studies that provided adjusted sex-stratified data regarding the incidence of hospital-associated AKI
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criteria used to define AKI, but was not related to year of
publication, number of AKI events or total number of
patients studied. The association of male sex with the de-
velopment of AKI was strongest among studies restricted
to patients who underwent predominantly non-cardiac sur-
gery (OR 1.56 (1.37,1.77), n = 10 studies, 1,225418 patients,
606,881 women and 618,537 men). Male sex was also
associated with AKI in studies of unselected hospital-
ized patients (OR 1.22 (1.01,1.49), n = 6 studies, 2,196,772
patients, 332,584 women and 2,196,772 men), and in stud-
ies of critically ill patients who received care in an inten-
sive care unit (OR 1.10 (1.03,1.18), n = 3 studies, 70,046
patients, 34,487 women and 35,559 men). In contrast, car-
diac surgery-associated AKI showed no sexual dimorph-
ism (OR 0.95 (0.80,1.13), n = 8 studies, 1,635,968 patients,
490,355 women and 1,145,613 men).
The sex-stratified incidence of HAAKI also varied ac-

cording to the criteria used to define AKI. Men were more
likely to develop HAAKI than were women when AKI was
identified by KDIGO criteria (OR 1.38 (1.19,1.59), n = 10
studies, 2,263,679 patients, 361,914 women and 1,901,765
men), and by AKIN criteria (OR 1.69 (1.52,1.88), n = 2
studies, 81,643 patients, 46,462 women and 35,181 men).
There was no difference in the incidence of HAAKI
between the sexes when AKI was identified by the need for
renal replacement therapy (OR 1.05 (0.92, 1.10), n = 7 stud-
ies, 2,822,186 patients, 1,282,180 females and 1,540,006
men) or by investigator-created, creatinine-based criteria
(1.19 (0.91, 1.55), n = 8 studies, 1,564,509 patients, 611,383
women and 953,126 men).
In a separate analysis, the incidence of AKI among

adjusted studies of patients who underwent percutan-
eous coronary interventions or computerized axial tom-
ography was equivalent in men and women (OR 1.05
(0.79,1.40), n = 3 studies, 1,087,879 patients, 347,811
women and 740,068 men) [54–56].

Unadjusted analyses
The unadjusted cohort consisted of 68 studies which in-
cluded 232,586,252 patients (130,605,382 women and
101,970,870 men (Figs. 3 and 4) [29, 31–34, 36, 38, 42, 43,
45, 47, 57–112]. Studies could be divided into 7 distinct
categories. Twenty-four studies included unselected hos-
pitalized patients, 11 studies included only hospitalized
patients who underwent cardiac surgery, 13 studies in-
cluded only hospitalized patients who underwent predom-
inantly non-cardiac surgery, 11 studies included only
critically ill patients who received care in an intensive care
unit, whereas the remaining 9 studies included hospital-
ized patients selected based on their underlying disease
(liver disease, cerebrovascular disease, human immuno-
deficiency virus infection, congestive heart failure, or atrial
fibrillation). AKI was defined by RIFLE criteria in 5 stud-
ies, by AKIN criteria in 11 studies, by KDIGO criteria in

17 studies, by the need for renal replacement therapy in
20 studies, and by investigator-created, creatinine-based
criteria in the remaining 15 studies. Nearly all studies that
utilized RIFLE, AKIN or KDIGO criteria to define AKI
relied solely on serum creatinine criteria rather than urine
output criteria.
Meta-analysis of the entire cohort of unadjusted studies

showed that men were significantly more likely to develop
HAAKI than women (OR 1.29 (1.18,1.42), n = 68 studies,
232,586,252 patients). We observed a high degree of stat-
istical heterogeneity in this analysis (I2 = 99.6%, p < 0.001).
This is not surprising since AKI is not a single disease but
instead represents a heterogeneous group of disorders
characterized by an acute reduction in renal function. To
evaluate the source of statistical heterogeneity, we per-
formed a regression meta-analysis and subgroup analyses.
We found that statistical heterogeneity was related to the
criteria used to select the study cohort and to the criteria
used to define AKI, but was not related to year of publica-
tion, number of AKI events or total number of patients.
The association of male sex with the development of AKI

was strongest among studies reporting unadjusted data
from patients undergoing predominantly non-cardiac sur-
gery (OR 1.63 (1.34,1.97), n = 13 studies, 556,647 patients,
246,136 women and 310,511 men) and among studies of
unselected hospitalized patients (OR 1.52 (1.34,1.70), n = 24
studies, 224,740,578 patients, 127,168,880 women and
97,571,698 men). Male sex was also associated with AKI
among studies in which patients were selected based on a
disease-specific diagnosis (1.31 (1.04,1.65), n = 9 stud-
ies, 4,055,606 patients, 1,919,721 women and 2,135,885
men). In contrast, among unadjusted studies of cardiac
surgery-associated AKI, AKI was less frequent in men
than in women (OR 0.82 (0.74, 0.91), n = 11 studies,
1,413,349 patients, 398,205 women and 1,015,144 men).
The incidence of AKI among critically ill patients who
received care in an intensive care unit was similar in
men and women (OR 1.05 (0.89,1.25), n = 11 studies,
1,774,707 patients, 846,347 women and 928,460 men).
The unadjusted sex-stratified incidence of HAAKI also

varied according to the criteria used to define AKI. Men
were more likely to develop HAAKI than were women
when AKI was identified by KDIGO criteria (OR 1.34
(1.20,1.51), n = 17 studies, 1,804,815 patients, 868,140
women and 936,675 men), or by the need for renal re-
placement therapy (OR 1.33 (1.17,1.50), n = 20 studies,
217,375,505 patients, 128,841,628 women and 98,533,877
men). In contrast, men were less likely to develop HAAKI
than were women when AKI was identified by RIFLE
criteria (OR 0.89 (0.82,0.96), n = 5 studies, 260,132 pa-
tients, 112,564 women and 157,568 men). There was no
significant difference in the incidence of HAAKI between
the sexes when AKI was identified by AKIN criteria (OR
1.23 (0.98,1.54), n = 11 studies, 1,783,778 patients, 286,062
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Fig. 3 Subgroup meta-analysis of 68 studies that provided unadjusted sex-stratified data regarding the incidence of hospital-associated AKI.
Abbreviations used: ICU Intensive care unit; HA Hospital-associated AK; CSAKI Cardiac surgery-associated AKI
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women and 1,497,716 men) or by investigator-created,
creatinine-based criteria (OR 1.37 (0.92, 2.03), n = 15 stud-
ies, 1,306,657 patients, 470,795 women and 835,862 men).
In a separate analysis of unadjusted studies, radio-

contrast-induced AKI in patients undergoing computerized
axial tomography or percutaneous coronary interven-
tions was less frequent in men than in women (OR 0.79
(0.69,0.90), n = 9 studies, 1,516,807 patients, 478,719
women and 1,038,088 men).

Discussion
Sexual dimorphism is a well-recognized feature of chronic
progressive kidney disease [1]. Although less well recog-
nized, sexual dimorphism has also been clearly established
in AKI [2]. In contrast to CKD, where female sex is
reno-protective, the direction of sexual dimorphism has
been reported to be reversed in hospital-acquired AKI with
female sex being associated with the development of AKI
[19]. Moreover, female sex has been included as a risk
factor in models developed to predict the risk of AKI asso-
ciated with cardiac surgery, aminoglycoside nephrotoxicity,
rhabdomyolysis and radio-contrast administration [15–18].
On the basis of these observations, the commentary to
the KDIGO Clinical Practice Guideline for Acute Kid-
ney Injury concludes that female sex is a risk factor for
hospital-acquired AKI, while recognizing that male sex
predominates in certain forms of community-acquired
AKI. In the present study, we clearly show that it is
male sex, not female sex, that is a risk factor for
HAAKI, although we cannot determine whether this
sexual dimorphism is driven by community-acquired or
hospital-acquired AKI or both.
There is strong experimental basis to support our hy-

pothesis that female sex is reno-protective in AKI [2–14,
20, 113]. Sexual dimorphism in AKI may be mediated by
effects of sex hormones on cellular processes instrumental
in the pathogenesis of AKI, analogous to our suggestion
that sex hormones mediate sexual dimorphism in chronic

kidney disease [1]. In experimental models of ischemic
AKI, females show less severe renal functional impairment
and less histologic damage after ischemia-reperfusion in-
jury [2–14]. Numerous hypotheses have been proposed to
explain these observations [2, 8, 113]. Sex-related differ-
ences in the generation of nitric oxide, in the synthesis
and vascular response to endothelin-1, and in the renal
hemodynamic response to angiotensin II have been dem-
onstrated in experimental models and in human patients
[2, 8]. Cellular responses to ischemia-reperfusion injury
have also been shown to differ between the sexes. In
response to ischemia-reperfusion, Na + -K+ ATPase en-
zyme activity is greater in females than in males and trans-
cellular translocation of Na + -K+ ATPase is reduced [4].
Females subjected to ischemia-reperfusion injury main-
tain a reno-protective profile compared to their male
counterparts with respect to heat shock protein HSP72,
anti-oxidants such as superoxide dismutase, caspases
and proteases involved in apoptosis, metalloproteinases
such as meprin, inflammatory cytokines and members
of signaling pathways that mediate pro-inflammatory
responses [2–14, 113].
While our meta-analysis of adjusted studies demon-

strated that, overall, female sex was associated with pro-
tection from HAAKI, our subgroup analysis revealed a
relationship between the etiology of HAAKI and the
presence or absence of sexual dimorphism. This is not
surprising insofar as AKI is not a single disease but instead
represents a heterogeneous group of disorders character-
ized by an acute reduction in renal function.
The association between female sex and protection

from HAAKI was stronger among studies of hospitalized
patients who underwent non-cardiac surgery than in the
entire cohort of adjusted studies. Studies of critically ill
patients receiving care in an intensive care unit and
studies of unselected hospitalized patients also showed a
higher incidence of AKI in men than in women. In this
regard, unselected hospitalized patients better reflect the
true relationship between sex and HAAKI as compared
to studies in which patients were selected based on the
etiology of AKI. In contrast, among studies of cardiac
surgery-associated AKI, our meta-analysis demonstrated
no difference between the sexes.
We have previously suggested that the association be-

tween female sex and cardiac surgery-associated AKI in
unadjusted analyses reflects the greater burden of preexist-
ing comorbidities among women undergoing cardiac
surgery and does not indicate a greater intrinsic sus-
ceptibility of women to develop AKI under these cir-
cumstances [18]. This conclusion is reinforced by our
demonstration in the present study that the sexual di-
morphism associated with cardiac surgery-associated
AKI in unadjusted analyses disappeared after adjust-
ment for confounding factors.

Fig. 4 Funnel plot of studies that analyzed risk factors for hospital-
associated AKI and provided sex-stratified odds ratios
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It has been repeatedly demonstrated in unadjusted ana-
lyses and accepted by most authorities, including the com-
mentary to the KDIGO Clinical Practice Guideline for AKI,
that the incidence of contrast-induced nephropathy is
greater in women than in men. However, some investiga-
tors have suggested that the association of contrast-induced
nephropathy with female sex may merely reflects a higher
dose of contrast administered to women compared to men
[18]. Women generally have a lower body surface area than
men, and accordingly the volume of administered contrast,
when expressed as the volume of contrast adminis-
tered per body surface area, has frequently been re-
ported to be greater in women than in men. This
hypothesis is consistent with our data which show
that female sex was associated with contrast-induced
nephropathy in unadjusted analyses, but that this as-
sociation did not survive multivariate analysis.
We were surprised to find that only a modest, al-

beit significant, association of male sex with HAAKI
in adjusted analyses of critically ill patients requiring
care in an intensive care unit. Ischemic acute tubular
necrosis is frequently the etiology of AKI in this set-
ting and it is this form of renal injury that is most
analogous to experimental ischemia-reperfusion injury,
a model in which the reno-protection afforded by female
sex is most robust [2–14].
A major limitation of our analysis relates to the inher-

ent difficulty in defining AKI in men relative to women
in light of sex-related differences in creatinine kinetics
and the relationship of these differences to established
criteria that define AKI. Waiker and Bonventre [114]
assessed creatinine kinetics in patients with underlying
chronic kidney disease and superimposed AKI. They
identified differences in the sensitivity of absolute in-
creases in serum creatinine levels versus relative in-
creases in serum creatinine levels in identifying AKI in
this population. They also emphasized the importance of
the observation time in detecting threshold changes in
serum creatinine levels. These observations are also rele-
vant to comparisons of AKI incidence in men versus
women. Since differences in the rate of generation and
elimination of creatinine and in its volume of distribution
exist between men and women with AKI, different criteria
to define AKI might result in different sex-stratified inci-
dence rates. Where AKI is defined by a percent change in
the level of serum creatinine, the absolute change in cre-
atinine needed to qualify as an AKI event is lower in
women than in men since women generally have lower
baseline serum creatinine levels. In contrast, where AKI is
defined by an absolute increase in serum creatinine level,
the percent change is serum creatinine required to qualify
as an AKI event is greater in women than in men.
Also relevant to this issue are data reported by Srisawat

et al. [52], which showed that the incidence of AKI was

greater in men than in women when KDIGO criteria were
used to define AKI, but that sex-related differences in the
incidence of AKI disappeared when RIFLE criteria were
used. These findings suggest that KDIGO criteria identify
relatively more men than women with AKI compared to
RIFLE criteria. Thus, it is possible that use of RIFLE cri-
teria to define AKI, relative to KDIGO criteria, may mask
the effect on female sex on the incidence of AKI, or con-
versely, that use of KDIGO criteria may magnify the effect.
Consistent with this suggestion, our subgroup analysis
shows that female sex was more likely to be associated
with protection from AKI in those studies which utilized
KDIGO criteria than in those that utilized RIFLE criteria.
However, this conclusion is limited by the fact that our
analysis, unlike the Srisawat data [52], compares outcomes
based on differing definitions of AKI among different
studies but not within an individual study.
We did not include in our meta-analysis 24 studies

which utilized diagnosis codes to identify patients with
non-dialysis-requiring AKI in the absence of corroborat-
ing biochemical data. Although Grams et al. [115] found
a similar sensitivity and specificity for diagnosis codes in
identifying AKI in men versus women, Waikar et al.
[116] reported that the sensitivity was greater in men
than in women. Were Waikar’s data to apply, any con-
clusions about the relationship between sex and AKI
identified by diagnosis codes would be placed in serious
jeopardy. Incidentally, the incidence of AKI was greater
in men than in women in nearly all of these studies.
In contrast, we included studies that relied on AKI-D

data identified by diagnosis and procedure codes. Numer-
ous studies have established the high sensitivity, specifi-
city, positive predictive value and negative predictive value
of diagnostic codes to identify AKI-D in a variety of
administrative databases [115–119]. These indices gener-
ally exceeded 90% in all studies except that reported by
Grams et al. [115]. Not only do diagnostic codes to iden-
tify AKI-D have a greater accuracy than those to identify
AKI, they are also unlikely to be subject to miscoding
based on the sex of the patient. Yet the fact remains
that, despite the objective basis for dialysis coding,
the actual decision to initiate dialysis by the clinician
is a subjective one.
We recently performed a systematic review of dialysis

practices in AKI and found no evidence that dialysis is
initiated more often or earlier in men than in women
with AKI of identical severity [120]. In fact, data exist
to indicate the opposite, i.e. that dialysis is more aggres-
sively pursued in women than in men despite identical
severity of AKI. After propensity score matching of
patients with AKI, Wilson et al. [121] reported that dia-
lysis was more likely to be initiated in women than in
men. Similarly, Chou et al. [122] utilized propensity
matching of patients with sepsis and AKI treated in
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surgical intensive care units and found that female sex
was associated with earlier initiation of dialysis. More-
over, data from the North American Consortium for
the Study of End-Stage Liver Disease indicates that hos-
pitalized cirrhotic women are nearly twice as likely as
men to receive renal replacement therapy despite simi-
lar median delta creatinine levels [123]. Thus, these
studies suggest that the subjectivity inherent in the de-
cision to initiate dialysis creates a bias that operates
counter to our hypothesis, thereby strengthening our
conclusion that the incidence of severe AKI requiring
RRT is more common in men than in women.

Conclusions
A meta-analysis of studies providing sex-stratified inci-
dence of HAAKI demonstrates that female sex is associ-
ated with protection from AKI. This finding undermines
the established belief that female sex is a significant risk
factor for AKI. On the contrary, and consistent with ob-
servations in animal models, it is male sex that is associ-
ated with HAAKI.
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