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C3 glomerulopathy is an umbrella term, which includes several rare forms of glomerulo-
nephritis (GN) with underlying defects in the alternate complement cascade. A common 
histological feature noted in all these GN is dominant C3 deposition in the glomerulus. 
In this review, we will provide an overview of the complement system as well as mediators,  
with an introduction to pharmaceutical agents that can alter the pathway.

Keywords: C3 glomerulopathies, atypical HUS, complement C3, kidney disease, children

BACKGROUND

Membranoproliferative glomerulonephritis (MPGN) is a histopathological pattern of renal injury 
characterized by thickening of capillary walls and mesangial enlargement secondary to increased 
cellularity and matrix deposition. Traditional classification of MPGN is based on morphological 
features seen in electron microscopy (EM) and classified into type I (mesangial and subendothelial 
electron dense deposits), type II (electron dense material in the glomerular basement membrane), 
and type III (subepithelial deposits with basement membrane spikes). But an improved under-
standing of the pathogenic mechanism in MPGN has led to an emergence of a new grouping 
of diseases known as the C3 glomerulopathy (C3G). Based on IF findings, a more pathogenic 
reclassification of MPGN has been proposed into the following three subtypes (1): (i) Ig-associated 
MPGN, (ii) MPGN with dominant C3, and (iii) idiopathic MPGN (not C3G or Ig associated). 
This new classification system enables to outline diagnostic evaluation in various subgroups. The 
subgroup “MPGN with dominant C3” is helpful in identifying patients who would require an 
investigation of the complement pathway. The utility of this reclassification system was confirmed 
in a pediatric study (2) where C3G was shown to be more resistant to immunotherapy when 
compared to classical MPGN.

Examination of the mechanisms involved in uncontrolled C3 activation in the affected families 
has given important insight in the understanding of the pathophysiology of disease. Many of the 
factors involved in complement dysregulation in C3GN are very similar to that of atypical hemo-
lytic uremic syndrome (aHUS). Though the pathophysiology is very similar, aHUS has a more 
systemic presentation and can practically involve all the organ systems while the damage in C3GN 
is localized to the kidneys. In this review, we will provide an overview of the complement system as 
well as mediators, with an introduction to pharmaceutical agents that can alter the pathway.

OveRview OF THe COMPLeMeNT SYSTeM

The complement system is a central part of the innate immunity and involves more than 30 pro-
teins. The complement cascades have specific roles starting from identification of foreign organism, 
generation of potent inflammatory mediators (anaphylatoxins), coating of the pathogenic surface 
(opsonization), and targeted lysis by the formation of membrane penetrating pores, namely, the 
membrane attack complex (MAC) (3). There are three arms to the complement system (Figure 1):

 A: classical pathway – activated by antigen–antibody immune complex,
 B: lectin pathway  –  activated by the binding of mannose-binding lectin (MBL) to the mannose 

residues on the bacterial surface,
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FiGURe 1 | The complement pathway. C1q, C1r/C1s–C1 complex; MBL, mannose-binding lectin; MASPs, MBL-associated serine protease.
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 C: alternative pathway – constitutively active under the inhibi-
tory activity of complement regulators.

It is important to note that all three pathways converge at the 
point of C3 cleavage and have a common effector phase. This 
involves accumulation of proinflammatory molecules (C3a, C4a, 
and C5a) of complement cleavage, potent opsonin in C3b, and 
ultimate lysis of the target cell using MAC (C5b–9).

The classical pathway becomes activated when the Fc com-
ponent of the antigen–antibody immune complex binds to the 
C1 complex, which is a combination of C1q and serine proteases 
(C1r and C1s). Autocatalytic activation of serine protease ensues 
and cleaves C4 and C2 to form the classic C3 convertase (C4bC2a) 
(4, 5).

The lectin pathway employs pattern recognition receptors 
(PRR) such as MBL to recognize microorganisms by means 
of highly conserved structures known as pathogen-associated 
molecular pattern (PAMPs) (6). Some examples of PAMP include 
lipoteichoic acid in Gram-positive bacteria; lipopolysaccharide 
in Gram-negative bacteria; and β glucan in fungi. Once the MBL 
recognize these PAMPs, it activates the serine protease associated 
with it (MASP), which then cleaves C4 and C2 in a manner very 
similar to the classic pathway.

The alternative pathway, which is continually active, gener-
ates C3b, which can bind indiscriminately to both host cells and 
foreign microbial surfaces. On a foreign surface such as bacte-
rium, C3b binds with its activator complement factor B (CFB) 
that is then cleaved by factor D (CFD) to form the alternative 
C3 convertase (C3bBb). The C3 convertase thus formed enters 
into an amplification loop exponentially cleaving further C3. The 
final end product is the formation of C5 convertase (C3bBbC3b), 

which participates in the assembly of MAC C5b–9 (MAC). C5b 
forms the basis for the MAC assembly and associates with C6, 
C7, C8, and C9 on the target cell surface. This association enables 
C9 to form a stable pore up to 10  nm in diameter on the cell 
membrane. A rapid rise in intracellular calcium along with loss of 
mitochondrial polarity and adenine nucleotide pools will result 
in cellular death either by necrosis or apoptosis (7–9).

There are regulatory mechanisms in place that prevent the 
uncontrolled activation of the alternative pathway and hence pro-
tecting host cells from damage to self. The complement regulators 
act mainly by the following mechanisms:

 a. Prevent the formation of active convertase.
 b. Complement decay-accelerating factor, also known as CD55 

or DAF is a 70-kDa membrane protein that regulates the com-
plement system on the cell surface. DAF recognizes C4b and 
C3b fragments that are created during classical and alternate 
pathway activation and play a main role in accelerating the 
decay of active convertase once formed.

 c. Complement Factor H, a large soluble glycoprotein, plays a 
critical role in the homeostasis of complement system. It also 
contributes to essential cofactor activity for the regulatory 
function of both Factor I and DAF.

 d. Factor I is a serine protease, which plays a main role in the 
catabolism of C4b and C3b into inactive fragments thereby 
preventing the formation of active convertase. Factor I 
requires a number of cofactors for this regulatory action, 
namely, membrane cofactor protein (MCP) along with Factor 
H, complement 4 binding protein (C4BP), and complement 
receptor 1 (CR1) (10). DAF in addition to other  coregulatory 
proteins (Factor H, CR1, and C4BP) primarily inhibits the 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


FiGURe 2 | inhibitors in the complement pathway. CFH, complement factor H; CFI, complement factor I; MCP, membrane cofactor protein; DAF, decay-
accelerating factor; CR1, complement receptor 1; MAC, membrane attack complex.
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formation of new convertase and shortens the half-life of 
preformed convertase (11). The final level of control is to 
inhibit the assembly of MAC itself through inhibitors such 
as CD59, vitronectin, and S protein. Proteins regulating the 
complement cascade are present in both fluid (plasma) and 
membrane phase (cell surface) ensuring that complement 
activation is mainly targeted to remove the invading pathogen 
and avoiding uncontrolled activation (Figure 2).

KeY COMPONeNTS OF THe 
COMPLeMeNT CASCADe

Complement Factor H
Complement Factor H (CFH) is the most important protein 
involved in the regulation of alternate pathway. CFH is a single 
polypeptide chain of glycoprotein synthesized primarily in the 
liver and consists of 20 short consensus repeats (SCR) with two 
C3b-binding sites (12). SCR 1–4 in the amino terminal mainly acts 
on the fluid phase binding to C3b. SCR 7, 19, and 20 have binding 

sites, which attach to the glycosaminoglycan (GAG) on the cellular 
endothelial surface, thus helping to regulate the alternate pathway 
in the membrane phase. SCR 19 and 20 in the carboxy terminal 
acts at the membrane phase by anchoring CFH to C3b bound 
to GAG/sialic acid on the host cell surface while SCR7 acts as a 
secondary anchor (13). In addition, CFH is the required cofactor 
for CFI-mediated cleavage of C3b to inactivated C3b.

Mutations in CFH were the first identified abnormality in alter-
nate complement cascade. Familial studies were helpful in map-
ping CFH and MCP to the RCA locus in 1q32. The initial reported 
CFH mutation was a heterozygous defect in SCR20 detected in a 
patient with atypical HUS (14). Subsequently, several mutations of 
the CFH have been detected mostly in the SCR 19 and 20. More 
than 50% of the mutations have been mapped to SCR20.

Though some mutations can present with a quantitative defi-
ciency with decreased plasma CFH levels (Type 1 mutations), 
majority of mutations especially involving SCR 19 and 20 are 
functional defects with normal plasma CFH levels (type 2 muta-
tions). Structurally related proteins to CFH, namely, CFH-related 
proteins (CFHR1–5) are identified in the human plasma, the 
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functional significance of which is not known. As the genes for 
CFH and CFHR are in close proximity, genetic rearrangement 
between homologous sequences can result in a hybrid CFH–
CFHR protein, which has lost the SCR 19 and 20. The hybrid 
protein has altered function and can cause complement pathway 
dysregulation with or without causing quantitative reduction in 
plasma levels of CFH and C3. C3 is noted to be decreased in about 
30–50% of heterozygous mutations.

Acquired dysfunction of CFH due to antibodies will also result 
in alternate pathway dysregulation. In about 90% of patients with 
anti CFH antibodies, complete deficiency of CFHR1 and CFHR3 
is noted secondary to large deletions of these genes (15).

Membrane Cofactor Protein
Membrane cofactor protein is a transmembrane glycoprotein 
expressed in all host cells except for red blood cells. MCP 
contains an extracellular amino terminal, which has four SCR 
followed by the transmembrane portion and the cytoplasmic 
anchor. MCP acts as the main cofactor at the membrane level 
for CFI action of cleaving C3b with the C3b binding sites located 
to SCR 2, 3, and 4. Like CFH, MCP is located in the RCA gene 
cluster at 1q32. Atypical HUS patients with MCP mutation have 
decreased expression of MCP on peripheral leukocytes though 
functional defects have been noted rarely (16). Of note, as MCP 
is a membrane phase regulator of the alternate pathway, C3 level 
measurements will usually be normal. A concomitant decrease 
in C3 levels with MCP mutation may point toward a coexisting 
mutation in a fluid phase regulator.

Gain of Function Mutations
In contrast to mutations in the inhibitory factors, in which 
negative control of the alternate pathway is abnormal, a gain of 
function mutation results in persistent activation of the alternate 
pathway. They usually present with low C3 levels and normal C4 
levels indicating alternate pathway activation.

Complement Factor B
Complement factor B (CFB) is a zymogen and contains catalytic 
site for the formation of alternate C3 convertase. CFB on binding 
with C3b is cleaved by complement factor D (CFD) into Ba and 
Bb. The cleaved portion Bb combines with C3b to form C3bBb, 
which is the alternate C3 convertase which in turn, cleaves C3 
further, resulting in an amplification loop. A gain of function 
mutation in CFB induces increased activity and stability of C3 
convertase (17). With persistent activation of alternate pathway, 
C3 levels will be low in these patients.

C3 Mutations
Heterozygous C3 mutations were first described in 2008 in aHUS 
patients with persistent low C3 levels (18). In vitro assessment 
of these mutated C3 showed a decreased ability to interact with 
MCP resulting in an indirect gain of function mutation. Plasma 
C3 levels are usually decreased in these patients.

Dense Deposit Disease
Dense deposit disease (DDD), once classified as MPGN type 
2, derives its name from the electron dense deposits noted by 

EM in the lamina densa of the glomerular basement membrane 
(GBM) (19). Light microscopy (LM) presentation is varied and 
can present with varying degrees of mild mesangial proliferation, 
endocapillary proliferation to the classic MPGN like picture with 
essential defining feature being the dense deposit transformation 
of the GBM (20, 21). Immunofluorescence (IF) shows predomi-
nant C3 deposition along with its breakdown products in the 
glomerular basement membrane.

Insight into the mode of alternate complement pathway 
dysregulation in DDD comes from familial studies. Martínez-
Barricarte et al. (22) noted in a family of a mother and her two 
identical twin boys, a mutation characterized by a two amino acid 
deletion in C3. The mutant C3 in turn led to the formation of 
a hydrolyzed mutant C3 convertase. The mutant C3 convertase 
was resistant to degradation by fluid phase regulators (CFH) and 
was capable of cleaving wild type C3 with sustained fluid phase 
activity. Importantly, the mutation in the C3 convertase did not 
affect its ability to be regulated by surface regulators, such as 
decay-accelerating factor (DAF). This implies that the fluid phase 
dysregulation is the main abnormality noted in this particular 
familial DDD and sMAC is not usually elevated.

C3 nephritic factor (C3NeF) is an autoantibody that binds to the 
C3 convertase in the fluid phase stabilizing it against the cleaving 
action of CFH. The net result is uncontrolled activation of C3 with 
low C3 levels. C3NeF though commonly seen in DDD is not specific 
and has also been noted in MPGN type 1 and C3GN (23, 24). Other 
noted pathology includes autoantibodies against CFH in some 
patients with DDD (25, 26). The common denominator noted in 
different mechanisms leading to DDD is fluid phase dysregulation.

Dense deposit disease is usually diagnosed in children but 
has been noted in adults as well. The usual presenting features 
are proteinuria, hematuria, hypertension, and renal failure. Low 
serum C3 is a common finding. Progression to ESRD is noted in 
almost 50% of patients (27). Ocular drusen (28), which is an ocu-
lar lipoproteinaceous complement debris deposit and acquired 
partial lipodystrophy (APL), can be associated with DDD.

A significant complication of DDD is disease recurrence in 
transplant recipients leading to allograft failure (29).

C3 Glomerulonephritis
In C3 glomerulonephritis (C3GN), dominant deposition of C3 
is noted in the mesangium and capillary wall. Both subepithelial 
and subendothelial deposits may be present, and by light micros-
copy can resemble MPGN or post-infectious GN. In contrast to 
DDD, intramembranous deposits, if found, are discontinuous 
without the osmiophilic, ribbon like appearance. The consensus 
report (2) classifies GN with dominant C3 deposition into (i) C3 
glomerulopathy, (ii) Post-infectious GN, and (iii) other etiology. 
C3 glomerulopathy is further classified into C3GN and DDD 
based on specific genetic forms, autoantibodies, and electron 
micrographic findings.

The pathophysiology for alternate pathway activation in 
C3GN is very similar to DDD with fluid phase dysregulation due 
to varying mutations or autoantibodies. Familial studies have 
shed some important information such as the deletion of CFH 
codon noted in sisters from a consanguineous Turkish family 
with C3GN (30, 31). The result was a mutant CFH with defective 
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binding to C3b (32). Various heterozygous mutation of CFH, CFI, 
and MCP genes have been reported in the French literature (33). 
Clinical presentation varies with different degrees of proteinuria, 
hematuria, and renal insufficiency. Renal survival was worse if the 
GFR at diagnosis is <60 ml/min/1.73 m2.

Complement Factor H-Related Protein 5 
Nephropathy
Complement factor H-related protein 5 (CFHR5) nephropathy 
is a subtype of C3GN with autosomal dominant inheritance, 
reported by Gale et al. (34) from two families in Cyprus. Though 
light microscopy and IF features were very similar to C3GN, 
genome wide linkage analysis localized the abnormality to 1q 
31–32, a region that includes both CFH and CFHR genes.

Genes encoding CFH and CFHR proteins are in close prox-
imity to each other within the RCA gene cluster of 1q32 with a 
high degree of sequence homology predisposing to duplication, 
deletion, and hybrid gene formation. CFHR5 is a 65-kDa plasma 
protein with nine SCR. Though its physiologic role is not com-
pletely understood, it has been elucidated that this protein does 
play a role in inhibiting C3 convertase activity (35, 36). In patients 
with CFHR5 nephropathy, duplication of exons 2 and 3 of the 
CFHR5 gene leads to a novel CFHR5 protein with 11 SCR. The 
mutant protein is less effective in binding with C3b and hence 
leads to dysregulation of the fluid phase of alternate pathway.

Clinical features can be subtle with proteinuria and micro-
hematuria. Gross hematuria with upper respiratory infections 
(synpharngitic) similar to IgA nephropathy could be a presenting 
feature. Varying grades of renal dysfunction are usually present 
as well.

Diagnosing C3 Glomerulopathy
A multi-pronged approach involving both structural and func-
tional components is necessary to establish a diagnosis of C3 
glomerulopathy. Structural diagnosis involves obtaining tissue 
via renal biopsy to demonstrate predominant C3 deposition. 
Assessing the functional component of alternate pathway dys-
regulation involves an extensive evaluation that includes meas-
urement of complement levels, specifically C3, C4, complement 
factors (CFH, CFI, and CFB), C3NeF, and autoantibodies to CFH 
and CFB. In addition, genetic testing (direct exon sequencing) for 
mutations in varying complement regulators (CFH, CFI, MCP, 
CFB, and C3) may be needed. Assessment of copy number vari-
ations (CNV) across CFH–CFHR locus will be useful to detect 
hybrid genes.

Renal Histology
Light microscopic findings in C3 glomerulopathy can range from 
membranoproliferative lesions to mesangioproliferative or endo-
capillary proliferative lesions with or without absence of crescents. 
In rare instances, light microscopy might be normal. The electron 
dense osmophilic deposits as seen characteristically in DDD 
are found within the glomerular basement membrane, and as 
rounded deposits in the mesangium. In many cases, deposits are 
also seen in Bowman’s capsule and tubular basement membranes. 
C3 glomerulopathy, in which deposits do not completely fulfill 

criteria for dense deposits, are classified as C3GN. EM in C3GN 
shows a complex pattern of mesangial increase and glomerular 
basement membrane thickening. Differing combinations of 
subendothelial, intramembranous, and subepithelial deposits are 
noted.

Immunofluorescence shows characteristic C3 fragment 
deposition in C3GN. Though looking for terminal MAC, C5b–9 
may be relevant considering the anti C5 therapy with eculizumab, 
the terminal MAC is also found in normal glomeruli and tubular 
basement membrane making it an unreliable diagnostic marker. 
With inconsistencies in the reagents for detecting terminal com-
plement components and with C5b–9 also noted in repeat biopsy 
of C3GN, years after treatment, the current diagnostic appeal of 
the terminal MAC is very limited (37). Current knowledge on the 
significance of differing pathologic findings on the clinical course 
and response to anti complement therapy is incomplete and is a 
topic for further research consideration.

Treatment
Non-specific treatment measures include supportive therapy 
aimed at reduction of proteinuria and aggressive control of 
hypertension. Angiotensin-converting enzyme (ACE) inhibitors 
and angiotensin II receptor blockers are the first line agents pre-
scribed to reduce proteinuria and improve renal hemodynamics 
(38). In the presence of hyperlipidemia, lipid lowering agents can 
also help delay progression of renal disease.

Plasma infusions may be beneficial in patients with known 
factor deficiency (31, 39). In patients with circulating antibod-
ies (Anti CFH antibody or C3Nef), plasma exchange with 
fresh frozen plasma can be beneficial to remove the offending 
antibodies and replenish necessary complement factors (40–43). 
Plasma exchange or infusion should be performed at intervals 
keeping the half-life of the replenished factor in mind (44, 45). 
Immunosuppressive medications used in other forms of GN such 
as mycophenolate mofetil and rituximab have been tried with 
varying results (46, 47).

Disease-specific treatment with medications affecting the 
complement cascade such as eculizumab has been a topic of 
much discussion. The aim of such treatment is to prevent C5 
cleavage. As such, eculizumab could provide a targeted therapy 
for patients with C3 glomerulopathy similar to its use in aHUS 
and paroxysmal nocturnal hemoglobinuria (PNH). Bomback 
et al. (48) conducted an open label non-blinded study using ecu-
lizumab in six adult subjects with C3 glomerulopathy for a total 
medication period of 53  weeks using aHUS protocol. Though 
all the subjects tolerated the medication well with no significant 
adverse effects, improvement in renal function was noted only 
in two of six subjects both of whom had elevated sMAC levels. 
Additional anticomplement therapies that could provide comple-
ment regulation at C3 convertase instead of C5 might be a useful 
targeted therapy.

The efficacy of targeted complement inhibition in experimental 
mouse model of C3G as shown by Ruseva et al. (49) has provided us 
with a glimpse of future therapeutic options. Experimental mouse 
models with C3G (CFH deficient or CFH/CFI deficient) were 
treated with a recombinant mouse protein (CR2–FH). CR2–FH is 
a fusion protein composed of complement regulatory domains of 
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Factor H linked to C3 fragment-binding domain of complement 
receptor 2 (CR2). This unique fusion protein was able to bind C3 
fragments at sites of complement activation and prevent further 
C3 activation. CR2–FH partially restored plasma C3 levels in CFH 
deficient mouse and also reduced the linear C3 reactivity along 
GBM. It also stopped de novo C3 deposition in GBM.

Currently, there is no serum or histological marker that 
could predict the nature of disease progression or response to 
therapy. The primary aim for therapy should be prevention of 
disease progression as monitored by periodic assessment of 
renal function and degree of proteinuria. With C3GN being 
a disorder of alternate pathway, the use of anticomplement 
therapy is logical but the role of alternate immunosuppression 
has not been clearly established. Supportive therapy with ACE 
inhibitors or angiotensin 2 receptor blockers continue to be 

used based on extrapolation from other proteinuric renal dis-
eases. Questions over when to initiate anticomplement therapy 
and the duration of therapy have yet to be answered. An effort 
toward creating an international pathology registry as advised 
by the consensus report on C3 glomerulopathy (2) could 
provide important information regarding this rare disease. As 
understanding of the disease process improves and novel treat-
ments (such as recombinant factor H) become available, more 
targeted disease therapy could be incorporated in treating this 
rare condition.
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